32
5/2/2016 1 We Make Green Happen® The Mannik & Smith Group, Inc. Loukas Engineering, Limited Signal Timing Optimization Program Pilot Project Northeast Ohio Areawide Coordinating Agency www.albeckgerken.com Agenda Introduce Albeck Gerken, Inc. Background Expertise/Training Approach to Signal Timing Pilot Project ATMS Support Services Data Collection Innovations Workforce Development Summary Questions/Discussion 2

NOACA STOP Presentation 050216 r2 - Squarespace · Additional client goals based on the project Timing development programs, such as ... Document special operations ... Analysis Timing

  • Upload
    voliem

  • View
    217

  • Download
    2

Embed Size (px)

Citation preview

5/2/2016

1

We Make Green Happen®The Mannik & Smith Group, Inc.Loukas Engineering, Limited

Signal Timing Optimization Program Pilot ProjectNortheast Ohio Areawide Coordinating Agency

www.albeckgerken.com

Agenda

Introduce Albeck Gerken, Inc. Background

Expertise/Training

Approach to Signal Timing Pilot Project

ATMS Support Services

Data Collection Innovations

Workforce Development

Summary

Questions/Discussion

2

5/2/2016

2

How Can We Ensure Success of Your STOP Pilot Project?

National Experience

Local Insight

Advanced Technology

Highly Trained Professionals

Specialized Expertise

Success on Similar Programs

We Make Your Jobs Easier

We are Committed to Your Success

3

Background

Albeck Gerken, Inc. Founded as Albeck Gerken, Inc. in 2000 by John Albeck and Jeff Gerken

Early project assignments provided tech support, training, and development for Trafficware, the developers of Synchro and SimTraffic

The firm has evolved into a leading provider of traffic signal retiming and arterial management services

The firm has heavily invested in equipment, hardware, software, and training across many vendor platforms, to support our clients

Developer and presenter of effective training programs: Signal Timing Specialist

Advanced Traffic Management System (ATMS) Operator

Transportation Analyst & Transportation Planning Analyst

Corridor Manager

Offices located in Florida and Virginia Project office with MSG in Beachwood, Ohio

44

5/2/2016

3

Team Members

The Mannik & Smith Group, Inc. Local full service firm – Transportation, Civil, Environmental, Geotechnical, Surveying, Construction Support

60 years in Ohio engineering – 140 Ohio employees

Multiple ODOT Prequalifications

Prime consultant for NOACA Traffic Count Program

Loukas Engineering, Limited Traffic data and consulting firm

Approach all traffic counts with the mindset of a engineer

Subconsultant for NOACA Traffic Count Program

Ohio certified Disadvantaged Business Enterprise (DBE)5

Areas of Expertise

Everything we do falls into Transportation Systems Management andOperations (TSM&O) areas:

1. Traffic Operations Engineering

2. ATMS Support Services

3. Transportation Analysis/Performance Management

4. Traffic Safety Analysis

5. Traffic Data Collection (in support of all above business lines)

6

This is what we do every day

Areas of QualificationTraffic Engineering StudiesTraffic Signal TimingTraffic Systems Analysis and DesignTraffic Engineering Systems ImplementationTraffic Engineering Systems CommunicationsSignalizationSystems PlanningSubarea/Corridor PlanningTransportation Statistics

5/2/2016

4

Albeck Gerken, Inc. Staff

Our Team Members Highly trained, focused professionals that deploy signal timings and 

work on arterial operations every day 8 Qualified Signal Timing Specialists

10 Qualified ATMS Operators

Specialized training and certifications to ensure field focus 9 PTOE’s, 11 IMSA III

Trained in depth on controller hardware and software from multiple suppliers

High performing organization built using military concepts

Results Oriented Work Environment. Live by the following principles: “Some is not a number, Soon is not a time, and Hope is not a plan”

“Complacency Kills”

“Measure to Compare”

7

We can staff maintaining agency TMCs during deployments so there is no requirement for your staff support during a retiming project, allowing you to participate to the level you desire. 

Signal Timing Specialist Qualification

9 qualification topics

1. Data Collection

2. Modeling and Analysis

3. Local Controllers

4. Cabinets

5. Timing Development

6. Timing Deployment

7. Performance Evaluation

8. ATMS Operator 

9. Project Management

Required Training and Certifications:

Maintenance of Traffic (Work Zone Safety)

IMSA Signals I

IMSA Signals II

Synchro Training

Tru‐Traffic Training

Establishes a minimum standard for signal timing knowledge and capabilities

88

5/2/2016

5

Corridor Manager Qualification Standards

Arterial Performance Monitoring Data Collection Fundamentals

Bluetooth

BlueTOAD

ATMS Daily Alarm Monitoring Identify all possible alarms

Discuss procedures to enable ATMS alarms

Prioritize ATMS alarms based on severity of traffic impact potential

Perform ATMS alarm daily monitoring and prioritize maintaining agency response

Transportation Analyst Capabilities Discuss CAD capabilities

Discuss GIS mapping features and capabilities

General MUTCD understanding

Modeling and analysis

Interaction with citizens Complete Communicating with Tact and Finesse from National Seminars

Conduct mock citizen interaction exercises

Qualified Signal Timing Specialist

99

Traffic Operations Engineering

10

Arterial Signal Timing Data Collection Timing Pattern Development and Implementation

Fine‐Tuning Before and After Evaluation

Intersection Timing Change and Clearance Intervals Preemption and Priority Parameters Intersection Parameters

Alternatives Analyses Evaluation of Geometric or Operational Alternatives

10

5/2/2016

6

Approach to Retiming Projects ‐Our Philosophy

Balanced data collection and sufficiently detailed modeling provide both cost effective and technically appropriate inputs to the signal timing process.  Know the end state and work toward it.

Understand network saturation level and having reasonable expectations of what success means 

Hierarchy of traffic operations plan goals: 1. Prevent freeway/expressway ramp backups2. Eliminate gridlock3. Provide/improve progression and reduce overall travel and delay time to 

increase system throughput4. Additional client goals based on the project

Timing development programs, such as Synchro®, provide only 40% of the solution (maybe even less); basic timing review (minimum greens, initial intervals, clearances, recalls, detection strategies, passage times, etc.), proper schedule development, coordination plan testing (diagnostics), and proper implementation are all key components to smooth, successful retiming efforts.     

11

Approach to Retiming Projects ‐Our Philosophy

The proper programming of traffic signal controllers is probably the most important step in the process.  Optimization means nothing if the controller is continuously out of sync or skips movements due to incorrect programming

The optimized use of local controller settings provides opportunities to more efficiently move traffic 

Enhanced skills and applications are acquired continuously.  We continue to assess and apply improvements to our process after each project

Quality Control checks throughout the process, supporting an overall Quality Assurance program.  We formalize our SOPs and use checklists to ensure we do not miss critical steps in the process

12

5/2/2016

7

STOP Project Website

13

Traffic Signal System Retiming Process

14

Step 1: Determine Project Goals, Define Success, Determine Schedule

Step 2: Data Collection and Analysis 

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans 

Step 5: Fine‐tune Field Operations 

Step 6: Performance Evaluation

5/2/2016

8

Our Retiming Process:Step 1 ‐ Determine Project Goals, Define Success, Determine Schedule 

Discussion of the project origins and goals and any specific definitions of project success.  Identification of any project constraints or special conditions.  Determination of project limits, seasonal traffic impacts, and resulting data collection plan

Understand system saturation levels

Discussion of servicing pedestrian demands and the agency’s openness to signal sequence changes by time of day

Determination of operational status of equipment: traffic controllers, cabinets, intersection and system detectors, and communications

Development of the Project Schedule to include additional meetings, key delivery dates, any impacts to operations (school year or peak season issues), and any other issues associated to the schedule

Obtain written authorization for our staff to be on client’s ROW and to access traffic signal cabinets to perform our work

15

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

Our Retiming Process:Step 2 – Data Collection & Analysis

Conduct system machine 7‐day counts using intrusive (pneumatic tubes) or non‐intrusive (Wavetronix radar) platforms

Conduct turning movement counts using Miovision video collection units More accurate than people counting traffic

Ability to collect entire corridor at the same time

Demand versus served traffic issues

Perform field reviews and controller database uploads

Document special operations – preemption, transit priority, flashing yellow arrow, special pedestrian treatments

Conduct Saturation Flow Rate studies

Conduct “Before” travel time runs using Tru‐Traffic 

Build baseline Synchro® models

16

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

5/2/2016

9

Our Retiming Process:Step 2 – Data Collection & Analysis

Conduct system machine 7‐day counts using intrusive (pneumatic tubes) or non‐intrusive (Wavetronix radar) platforms

Conduct turning movement counts using Miovision video collection units More accurate than people counting traffic

Ability to collect entire corridor at the same time

Demand versus served traffic issues

Perform field reviews and controller database uploads

Document special operations – preemption, transit priority, flashing yellow arrow, special pedestrian treatments

Conduct Saturation Flow Rate studies

Conduct “Before” travel time runs using Tru‐Traffic 

Build baseline Synchro® models

17

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

Field Reviews

Field Reviews & controller database uploads

18

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

5/2/2016

10

Field Reviews

Field Reviews & controller database uploads

19

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

Build a calibrated traffic model of existing conditions 

Gather, process, and code project data into the models

Intersection geometry (from intersection field reviews)

Turning movement counts

Existing timing / phasing 

Process repeated for various times‐of‐day (day plan schedule)

Good modeling provides a trustworthy picture of capacity analysis and can minimize the amount of fine‐tuning required

Synchro® Model Development

20

5/2/2016

11

Build a calibrated traffic model of existing conditions 

Gather, process, and code project data into the models

Intersection geometry (from intersection field reviews)

Turning movement counts

Existing timing / phasing 

Process repeated for various times‐of‐day (day plan schedule)

Good modeling provides a trustworthy picture of capacity analysis and can minimize the amount of fine‐tuning required

Synchro® Model Development

21

Tru-Traffic

Universal Traffic Data

Format (UTDF)

Universal Traffic Data

Format (UTDF)

SynchroUTDF

Our Retiming Process:  Step 3 –Develop Traffic Signal Timing Plans

Update Basic Timing

Determine pattern needs

Make pedestrian decisions

Review crash records for safety issues

Update Synchro® models and use for pattern optimization, always questioning the results

Utilize Tru‐Traffic for offset fine‐tuning

Prepare timings for controller database, determine transition modes, standardize action table, ensure yellow trap prevention, etc.

Run coordination diagnostic program and address any issues, as part of our Quality Assurance program

Prepare databases for transfer to client’s system, (creating new files to preserve existing files as applicable)

22

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

5/2/2016

12

Our Retiming Process:  Step 3 –Develop Traffic Signal Timing Plans

Update Basic Timing

Determine pattern needs

Make pedestrian decisions

Review crash records for safety issues

Update Synchro® models and use for pattern optimization, always questioning the results

Utilize Tru‐Traffic for offset fine‐tuning

Prepare timings for controller database, determine transition modes, standardize action table, ensure yellow trap prevention, etc.

Run coordination diagnostic program and address any issues, as part of our Quality Assurance program

Prepare databases for transfer to client’s system, (creating new files to preserve existing files as applicable)

23

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

NEMA 170

Our Retiming Process:  Step 4 –Deploy Traffic Signal Timing Plans

Implementation day staffed appropriately

Download plans via automated means, or through front panel if necessary

Verify proper clock time for controllers

Drive system using Tru‐Traffic to determine if controllers are functioning as desired

Never allow pattern to operate unobserved

Goal is to ensure local controllers are operating correctly prior to beginning the fine‐tuning process

24

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

5/2/2016

13

Our Retiming Process:  Step 5 –Fine‐Tune Traffic Signal Timing Plans

Use Tru‐Traffic to fine‐tune pattern timing

Monitor critical intersections, drive the corridor using Tru‐Traffic adjusting necessary settings to achieve goals

More than just Cycle / Offset / Split

Use controller features to achieve goals

Unique to every system, but knowing the hardware can support the timing plan

During implementation and fine‐tuning, we use the system to troubleshoot operations, identify issues, and monitor traffic

We always want to deploy our timings

Long days, but we never leave until it’s right!

25

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

Our Retiming Process:Step 6 – Performance Evaluation 

“After” runs using Tru‐Traffic 

Synchro® & SimTraffic® Modeling Develops Benefit to Cost ratio analysis

Provides means to develop implementable recommendations

Fuel savings comparison develops CO2 and emission impacts

Tru‐Traffic Before/After run comparisons Travel time savings

Travel Time Monitoring and Trend Analysis Bluetooth® MAC address matching systems

Concise report signed and sealed by Professional Engineer

26

Step 1: Determine Project Goals, Define Success, Determine

Schedule

Step 2: Data Collection and Analysis

Step 3: Develop Signal Timing Plans

Step 4: Deploy Signal Timing Plans

Step 5: Fine-tune Field Operations

Step 6: Performance Evaluation

5/2/2016

14

Quality Assurance/Quality Control for Signal Retiming Projects

We have developed a QA program specific for signal retiming projects that has 11 specific QC elements covering the following areas

Data collection

Model development

Optimization development

Database entry

Coordination diagnostics

Highly successful in eliminating database errors and providing smooth deployments

27

Quality Assurance/Quality Control

Albeck Gerken, Inc. Quality Assurance Program Components:

The right project team members and the right size of the team

Proper scheduling and resource leveling

Peer Review as well as proper leadership oversight

Strict adherence to Standard Operating Procedures

Staff training

Work / Rest cycle

Risk Avoidance

28

5/2/2016

15

Standard Operating Procedures

Standard Operating Procedures

5/2/2016

16

31

Traffic Signal System Retiming Projects

PennDOT Projects

Traffic Signal Timing Initiative for District 6 Work order based assignments

Typical travel times and delays significantly improved

Project B/C ratios exceeded 40:1 in all cases

PennDOT Traffic Signal Asset Management System (TSAMS) Data Collection Inventory of over 8,700 traffic signals

PennDOT Traffic Signal Publication Consolidation Combining all traffic engineering documents into one

Updating technical information as necessary

Flashing Yellow Arrow Position Paper Investigating the use of the FYA in PA

PennDOT Green Light‐Go Technical Support Eastern Region – Districts 4, 5 and 8

5/2/2016

17

Example Signal Retiming Projects

Hillsborough County, Florida ‐ Signalized Intersection Timing Update Program (Naztec Controllers, ATMS.now) Conversion programming from TCT to Naztec controllers 

Respond to citizen service requests (complaints) related to timing

5 year program to update timing on critical corridors, placing certain corridors on Traffic Responsive Plan Selection mode

Operate the School Flashing Beacon Program (450 school beacons)

Traffic Management Center operators – TSM&O

Maintenance tasking: Uninterruptable Power Supply PMs

FDOT: District 7, District 2, District 5, District 1, and District 4 Multi‐year Districtwide retiming programs

Plant City running Traffic Responsive Pattern Selection mode

District 7 prioritization model for retiming efforts

SR 60 (Brandon): Benefit to Cost Ratio: 114:1, 13% reduction in all crashes

Mix of Bi Tran Systems 170/2070 using QuicNet, Peek 3000E controllers, and Naztec 980s

Special Event timings

33

Workforce Development

PennDOT Specific Traffic Signal Training Introduction to Signals

Traffic Signal Design

Maintenance and Operations

Construction and Inspection

All developed into online, self‐paced courses

ODOT Traffic Training Program Recently Selected for ODOT Programmatic Training Program

Minnesota DOT Training Involved in the development and instruction of multiple traffic training classes with MnDOT 

since 1998

The most recent contract involves the development of twelve (12) manuals and courses

Traffic Signal Optimization and Timing, Traffic Signal Design, Traffic Signals 101, Intersection Capacity Evaluation (ICE), Intelligent Transportation System (ITS) Design, Pavement Marking Applications and Design, Traffic Control Plan Development, Roadway Lighting Design, At‐Grade Sign Plan Design, Freeway Sign Plan Design, Guide Sign Design, and Signs 101.

Florida DOT Central Office training programs for arterial traffic operations

PennDOT Synchro and SimTraffic Training Courses

5/2/2016

18

Workforce Development

Highlights Customized class to meet the specific needs of the sponsoring agency Fill knowledge gaps due to staff turn-over and reassignment Train entire staff at one time Reduce travel with on-site classes Develop stand-alone manuals for future reference

Project Work Plan Gather and compile data necessary for course Conduct progress meetings/conference calls with sponsor Develop a draft course manual for agency review Develop final course manual and materials based on comments Provide group training session on-site

Albeck Gerken Delivers Classroom Instruction Training Manual – Can serve as a standalone document Electronic Files (Training Manual, Handouts, Slides) Progress meetings and minutes Course can be developed in online environment

Specialized Applications & Publications

Norfolk: Hampton Boulevard – Old Dominion University Pedestrian Access

Prince George’s County: Ritchie Road – Corridor Timing Plans and TSP Pilot

Virginia Beach: Diversion Route Signal Timing Plans

Sugar Land: Traffic Responsive Signal System Virginia Beach: Holiday Plans White Paper: FYA Pedestrian Considerations White Paper: Leading Pedestrian Intervals for

Arterials White Paper: Integrating Bicycles into Traffic

Signal Operations

5/2/2016

19

Summit County – Arlington Road Corridor Project

2 Mile Corridor Project CMAQ Funding Optimization and

Upgrade of 7 Signalized Intersections

Widening and resurfacing

Pedestrian Facilties Transit Improvements Construction in 2016

City of Kent – City Wide Traffic Signal Study

42 Signalized Intersections Studied

Five Phases for Signal Upgrades (CMAQ)

Fiber Interconnect

Transit Interface

Pedestrian Focused Design (KSU)

5/2/2016

20

Transportation and Traffic Study

City of Akron/University of Akron

Joint City – University Effort

29 Signalized Intersection Studies

Complete Streets Concepts

Traffic Calming Special Event Traffic

Planning Bicycle & Pedestrian

Facilities Transit Component

Advanced System Operation –Traffic Responsive and Traffic Adaptive

Traffic Responsive Good fit for systems that need to address recurring and non‐recurring  

congestion, typical of seasonal changes and directional commuter routes Programmed to mimic the day plan schedule for recurring congestion, as 

well as have patterns available to address non‐recurring events Requires system monitoring and adjustments

Traffic Adaptive May be a good fit for systems that have widely varying traffic demand 

during the day Multiple vendors with capabilities

Requires system monitoring and adjustments

Both platforms generally come with capital funds but little is put toward future maintenance and operations.  Goal should be to keep these systems running well into the future.

40

5/2/2016

21

Transportation Systems Management and Operations (TSM&O)

Defined as “…integrated strategies to optimize the performance of existing infrastructure through the implementation of multimodal and intermodal, cross-jurisdictional systems, services, and projects designed to preserve capacity and improve security, safety, and reliability of the transportation system.”

Moving Ahead for Progress in the 21st Century Act (MAP-21)

41

ATMS Support Services

We apply the principles of Transportation Systems Management and Operations to optimize ATMS functionality

Manage congestion, maximize operation of arterials

Measure user‐based parameters and improve their performance

ATMS Support Services include:

System Planning and Program Management

Implementation and Operations

Performance Evaluation and Benchmarking

Specialized Services

42

5/2/2016

22

ATMS Support Services

System Planning Development or Updating of an ATMS Strategic Plan

Expanded Initiatives through an ATMS Program Assessment

Incorporation of FHWA Rule 940 ITS Architecture and use of Systems Engineering process

Identification and Development of Strategic Partnerships

Program Management Scheduling, Directing, and Controlling Project Activities from 

Concept Development through Implementation System Configuration

Prioritization Procurement Assistance

Coordination and Documentation

ATMS Support Services

Implementation System Implementation Inspection Services

System Acceptance Development, Testing and Documentation

Operation Development of Standard Procedures and Practices

Conduct Staff Training

Provide Trained System Operators

Extension of Staff for Critical Absences, Special Events, Major Incidents, and Seasonal Peaks

Citizen Complaint Response Facilitation

Field Review / System Fine‐Tuning

Remote System Monitoring

5/2/2016

23

ATMS Support Services ‐ Operations

Operations Example (OODA Loop) Observe – ATMS Daily Monitoring of Critical Field Alarms – Pedestrian Detector Diagnostic

Orient – Use ATMS to validate if pedestrian detector is still failing

Decide ‐ Use ATMS to validate if equipment malfunction is causing operational issue and make decision to provide notification

Act – Send email to Traffic Operations with notification of equipment malfunction causing operational issue 

Observe

Orient/Validate

Decide

Act 45

ATMS Support Services ‐ Operations

System Hardware and Software Trafficware/Naztec ATMS.now software on 

dedicated server Laptops for direct connect

Trafficware/Naztec suite of controllers 

Trafficware/Naztec cabinet for testing and education

Naztec StreetWise

TCT LM System

Econolite Aries

Econolite Centracs

Peek CLMATS

BI Tran QuicLoad

Synchro Studio

Tru‐Traffic with GPS units 

46

5/2/2016

24

Traffic Operations Focused TSM&O Planning and Implementation

Field investigations of citizen complaints

Traffic safety evaluations

Cabinet design, database conversions/upgrades

Installation inspection

Traffic studies related to deployment

47

ATMS Support Services – Operations

ATMS Support Services

48

Specialized Services System and Controller Database Conversions

System Configuration and Setup

System “Grooming”

Controller Installation and Cabinet Inspections

UPS Integration and Maintenance

Preemption and Priority System Programming

School Beacon Monitoring and Maintenance

Flashing Yellow Arrow Deployments

5/2/2016

25

49

Alternatives Analyses

Modeling and Evaluation of Operational Alternatives

Roadway Widening

Intersection Geometric Improvements

Signal Operational Modifications

Capital Program Prioritization based on Project Effectiveness

Benefit / Cost Analysis

Capacity Project Staging

Transportation Analysis / Performance Management

SimTraffic Network Performance Measures - PM Peak Hour

Existing Volumes

Split Optimization Lane alignment change + Split Phase +

Split Optimization

No-Build Build 1 No-Build Build 2

Total Delay (hr) 52 44 -15.8% 52 43 -17.3%

Total Stops 3,067 2,772 -9.6% 3,067 3,020 -1.5%

Total Travel Time (hr) 96 88 -8.5% 96 87 -9.4%

Fuel Consumed (gal) 74 72 -2.6% 74 73 -1.9%

Future Volumes

Split Optimization Lane alignment change + Split Phase +

Split Optimization

No-Build Build 1 No-Build Build 2

Total Delay (hr) 147 77 -47.7% 147 107 -27.5%

Total Stops 4,481 4,359 -2.7% 4,481 5,836 30.2%

Total Travel Time (hr) 198 129 -34.9% 198 158 -20.1%

Fuel Consumed (gal) 106 92 -13.3% 106 99 -6.7%

SimTraffic Network Performance Measures - PM Peak Hour

Existing Volumes

Split Optimization Lane alignment change + Split Phase +

Split Optimization

No-Build Build 1 No-Build Build 2

Total Delay (hr) 52 44 -15.8% 52 43 -17.3%

Total Stops 3,067 2,772 -9.6% 3,067 3,020 -1.5%

Total Travel Time (hr) 96 88 -8.5% 96 87 -9.4%

Fuel Consumed (gal) 74 72 -2.6% 74 73 -1.9%

Future Volumes

Split Optimization Lane alignment change + Split Phase +

Split Optimization

No-Build Build 1 No-Build Build 2

Total Delay (hr) 147 77 -47.7% 147 107 -27.5%

Total Stops 4,481 4,359 -2.7% 4,481 5,836 30.2%

Total Travel Time (hr) 198 129 -34.9% 198 158 -20.1%

Fuel Consumed (gal) 106 92 -13.3% 106 99 -6.7%

50

Performance Evaluation and Benchmarking

Development and Monitoring of Performance Measures

Travel Time Efficiency and Reliability

Benefit / Cost Analyses

Road Safety Analyses

Uptime and Equipment Reliability

Trend Line Identification

Public Reporting Dashboards

Transportation Analysis / Performance Management

5/2/2016

26

Traffic Safety Analyses 

51

Signal Operations and Safety Optimization of signal timing

Shown to reduce total crashes by about 15%1

Shown to reduce right angle crashes by 25 ‐ 32%2

Adjustment of clearance intervals to ITE values Shown to reduce total crashes by about 8%2

Review of left turn phasing  Significant impact on left turn crashes

Review of phasing sequences

Five corridors in Hillsborough County – 55:1 benefit / cost ratio just for safety improvements due to corridor retiming

1. Issue Brief 5 – Traffic Signals, FHWA and ITE, 20042. Issue Brief 8 – Toolbox of Countermeasures and Their Potential Effectiveness for Intersection

Crashes, FHWA and ITE, 2009

Traffic Safety Analyses 

52

Arterial and Intersection Safety Evaluations

Signal Operations

Coordination and Progression

Pedestrian and Clearance Intervals

Phasing Sequences

Signal Displays

Crash Trends Analysis

Empirical Bayes Analysis

ID Annual Crash 

Reduction 

Crash Cost ‐ Weighted by Facility Type 

Annual Crash Cost Reduction 

Present Value of Crash Reduction at i=4%, y=1.5 

Cost of Retiming Effort 

Benefit / Cost Ratio 

HC‐1  69  $     130,645  $       9,014,505  $         12,875,868  $ 129,956  99 

HC‐2  64  $     130,645  $       8,361,280  $         11,942,834  $ 133,696  89 

HC‐3  38  $     130,645  $       4,964,510  $           7,091,058  $ 103,628  68 

HC‐4  23  $       72,470  $       1,666,810  $           2,380,788  $ 143,774  17 

HC‐5  NA  NA  NA  NA  NA  NA 

HC‐6  55  $       89,065  $       4,898,575  $           6,996,880  $ 96,612  72 

Total  249    $     28,905,680  $         41,287,428  $ 748,443  55 

 

ID Annual Crash 

Reduction 

Crash Cost ‐ Weighted by Facility Type 

Annual Crash Cost Reduction 

Present Value of Crash Reduction at i=4%, y=1.5 

Cost of Retiming Effort 

Benefit / Cost Ratio 

HC‐1  69  $     130,645  $       9,014,505  $         12,875,868  $ 129,956  99 

HC‐2  64  $     130,645  $       8,361,280  $         11,942,834  $ 133,696  89 

HC‐3  38  $     130,645  $       4,964,510  $           7,091,058  $ 103,628  68 

HC‐4  23  $       72,470  $       1,666,810  $           2,380,788  $ 143,774  17 

HC‐5  NA  NA  NA  NA  NA  NA 

HC‐6  55  $       89,065  $       4,898,575  $           6,996,880  $ 96,612  72 

Total  249    $     28,905,680  $         41,287,428  $ 748,443  55 

 

5/2/2016

27

Data Collection Innovations

Wavetronix Use of HD units for non‐intrusive “tube emulation” Portable, temporary installation, robust “by lane” 

analysis We can use where tube installation will be difficult or 

risk avoidance requires

Miovision “Off‐line” video collection system, upload videos of 

turning movement counts, Miovision uses machine vision to produce a TMC, provides an audit trail

Ability to collect the turning movement counts and approach counts at the same time

BlueTOAD Non‐intrusive travel time data via MAC address 

matching Can be used for Origin‐Destination studies Future historical benchmarking will provide 

significant tools to manage roadway operations

53

Data Collection Innovations ‐Wavetronix

Wavetronix Smartsensor HDTM units

Dual‐radar technology for detection with a patented auto‐configuration process to define the roadway cross‐section and direction of vehicles in each lane.  

One sensor is capable of collecting across 10 lanes (multi‐directional)

Count, classification, speed, occupancy; all by lane

Accuracy documented in White Paper*

54* Available for download at www.albeckgerken.com

5/2/2016

28

Data Collection Innovations ‐Miovision

MiovisionTM Video Collection Units (VCU)

Uses digital video recording to capture all vehicle turning movements. Miovision has developed proprietary machine vision technology to count the traffic for each movement. 

Video recorded and stored on SD card, upload video via office computer to the Miovision web server

Miovision processes the video on a per‐hour fee basis 

Count and vehicle classification by movement

Capable of studies up to 72 hours 

White Paper documenting count accuracy*

55* Available for download at www.albeckgerken.com

Before/After Video Logging for Travel Time Runs

56

Mercury Boulevard

5/2/2016

29

Data Collection Innovations – BlueTOAD

BlueTOADTMUnits for real‐time travel time data

Non‐intrusive Bluetooth MAC address readers

Online portal for real time data via cellular modem as well as historical data

57

Transportation Systems Management and Operations (TSM&O)

Measuring transportation performance

Actively managing the transportation network

Providing beneficial safety and mobility outcomes to the public

58

5/2/2016

30

Albeck Gerken, Inc. Summary

Albeck Gerken, Inc. Staff

We are an operations‐based company focused on arterial management using the concepts of TSM&O.

We know the controllers and ATMS softwares in use

We know the analysis tools, how to apply them, and when to question their outputs

We make your life easier through preparation and smooth deployments

Our ability to respond to hardware, software, and general traffic issues sets us apart

This is simply what we do ‐We Make Green Happen®

59

Questions / Discussion

We Have:

• Trained over 3,000 Students on the use of Synchro

• Specialized Internal Training Programs

• Implemented Other Successful Pilot Programs

• 9 PTOE’s 

• 11 IMSA III’s

• 46 Miovision Units 

• 4 Wavetronix Units

• 60 BlueTOAD Units

Albeck Gerken, Inc. Staff We are an operations‐based company 

focused on arterial management using the concepts of TSM&O.

We know the controllers and ATMS softwares in use

We know the analysis tools, how to apply them, and when to question their outputs

We make your life easier through preparation and smooth deployments

Our ability to respond to hardware, software, and general traffic issues sets us apart

This is simply what we do ‐We Make Green Happen®

5/2/2016

31

Discussion

Albeck Gerken, Inc. engineers are nationally recognized for the application and implementation of technology to better operate our surface transportation systems.

We provide specialized training and certifications to ensure a field focus. Our staff includes nine PTOE’s, 11 IMSA Level III certifications, and eight Signal Timing Specialists.

Albeck Gerken, Inc. has recently been selected by the Ohio Department of Transportation (ODOT) for their Traffic Signal Training Programmatic project.

From 1999 to 2011, John Albeck was involved in the development of Trafficware’s Synchro and SimTraffic signal timing optimization tools.

We have also developed successful in-house training pipelines which include: Signal Timing Specialist, Advanced Traffic Management System (ATMS) Operator and Corridor Manager. We can staff maintaining agency TMCs during deployments so there is no requirement for your staff support during a retiming project, allowing you to participate to the level you desire.

Our staff consists of highly trained, focused professionals that deploy signal timings and work on signal systems every 

day. This is what we do.

The Florida Department of Transportation (FDOT) has documented an average grade of 4.5 (out of 5.0) for Albeck Gerken, Inc. on recent projects (compared to an average of 3.8 for our competitors).

Traffic signal retiming projects reflect our core service and our staff is built to support projects like yours.

The Mannik & Smith Group and Loukas Engineering are working with NOACA on the current Traffic Count Program and will facilitate coordination and use of existing data.

Our robust Quality Assurance Program was developed specifically for signal retiming projects and covers 11 quality control elements.

Our team understands that traffic models, such as 

Synchro, are at best 40% of the solution; basic timing review (minimum greens, initial intervals, clearances, recalls, detection, passage, 

etc.), coordination plan testing (diagnostics), and proper implementation are all key components to smooth, 

successful retiming efforts.

Properly programming traffic signal controllers is probably the most important step in the process.  Optimization means nothing if the controller is 

continuously out of sync or has cycle failures due to incorrect 

programming.

Our team’s project office (MSG office) is located in Beachwood, Ohio, just minutes from the Cedar Road corridor.

Equipment knowledge and experience with system troubleshooting are key elements to successful fine-tuning.

In addition to hands-on traffic signal optimization, the Albeck Gerken, Inc. team has vast experience instructing others across the United States on signal timing best practices. Our Project Manager, John Albeck, has developed and instructed Traffic Signal Controller Programming courses focused on proper interpretation of Synchro output and how it was to be input into an Econolite controller.

We have mastered the complex aspects of arterial operations and have built a staff that can deliver these services expeditiously.

Example Signal Retiming Projects

FDOT: District 7, District 2, District 5, District 1, and District 4

Multi‐year Districtwide retiming programs

Plant City running Traffic Responsive Pattern Selection mode

District 7 prioritization model for retiming efforts

SR 60 (Brandon): Benefit to Cost Ratio: 114:1, 13% reduction in all crashes

Mix of Bi Tran Systems 170/2070 using QuicNet, Peek 3000E controllers, and Naztec 980s

Special Event timings

Brevard County, Florida retiming  (Naztec controllers, ATMS.now)

Wickham Road Traffic Responsive System

Next steps are Traffic Adaptive implementation

62

5/2/2016

32

Example Signal Retiming Projects

Virginia Beach, Virginia  Naztec controllers, ATMS.now

3 year program to update entire city, working through priority of corridors

Training, city wide profiling, diversion routes

TSM&O activities to follow

Norfolk, Virginia  McCain 170 controllers, BiTrans QuicNet

3 year program to update entire city, working through priority of corridors

Training, city wide profiling

Roanoke, Virginia  Traconex controllers

Multiple corridor retiming assignments

63

Example Signal Retiming Projects

Around the country:

Elk Grove, California (Naztec 2070 controllers, ATMS.now)

Citrus Heights, California (Naztec controllers, ATMS.now)

Moving to Traffic Responsive Plan Selection

Minnesota DOT (Econolite controllers, Aries)

SE Metro, I‐494 PRO, TH 13, TH 247, I‐394, Eden Prairie/TH 212

Sugar Land, Texas (Naztec controllers, ATMS.now)

Recently completed their Traffic Responsive system 

Grand Rapids, Michigan (EPAC controllers, ACTRA central)

Omaha, Nebraska (170 controllers)

Wichita, Kansas (2070 controllers, MIST central)

64