53
Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität Würzburg

Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

Embed Size (px)

Citation preview

Page 1: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

Neutrino phenomenologyLecture 3: Aspects of neutrino astrophysics

Winter school Schladming 2010“Masses and constants”02.03.2010

Walter WinterUniversität Würzburg

Page 2: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

2

Contents (overall)

Lecture 1:Testing neutrino mass and flavor mixing

Lecture 2:Precision physics with neutrinos

Lecture 3:Aspects of neutrino astrophysics

Page 3: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

3

Contents (lecture 3)

Introduction/repetition Solar oscillations (varying matter density) Neutrinos from cosmic accelerators … and the

determination of „other“ neutrino properties: The sources The fluxes Flavor composition and propagation Detection Flavor ratios Compementarity to Long baseline searches? Test of „other“ new physics properties

Example: Neutrino lifetime Summary

Page 4: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

4

Nobel prize 2002

"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos“

Raymond Davis Jr detected over 30 years 2.000 neutrinos from the Sun Evidence for nuclear fusion in the Sun‘s interior!

Masatoshi Koshiba detectedon 23.02.1987 twelve of the 10.000.000.000.000.000 (1016) neutrinos, which passed his detector, from an extragalactic supernovaexplosion. Birth of neutrino astronomy

Page 5: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

Repetition

Page 6: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

6

Standard Solar Model

Neutrinos are produced as electron neutrinos at the source, in the deep interior of the Sun

Neutrinos propagate to the surface of the Sun and leave it

The neutrinos loose coherence on the way to the Earth, i.e., propagate as mass eigenstates

pp-fusion chain Neutrino spectra

Page 7: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

7

Matter effects (MSW) Ordinary matter:

electrons, but no , Coherent forward

scattering in matter: Net effect on electron flavor

Matter effects proportional to electron density ne and baseline

Hamiltonian in matter (matrix form, two flavors):

Y: electron fraction ~ 0.5

(electrons per nucleon)

(Wolfenstein, 1978; Mikheyev, Smirnov, 1985)

Page 8: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

8

Parameter mapping In vacuum:

In matter:

Page 9: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

Neutrino oscillations in the Sun

Page 10: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

10

Constant vs. varying matter density

For constant matter density:

H is the Hamiltonian in constant density

For varying matter density: time-dep. Schrödinger equation (H explicitely time-dependent!)

Transition amplitudes; x: mixture and

Page 11: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

11

Adiabatic limit

Use transformation:

… and insert into time-dep. SE […]

Adiabatic limit:

Matter density varies slowly enough such that differential equation system decouples!

Amplitudes of mass eigenstates in matter

Page 12: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

12

Propagation in the Sun Neutrino production as e (fusion) at high ne

Neutrino propagates as mass eigenstate in matter (DE decoupled); : phase factor from propagation

In the Sun: ne(r) ~ ne(0) exp(-r/r0) (r0 ~ Rsun/10); therefore density drops to zero!

Detection as electron flavor:Disappearance

of solarneutrinos!

Page 13: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

13

Solar oscillations In practice: A >> 1 only for E >> 1 MeV For E << 1 MeV: vacuum oscillations

Galbiati, Neutrino 2008

Averaged vacuumoscillations:

Pee=1-0.5 sin22

AdiabaticMSW limit:

Pee=sin2~ 0.3Standardprediction

Page 14: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

14

Some additional comments… on stellar environments

How do we know that the solarneutrino flux is correct?SNO neutral current measurement

Why are supernova neutrinos so different?Neutrino densities so high that neutrino-self

interactionsLeads to funny „collective“ effects, as gyroscope

B. Dasgupta

Page 15: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

Neutrinos from cosmic accelerators

Page 16: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

16

galactic extragalactic

Neutrino fluxes

Cosmic rays of high energies:Extragalactic origin!?

If protons accelerated, the same sources should produce neutrinos

(Source: F. Halzen, Venice 2009)

Page 17: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

17

Different messengers

Shock accelerated protons lead to p, , fluxes p: Cosmic rays:

affected by magnetic fields

(Te

resa

Mo

nta

ruli, N

OW

2008)

: Photons: easily absorbed/scattered : Neutrinos: direct path

Page 18: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

18

Different source types

Model-independent constraint:Emax < Z e B R(Lamor-Radius < size of source)Particles confined to

within accelerator!

Interesting source candiates: GRBs AGNs …

(Hillas, 1984; version from M. Boratav)

(?)

Page 19: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

The sources

Generic cosmic accelerator

Page 20: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

20

From Fermi shock acceleration to production

Example: Active galaxy(Halzen, Venice 2009)

Page 21: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

21

Synchroton radiation

Where do the photons come from?Typically two possibilities: Thermal photon field (temperature!) Synchroton radiation from

electrons/positrons (also accelerated)

?

(example from Reynoso, Romero, arXiv:0811.1383)

B

~ (1-s)/2+1determined by spectral index s of injection

Determined by particle‘s

minimum energy Emin=m c2

(~ (Emin)2 B )

Page 22: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

22

Pion photoproduction

(Photon energy in nucleon rest frame)

(Mücke, Rachen, Engel, Protheroe, Stanev, 2008; SOPHIA)

Resonant production,

direct production

Multi-pionproduction

Differentcharacteristics(energy lossof protons)

Powerlaw injection

spectrumfrom Fermishock acc.

Page 23: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

23

Pion photoproduction (2) Often used: (1232)-resonance approximation In practice: this

resonance hardly ever dominates for charged pions. Example: GRB

The neutrino fluxes from the -approximation are underestimated by a factor > 2.4 (if norm. to photons from 0)

(Hümmer, Rüger, Spanier, Winter,

2010)

Page 24: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

24

Neutrino production

Described by kinematics of weak decays(see e.g. Lipari, Lusignoli, Meloni, 2007)

Complication:Pions and muons loose energy through synchroton radiation for higher E before they decay – aka „muon damping“

(example from Reynoso, Romero,

arXiv:0811.1383)

Dashed:no lossesSolid:with losses

Page 25: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

The fluxes

Single source versus diffuse flux versusstacking

Page 26: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

26

Neutrinos from a point source

Example: GRBs observed by BATSE

Applies to other sources in atmosphericBG-free regime as well …

Conclusion: Most likely (?) no significant statistics with only one source!

(Guetta et al, astro-ph/0302524)

Page 27: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

27

Diffuse flux (e.g. AGNs)

Advantage: optimal statistics (signal)

Disadvantage: Backgrounds(e.g. atmospheric,cosmogenic)

(Becker, arXiv:0710.1557)

Single sourcespectrum

Sourcedistributionin redshift,luminosity

Comovingvolume

Decreasewith

luminositydistance

Page 28: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

28

Stacking analysis Idea: Use multi-messenger approach

Good signal over background ratio, moderate statistics

Limitations: Redshift only measured for

a small sample (BATSE) Use empirical relationships

A few bursts dominate the rates Selection effects?

(Source: NASA)

GRB gamma ray observations(e.g. BATSE, Fermi-GLAST, …)

(Source: IceCube)

Neutrino observations

(e.g. AMANDA,IceCube, …)

Coincidence!

(Becker et al, astro-ph/0511785;from BATSE satellite data)

Extrapolateneutrino spectrum

event by event

Page 29: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

Flavor composition and propagation

Neutrino flavor mixing

Page 30: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

30

Astrophysical neutrino sources producecertain flavor ratios of neutrinos (e::):

Pion beam source (1:2:0)Standard in generic models

Muon damped source (0:1:0)Muons loose energy before they decay

Neutron beam source (1:0:0)Neutrino production by photo-dissociationof heavy nulcei

NB: Do not distinguish between neutrinos and antineutrinos

Flavor composition at the source(Idealized)

Page 31: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

31

Pion beam source (more realistic)

(Hümmer, Rüger, Spanier, Winter, 2010;

see also Lipari, Lusignoli, Meloni, 2007)

Nominal line 1:2

Neutrondecays

Kinematics ofweak decays: muon helicity!

Page 32: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

32

Flavor composition at the source(More realistic)

Flavor composition changes as a function of energy

Pion beam and muon damped sources are the same sources in different energy ranges!

Use energy cuts?

(from Kashti, Waxman, astro-ph/0507599;see also: Kachelriess, Tomas, 2006, 2007;

Lipari et al, 2007 for more refined calcs)

Page 33: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

33

Neutrino propagation

Key assumption: Incoherent propagation of neutrinos

Flavor mixing: Example: For 13 =0, 12=/6, 23=/4:

NB: No CPV in flavor mixing only!But: In principle, sensitive to Re exp(-i ) ~ cos

Take into account Earth attenuation!

(see Pakvasa review, arXiv:0803.1701,

and references therein)

Page 34: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

The detection

Neutrino telescopes

Page 35: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

35

High-E cosmic neutrinos detected with neutrino telescopes

Example: IceCube at south poleDetector material: ~ 1 km3 antarctic ice (1 million m3)

Short before completion

IceCube

http://icecube.wisc.edu/

Page 36: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

36

Neutrino astronomy in the Mediterranean: Example ANTARES

http://antares.in2p3.fr/

Page 37: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

37

Different event types

Muon tracks from Effective area dominated!(interactions do not have do be within detector)Relatively low threshold

Electromagnetic showers(cascades) from eEffective volume dominated!

Effective volume dominated Low energies (< few PeV) typically

hadronic shower ( track not separable) Higher Energies:

track separable Double-bang events Lollipop events

Glashow resonace for electron antineutrinos at 6.3 PeV (Learned, Pakvasa, 1995; Beacom et

al, hep-ph/0307025; many others)

e

e

Page 38: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

Flavor ratios

… and their limitations

Page 39: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

39

Definition

The idea: define observables which take into account the unknown flux normalization take into account the detector properties

Three observables with different technical issues: Muon tracks to showers

(neutrinos and antineutrinos added)Do not need to differentiate between electromagnetic and hadronic showers!

Electromagnetic to hadronic showers(neutrinos and antineutrinos added)Need to distinguish types of showers by muon content or identify double bang/lollipop events!

Glashow resonance to muon tracks(neutrinos and antineutrinos added in denominator only). Only at particular energy!

Page 40: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

40

Applications of flavor ratios

Can be sensitiveto flavor mixing,neutrino properies

Example: Neutron beam

Many recent works inliterature

(e.g. for neutrino mixing and decay: Beacom et al 2002+2003; Farzan and Smirnov, 2002; Kachelriess, Serpico, 2005; Bhattacharjee, Gupta, 2005; Serpico, 2006; Winter, 2006; Majumar and Ghosal, 2006; Rodejohann, 2006; Xing, 2006; Meloni, Ohlsson, 2006; Blum, Nir, Waxman, 2007; Majumar, 2007; Awasthi, Choubey, 2007; Hwang, Siyeon,2007; Lipari, Lusignoli, Meloni, 2007; Pakvasa, Rodejohann, Weiler, 2007; Quigg, 2008; Maltoni, Winter, 2008; Donini, Yasuda, 2008; Choubey, Niro, Rodejohann, 2008; Xing, Zhou, 2008; Choubey, Rodejohann, 2009; Bustamante, Gago, Pena-Garay, 2010, …)

(Kachelriess, Serpico, 2005)

Page 41: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

Complementarity to long-baseline experiments

Page 42: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

42

Oscillation probability of interest to measure 13, CP, mass hierachy (in A)

Appearance channels

(Cervera et al. 2000; Akhmedov et al., 2004)

Almost zerofor narrow band superbeams

Page 43: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

43

Flavor ratios: Approximations

Astro sources for current best-fit values:

Superbeams:

(Source: hep-ph/0604191)

Page 44: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

44

SB-Reactor-Astrophysical

Complementary information for specific best-fit point:

Curves intersect in only one point!

(Winter, 2006)

Page 45: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

Particle properties

… from flavor ratios (examples)

see Pakvasa, arXiv:0803.1701 for a review of other examples: mass varying neutrinos, quantum decoherence, Lorentz/CPT violation, …

Page 46: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

46

Constraining CP

No CP in Reactor exps Astro sources

(alone)

Combination:May tell something on CP

Problem: Pion beam has little CP sensitivity!

(Winter, 2006)

Page 47: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

47

Neutrino lifetime Neutrino flux (oscillations averaged):

i(E)=0 E/m: lab frame lifetime of mass eigenstate i

Strongest bound from SN1987A: /m > 105 s/eV on e

Lifetime refers to mass eigenstates, but flavor eigenstates are observed Unclear if bound on 1 or 2

Astrophysical neutrinos probably best direct test of neutrino lifetime

Distinguish: Complete decays: L >> i(E) Incomplete decays: L <~ i(E)

Page 48: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

48

R

Complete decays

Using the observables R and S, some complete decay scenarios can be excluded!

99% CLallowed regions

(present data)

(Maltoni, Winter, 2008)

1

1

Unstable

Stable

R

Page 49: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

49

Incomplete decays

Decay into 1 with /m ~ 0.1:

Bhattacharya, Choubey, Gandhi, Watanabe, 2009

Page 50: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

50

Summary and conclusions

Matter effects in the Sun tests Neutrino oscillations in vacuum MSW effect Standard solar model

The observation of astrophysical neutrinos is important for Identification of cosmic ray accelerators Test of source properties Test of neutrino properties

Literature: e.g. Giunti, Kim: Fundamentals of neutrino physics and astrophysics, Oxford, 2007

Page 51: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

51

Limitations of flavor ratios

Flavor ratios dependon energy if energylosses of muonsimportant

Distributionsof sources oruncertainties withinone source

Unbalanced statistics:More useful muontracks than showers

(Lipari, Lusignoli, Meloni, 2007; see also:

Kachelriess, Tomas, 2006, 2007)

Page 52: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

52

Complementarity LBL-Astro

Superbeams have signal ~ sin CP

(CP-odd) Astro-FLR have

signal ~ cos CP (CP-even)

Complementarity for NBB

However: WBB, neutrino factory have cos-term!

(Winter, 2006)

Smallestsensitivity

Page 53: Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 “Masses and constants” 02.03.2010 Walter Winter Universität

53

Neutrino decays on cosmological distances?

23 possibilities for complete decays

Intermediate states integrated out

LMH: Lightest, Middle, Heaviest

I: Invisible state(sterile, unparticle, …)

123: Mass eigenstate number(LMH depends on hierarchy)

(Maltoni, Winter, 2008; see also Beacom et al 2002+2003; Lipari et al 2007; …)

H ?LM

#7a 1-a

1-b

b