17
Newton Raphson method Dr. Motilal Panigrahi Associate Professor Nirma University Dr. Motilal Panigrahi, Nirma University

Newton Raphson method Raphson method •Aim: To find the root of an equation 𝑓𝑥=0 •This is an open method. •However, here we take one initial point to start with. ... In

Embed Size (px)

Citation preview

Newton Raphson

methodDr. Motilal Panigrahi

Associate Professor

Nirma University

Dr. Motilal Panigrahi, Nirma University

Newton Raphson method

• Aim: To find the root of an equation 𝑓 𝑥 = 0

• This is an open method.

• However, here we take one initial point to start with.

Dr. Motilal Panigrahi, Nirma University

In this method

• Iteratively, we find new point.

• Given 𝑥0. We find the point (𝑥0, 𝑓 𝑥0 ).

• Then we find the tangent to the curve at this point. If the derivative

(slope) is not 0 at this point, then the tangent will hit the 𝑥 −axis at the

point say, 𝑥1.

Dr. Motilal Panigrahi, Nirma University

Consider a curve f(x)

Dr. Motilal Panigrahi, Nirma University

Take initial point 𝑥0, find (𝑥0, 𝑓 𝑥0 )

(𝑥0, 𝑓 𝑥0 )

Dr. Motilal Panigrahi, Nirma University

Draw tangent at the point (𝑥0, 𝑓(𝑥0))

Dr. Motilal Panigrahi, Nirma University

Tangent crosses the x-axis

Dr. Motilal Panigrahi, Nirma University

Tangent hits the x-axis at the point 𝑥1

𝑓′ 𝑥𝑖 =−𝑓(𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖

Dr. Motilal Panigrahi, Nirma University

Slope of the tangent at the point 𝑥𝑖 , 𝑓(𝑥𝑖 )

• 𝑓′ 𝑥𝑖 =−𝑓(𝑥𝑖)

𝑥𝑖+1−𝑥𝑖or,𝑓′ 𝑥𝑖 𝑥𝑖+1 − 𝑥𝑖 = −𝑓(𝑥𝑖)

Or, 𝑥𝑖+1 − 𝑥𝑖 = −𝑓 𝑥𝑖

𝑓′ 𝑥𝑖

Or, 𝑥𝑖+1 = 𝑥𝑖 −𝑓 𝑥𝑖

𝑓′ 𝑥𝑖

Dr. Motilal Panigrahi, Nirma University

Termination criteria and error estimate

• 𝜀𝑎 =𝑥𝑖+1−𝑥𝑖

𝑥𝑖+1100%

• If we denote the stopping criterion as 𝜀𝑠 then we stop our process of searching when 𝜀𝑎< 𝜀𝑠.

• Or else we can fix that two consecutive values are very close, meaning say, correct to four decimal places, or three decimal places etc.

Dr. Motilal Panigrahi, Nirma University

Example 1

• Using Newton-Raphson method find the root of the following equation

correct to four decimal places.

• 𝑥 log10 𝑥 − 1.2 = 0, 𝑥0 = 1

Dr. Motilal Panigrahi, Nirma University

Solution.

• 𝑓 𝑥 = 𝑥 log10 𝑥 − 1.2

• 𝑓′ 𝑥 = log10 𝑥 + 𝑥.1

𝑥 ln 10= log10 𝑥 +

1

ln 10

• Given initial point 𝑥0 = 1

• So 𝑓 1 = −1.2, 𝑓′ 1 = 0.434294

Dr. Motilal Panigrahi, Nirma University

𝑓 𝑥 = 𝑥 log10 𝑥 − 1.2

𝑓′(𝑥) = log10 𝑥 +1

ln 10

n x(n) f(x(n)) f'(x(n)) e_a

0 1 -1.2 0.434294

1 3.763102 0.965838 1.00984 73.42618

2 2.806675 0.05793 0.882487 34.07685

3 2.741031 0.000336 0.872208 2.394868

4 2.740646 1.18E-08 0.872147 0.014057

5 2.740646 0 0.872147 4.92E-07

𝒙𝒊+𝟏 = 𝒙𝒊 −𝒇 𝒙𝒊𝒇′ 𝒙𝒊

Dr. Motilal Panigrahi, Nirma University

𝑥0

𝑥1𝑥2

𝑥3

𝑓 𝑥 = 𝑥 log10 𝑥 − 1.2

Dr. Motilal Panigrahi, Nirma University

Example 2.

• Determine the real root of

• 𝑓 𝑥 = −2𝑥6− 1.5𝑥

4+ 10𝑥 + 2 = 0

• By Newton-Raphson method and compare it with secant method.

• Take initial guess as 𝑥0 = 1, for the Newton-Raphson method, and

• Take initial guess as 𝑥0 = 1, 𝑥1 = 2.06 for the secant method.

• Iterate until the estimated error falls below a level of

• 𝜀𝑠 = 0.01%

Dr. Motilal Panigrahi, Nirma University

𝑓 𝑥 = −2𝑥6 − 1.5𝑥4 + 10𝑥 + 2𝑓′ 𝑥 = −12𝑥5 − 6𝑥3 + 10

• Initial point 𝑥0 = 1, by Newton-Raphson method

n x(n) f(x(n)) f '(x(n)) e_a

0 1 8.5 -8

1 2.0625 -158.4736 -490.51112 51.51515

2 1.739422 -49.73059 -212.65236 18.5739

3 1.505563 -13.94429 -103.30346 15.53297

4 1.370579 -2.844567 -63.484271 9.848669

5 1.325772 -0.236708 -53.131782 3.379725

6 1.321317 -0.002145 -52.171018 0.337172

7 1.321275 -1.81E-07 -52.162209 0.003111

𝒙𝒊+𝟏 = 𝒙𝒊 −𝒇 𝒙𝒊𝒇′ 𝒙𝒊

Dr. Motilal Panigrahi, Nirma University

ComparisonSecant NR

n x(n) f(x(n)) x(n) f(x(n))

0 1 8.5 1 8.5

1 2.06 -157.251 2.0625 -158.4736

2 1.054359 7.942221 1.7394216 -49.73059

3 1.102708 7.213438 1.5055629 -13.94429

4 1.581269 -22.8309 1.3705791 -2.844567

5 1.217608 4.361666 1.3257717 -0.236708

6 1.275939 2.153752 1.3213166 -0.002145

7 1.332839 -0.61766 1.3212755 -1.81E-07

8 1.320158 1.5395683 1.3212755 -3.55E-15

Dr. Motilal Panigrahi, Nirma University