23
Ui ki ti M t C l i l ti Using kinetic Monte Carlo simulations for investigating surface barriers in nanoporous materials surface barriers in nanoporous materials L Hik Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig Com-Phys-09 Workshop, Leipzig 26.11.2009

Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Embed Size (px)

DESCRIPTION

For caculate the surface forces

Citation preview

Page 1: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

U i ki ti M t C l i l ti Using kinetic Monte Carlo simulations for investigating

surface barriers in nanoporous materials surface barriers in nanoporous materials

L H i kLars HeinkeFritz-Haber-Institute of the Max-Planck-Society, Berlin

Jörg KärgerUniversity Leipzigy p g

Com-Phys-09 Workshop,Leipzig 26.11.2009

Page 2: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Introduction – nanoporous materials

Nanoporous crystals: Nanoporous crystals: • Periodic, regular structure• Pore size: few Å - few nm• Zeolites and metal-organic frameworks (MOF)

Applications:• Adsorption (e.g. of water)• Ion exchange (e.g. water softener)• Molecular sieve (mass separation gas purification)• Molecular sieve (mass separation, gas purification)• Catalysts (e.g. in petrochemistry)

Mass transport crucial!

Page 3: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Experimental data - recorded concentration profiles

Best way for studying mass transfer concentration profiles!(Pressure step new equilibrium concentration mass transfer)

Investigated system: propane in MOF Zn(tbip) (one-dimensional pore structure)

equilibriumconcentration ceq

initialconcentration c00

Page 4: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Experimental data - recorded concentration profiles

surface barrier

intracrystalline diffusion

Surface barrier describedby surface permeability α.

equilibriumconcentration c

i.e. thin layer with permeability α

boundary concentration c (t)

ceqsurf eq surf( )j c c

csurf(t)

Mass transfer often limited by surface barriers! (not only by diffusion in the bulk crystal)

Page 5: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Transport, Maxwell-Stefan and self-diffusivity and surface permeability of propane

Transport parameters of propane in MOF Zn(tbip)

10-12s-1 m s

-1

p , y p y p p

10-8

10-13

10

usiv

ity D

/ m

2 s

erm

eabi

lity

/

0.0 0.2 0.4 0.6 0.8 1.0

10-9

0.0 0.2 0.4 0.6 0.8 1.0

concentration c/ molecules per segment

mean boundary concentration (ceq+csurf)/2

/ molecules per segment

diffu

sur

face

pe

/ molecules per segment

Diffusivity and surface permeability same concentration dependence!

h h d b /Furthermore: Ethane, propane and n-butane same α / D

Both facts can not be explained by a smaller pore diameter at surface

or by entropic effects!

Page 6: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Model of surface barriers

• Crystal structure lattice (1 pore segment = 1 lattice site)• Most pore entrances blocked, molecules enter only via open pore entrances

(percentage of open pores popen)P ll l h ti t l d f t• Parallel pores have cross connections = crystal defects(percentage of cross connections py = pz)

• Gas phase = reservoir with fixed concentration (ceq)

Page 7: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

yz

Kinetic Monte-Carlo simulations

Details for simulations:• Lattice jump model• Every time step nt every molecule makes jump attempt

xz

• Restriction:– Each site can be occupied by only one molecule (follows from isotherm)– jumps in y- or z-direction can only occur when adjacent pores are cross

connectedconnected

• No interaction between the particles (hard-sphere model) or nearest-neighbour interaction (Reed-Ehrlich model)

• fixed concentration in the reservoir ceq

ceq > c0 adsorption experiment < d ti i tceq < c0 desorption experiment

ceq = c0 self-diffusion experiment

Assumption: Jump rate in x, y and z are equal.Assumption: Jump rate in x, y and z are equal.

Page 8: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Simulated concentration profiles

nt = 10,000time nt

Concentration profiles along xcorrespond to solution of diffusion equation with surface barriers

Concentration profiles perpendicular to xare curved near the surface and flat in the bulk crystalequation with surface barriers.

(D and α = const.)and flat in the bulk crystal.

Page 9: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Resulting surface permeability

Surface permeability• constant during transfer process(if diffusivity constant; α ~ jump rate ~ D)α jump rate D)

• independent of equilibrium concentration • independent of length of pore system

Page 10: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Surface permeability depends on 

Resulting surface permeability

p y p• fraction of open pores (popen)• probability of cross connections (py = pz)

( ) d / D t α (popen, py) and α / D = const.

pp5

y

y

y

y

pp

pp

421

415

~open~ p

Page 11: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Now: Interaction between particles Diffusivity concentration dependent

Interaction between particles – Reed-Ehrlich model

Now: Interaction between particles Diffusivity concentration dependent

Nearest-neighbour interaction between particles on the lattice

UJump rate ~

(Reed-Ehrlich approach)

TkU

b

NeighbourNearest exp

concentration dependence 5

concentration dependence similar diffusivity

(value of propane in MOF Zn(tbip))

All properties of the surface barriers presented! All properties of the surface barriers presented!

Page 12: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Self-diffusion simulations with concentration c = 0.3 and c = 0.5 (Φ=5)

Determining popen in MOF Zn(tbip)

Ensemble average

Self diffusion simulations with concentration c 0.3 and c 0.5 (Φ 5)

g

Time average

Experimental data:Propane in MOF Zn(tbip)

p ≈ 0 05 py ≈ 0.05

Page 13: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

p can be adjusted to fit the experimental data

Determining py in MOF Zn(tbip)

popen can be adjusted to fit the experimental data (py = 0.05)

Propane in MOF Zn(tbip)

Fraction of open surface pores is about 0.033 % , i.e. one among 55 × 55 pores is open!

(Under the assumption of equal jump rates in all directions!)

Page 14: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Conclusion

• Surface barrier represented by a high percentage of totally blocked pores Surface barrier represented by a high percentage of totally blocked pores which are cross-connected.

• Influence of different parameters in the model studied by means of kinetic M t C l i l tiMonte-Carlo simulations.

• All properties of the surface barriers of alkanes in MOF Zn(tbip) are very well represented!p

It can be concluded that the surface barriers are caused by this structure!

Page 15: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Acknowledgment

Department of Interface Physics, University Leipzig

IRTG “Diffusion in Nanoporous Materials”

Studienstiftung des deutschen Volkes

Atomic-Force-Microscopy group and Chemical Physics department at the Fritz-Haber-Institutedepartment at the Fritz Haber Institute

Many thanks for your attention!

Page 16: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials
Page 17: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Variation of jump rates

Results are only valid under the assumptions of same jump rate everywhere.

What happens if jump rate in surface plane is smaller?

popen=0.033%py=0.05

Jump rate in surface up to 1 order of magnitude smaller no difference!

Page 18: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Comparison with analytical results for aD

Simulated results vs. Continuum approach

Comparison with analytical results for continuum system (Dudko, Berezhkovskii, Weiss, J. Phys. Chem, 2005.))

If lattice can be approximated as continuum

22LaD

If lattice can be approximated as continuum, good approximation.

nx × ny

Page 19: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Periodic or random distribution of open pores

Page 20: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Surface barrier described by surface permeability. (inversely proportional) 1.0n

c

ceq

Mesoscopic description of the surface barriers

All quantities follow from concentration profilesSurface permeability experimentally determined!

surf eq surf( )j c c 0.4

0.6

0.8

con

cent

ratio csurf

eq

surf eq surf( )j

0 10 20 30 40 50

0.0

0.2surface

centre

( , )dc y t y

norm

aliz

ed

y / µm

10-6

left-hand sideright-hand side/ m

s-1

y / µm

10-7

right hand side

rmea

bilit

y

/

surface

centresurf

d ( )dd

( )c t y

tc

0.0 0.2 0.4 0.6 0.8 1.010-8

surfa

ce p

erboundary concentration c

surfeq surf

( )c c

boundary concentration csurf

Page 21: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

130 µm

Crystal structure of MOF Zn(tbip)

Metal organic framework (MOF) Zn(tbip) 25 µm

y

Parallel chains of pore segments

xz

Guest molecule: propane(complemented by ethane and n-butane)

Page 22: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Experimental setup of interference microscopy

• Basic principle: optical path length depends on adsorbate concentration.• Spatial resolution: 0.5 µm × 0.5 µm

Page 23: Monte Carlo Simulations-Surface Barriers in Nanoporous Materials

Sticking probability Pst

Sticking probability

Sticking probability Pst= probability that a gas molecule that hits the crystal surface continues its trajectory in the pore space,i.e.

injP

surf eq surf in out( )j c c j j in eqj c

stgas on surface

Pj

• no concentration

N

dependence• desorption to

vacuum: ceq=0, jin=0

Sti ki b bilit

From kinetic theory of gases gas on surface 2AN pjR T M

Sticking probability:• Pst ≈ 6 × 10-6 for methanol in ferrierite• Pst ≥ 0.01 for isobutane in silicalite

Varies over many order of magnitude!

L. Heinke et al., Phys. Rev. Lett. 99 (2007) 228301.