21
Quantifying risk through a rigorous analytical approach to the real world challenge of offshore wind construction – downtime, constraints and sequencing. Nick Baldock Garrad Hassan and Partners Ltd

Nick Baldock Garrad Hassan and Partners Ltd

  • Upload
    valiant

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

Quantifying risk through a rigorous analytical approach to the real world challenge of offshore wind construction – downtime, constraints and sequencing. Nick Baldock Garrad Hassan and Partners Ltd. Contents. Problems Facing Offshore Wind Farm Construction Garrad Hassan Approach - PowerPoint PPT Presentation

Citation preview

Page 1: Nick Baldock Garrad Hassan and Partners Ltd

Quantifying risk through a rigorous analytical approach to the real world challenge of offshore wind construction – downtime, constraints and

sequencing.

Nick BaldockGarrad Hassan and Partners Ltd

Page 2: Nick Baldock Garrad Hassan and Partners Ltd

Contents

Problems Facing Offshore Wind Farm

Construction

Garrad Hassan Approach

Validation Case Study

Conclusions

Summary

Page 3: Nick Baldock Garrad Hassan and Partners Ltd

Contractual interface

risks

Few EPC offerings

Complex&

costly

Marginal economics

Risk

Offshore Wind Farm Construction

Page 4: Nick Baldock Garrad Hassan and Partners Ltd

Offshore Wind Farm Construction

Time & Budget Contingency

Optimal Vessel Strategies

Supply Chain Risks

Assessing Weather Delay

Capturing Project

Restrictions

Managing Contractors

Questions?

Page 5: Nick Baldock Garrad Hassan and Partners Ltd

Garrad Hassan Approach

O2C (Optimise Offshore Construction) Model - Structure

DEFINEOPERATIONS

LONG-TERMWEATHER DATA

TIME DOMAINSIMULATIONS

OPERATION DURATION

DISTRIBUTIONS

DEFINESEQUENCE RULES

DEFINE PROJECT

DEFINE OTHER CONSTRAINTS

DEFINE BUILDSEQUENCE

MONTE CARLO ENGINE

PERTURBSEQUENCE

OPTIMAL SEQUENCE

TOTALDURATION

DISTRIBUTION

STAGE 1

STAGE 2

Page 6: Nick Baldock Garrad Hassan and Partners Ltd

Stage 1 – Time Domain Simulations

- Operation Duration Distribution

- For each defined offshore operation

- Monthly basis

DEFINEOPERATIONS

LONG-TERMWEATHER DATA

TIME DOMAINSIMULATIONS

OPERATION DURATION

DISTRIBUTIONS

Monopile & Transition Piece Installation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200

Operation Duration [hrs]

Itera

tions

Ideal Duration 50hrs

Page 7: Nick Baldock Garrad Hassan and Partners Ltd

Garrad Hassan Approach

O2C (Optimise Offshore Construction) Model - Structure

DEFINEOPERATIONS

LONG-TERMWEATHER DATA

TIME DOMAINSIMULATIONS

OPERATION DURATION

DISTRIBUTIONS

DEFINESEQUENCE RULES

DEFINE PROJECT

DEFINE OTHER CONSTRAINTS

DEFINE BUILDSEQUENCE

MONTE CARLO ENGINE

PERTURBSEQUENCE

OPTIMAL SEQUENCE

TOTALDURATION

DISTRIBUTION

STAGE 1

STAGE 2

Page 8: Nick Baldock Garrad Hassan and Partners Ltd

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400 450 500

Project Duration

No.

Ite

ratio

ns

- Project Build Duration Distribution

- For each defined activity sequence

• Weather Downtime

• Logistical Downtime

Stage 2 – Programme Modelling & Optimisation

DEFINESEQUENCE RULES

DEFINE PROJECT

DEFINE OTHER CONSTRAINTS

DEFINE BUILDSEQUENCE

MONTE CARLO ENGINE

PERTURBSEQUENCE

OPTIMAL SEQUENCE

TOTALDURATION

DISTRIBUTION

Total Project Build Duration Distribution

Page 9: Nick Baldock Garrad Hassan and Partners Ltd

Model Validation Case Study

Egmond ann Zee Offshore Wind Farm

Page 10: Nick Baldock Garrad Hassan and Partners Ltd

Egmond ann Zee Offshore Wind Farm

- Modelled Construction Operations:

• Monopile & TP Installation - Svanen (36 Units)

• Turbine Erection – A2SEA ‘Sea Energy’ (36 Units)

• Export Cable Installation (3 Units)

• Inter-Array Cable Installation (33 Units)

• Turbine Commissioning

• Wind Farm Reliability Testing

Validation Case Study

Page 11: Nick Baldock Garrad Hassan and Partners Ltd

Egmond ann Zee Case Study

Stage 1 Results

- Monopile Foundation Installation Duration Distributions (Single Unit per Trip)

Duration [hrs] (March)

Duration [hrs] (June)

Duration [hrs] (September)

Duration [hrs] (January)

Iter

atio

ns

0

200

400

600

800

1000

50 100 150 200 250 300 350 400 450 500 550

0

200

400

600

800

1000

50 100 150 200 250 300 350 400 450 500 550

0

200

400

600

800

1000

50 100 150 200 250 300 350 400 450 500 550

0

200

400

600

800

1000

50 100 150 200 250 300 350 400 450 500 550

Page 12: Nick Baldock Garrad Hassan and Partners Ltd

0

100

200

300

400

500

600

700

80 130 180 230 280 330 380 430 480

0

100

200

300

400

500

600

700

80 130 180 230 280 330 380 430 480

0

100

200

300

400

500

600

700

80 130 180 230 280 330 380 430 480

0

100

200

300

400

500

600

700

80 130 180 230 280 330 380 430 480

Egmond ann Zee Case Study

Stage 1 Results

- Turbine Erection Duration Distributions (2 Turbine Units per Trip)

Duration [hrs] (March)

Duration [hrs] (June)

Duration [hrs] (September)

Duration [hrs] (December)

Iter

atio

ns

Page 13: Nick Baldock Garrad Hassan and Partners Ltd

Egmond ann Zee Case StudyStage 2 Egmond ann Zee project definition

- Segregated into 10 construction zones

- Single contractor per zone at any one time

- Construction sequence:

1. Foundation Installation

2. Sub-Sea Cable Installation

3. Cable Terminations

4. Wind Turbine Erection

5. Cable Testing

6. Wind Turbine Testing

7. Wind Turbine Commissioning

Page 14: Nick Baldock Garrad Hassan and Partners Ltd

Egmond ann Zee Case Study

Stage 2 Results

- Monopile & Transition Piece Installation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350 400 450 500

Operation Duration (Days)

Itera

tions

O2C Predicted P(50) Project Build Duration

Egmond ann Zee Total Project Duration

O2C Predicted P(90) Project Build Duration4 Days

P(50) P(90)

Page 15: Nick Baldock Garrad Hassan and Partners Ltd

Egmond ann Zee Case Study

Stage 2 Results

- Wind Turbine Erection

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350 400 450 500

Operation Duration (Days)

Itera

tions

O2C Predicted P(50) Project Build Duration

Egmond ann Zee Total Project Duration

O2C Predicted P(90) Project Build Duration65 Days

P(50) P(90)

Page 16: Nick Baldock Garrad Hassan and Partners Ltd

Egmond ann Zee Case Study

Stage 2 Results

- Wind Turbine Erection (without logistic downtime)

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350 400 450 500

Operation Duration (Days)

Itera

tions

O2C Predicted P(50) Project Build Duration

Egmond ann Zee Total Project Duration

O2C Predicted P(90) Project Build Duration1 Day

P(50) P(90)

Page 17: Nick Baldock Garrad Hassan and Partners Ltd

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350 400 450 500

Project Duration (Days)

Itera

tions

Egmond ann Zee Case Study

Stage 2 Results

- Total Project Build Duration

O2C Predicted P(50) Project Build Duration

Egmond ann Zee Total Project Duration

O2C Predicted P(90) Project Build Duration38 Days

P(50) P(90)

Page 18: Nick Baldock Garrad Hassan and Partners Ltd

Egmond ann Zee Case StudyConclusions

- Good level of agreement (weather downtime modelling)

- Modelling of project zones results in artificial delay (Egmond)

- Modelling as an EPC contract would result in a better agreement

- Complete project build duration within model’s P(50) to P(90) limits

Page 19: Nick Baldock Garrad Hassan and Partners Ltd

SummaryThe value of O2C Modelling

- Allows resourcing sensitivity studies

- Allows cost benefit analysis

- Allows developer to assess & reduce contract interface risks

- Importantly allows for a novel visualisation of the project build

Page 20: Nick Baldock Garrad Hassan and Partners Ltd
Page 21: Nick Baldock Garrad Hassan and Partners Ltd

Thank You for Your AttentionNick Baldock - Garrad Hassan

Main Stand Hall 2. No. 2260

Contact details:

[email protected] Bristol (UK)

[email protected] Bristol (UK)

[email protected] Paris (France)

References:

Offshore Wind Farm Egmond ann Zee General Report,