35
A New Method of Variance Reduction in Monte Carlo Integration Fatin Sezgin

Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

A New Method of Variance Reduction in Monte Carlo Integration

Fatin Sezgin

Page 2: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Present methods• Common random numbers• Antithetic variables• Latin hypercube sampling• Control variables• Importance sampling• Conditional Monte Carlo• Indirect estimation• Stratification

Page 3: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

EXTENDED MONTE CARLO INTEGRATION

EMCI

Page 4: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Two ways of Monte-Carlo Integration

• The Crude Monte Carlo inserts the random number into the function and calculates the average of values obtained.

• Hit-or-Miss Monte Carlo casts n points into a space and finds the ratio of points falling within the integration regions.

Page 5: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Hit-or-Miss Monte Carlo

Page 6: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

EXAMPLE The integration region for the 2X

Page 7: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Four curves

.)1(1)1(121)(11

)1()1(2)(1

2

2

2

2

xxfUpxxfUp

xxfDownxxfDown

−−=−−=−=−=

−=−===

Page 8: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo
Page 9: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

4

ˆˆˆˆˆ 4321 IIIII +++

=

Page 10: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo
Page 11: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

nxxx k =+++ ...21

1...21 =+++ kppp

kxk

xx

kk ppp

xxxnxxxP ...

!,...,!!!),...,,( 21

2121

21 =

Page 12: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

jj npxE =)(

)1()( jjj pnpxVar −=

jiji pnpxxCov −=),(

Page 13: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

∑=

=k

iiiXaY

1

)()(1

i

k

iiY XEaYE ∑

=

== µ

∑∑<=

+==ji

ijji

k

iiY aaaYVar

iσσσ 2)(

1

222

Page 14: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Comparison with single Hit-or-Miss curve

06.80276.02222.0

)16(4412.0)9(2

)4()()ˆ(

2

2

2

1 ===n

n

nTVarIVar

Page 15: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Sin(x) e-x and x3X

Page 16: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

The coefficients for the sum of x variables in estimation of the total of sub-regions.

Page 17: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

The variances of integral estimations to six different functions by using a single integral area and the

average of four sub-sections

Page 18: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Beta Function

Page 19: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo
Page 20: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

The error of Sin(x) integration for sample sizes form10 thousand to 10 million

-0,008

-0,006

-0,004

-0,002

0,000

0,002

0,004

0,006

0,008

0,010

0,012

10000 100000 1000000 10000000

Down1

Down2

Up1

Up2

Mean

Page 21: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

The factors affecting the magnitude of the variance reduction

• The amount of unused area will increase the variance of EMCI estimator.

• Multiple usage of sub-regions will decrease the efficiency of EMCI.

• If all sub-regions are included at least once in the summation formula, the least usage frequency can be subtracted from all cells.

Page 22: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Square root in unit Y axis

0,6500

0,6550

0,6600

0,6650

0,6700

0,6750

0,6800

0,6850

0,6900

0 200 400 600 800 1000 1200

d1d2u1u2mean

Page 23: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Square root in 1.41 Y axis

0,6400

0,6450

0,6500

0,6550

0,6600

0,6650

0,6700

0,6750

0,6800

0,6850

0,6900

0 200 400 600 800 1000 1200

d1d2u1u2mean

Page 24: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Speed comparisons

We tested the running times of single and Mean Estimator methods by a simulation comprising of 100000 runs each using n=1000 points. The concerned programs coded in Fortran Power Station 4.0 compiler are run on an Intel Pentium 4, CPU 3.06 GHz processor with 2.00 GB of RAM under Microsoft Windows XP professional version 2002 platform.

Page 25: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Timings

Page 26: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Comparison of variances

{ }

{ } ∫ −=−=

+−−=−

1

0

2

22

222

.))(1)((1)(1

)(1

dxxfxfn

xfEnn

InIxfE

nnI

nI

ch σσ

Page 27: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Variances of Crude Monte Carlo and EMCI Method

6(10 )−

6(10 )−

Page 28: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

A distinct advantage There are cases very common in physics,

chemistry, medicine, genetics or biology where there is no explicit function defining the region or the volume to be estimated. A distinct advantage of our method is its applicability to these problems. In this application, instead of four different forms of function expression, different rotations of the figure can be used in Monte Carlo simulation.

Page 29: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Examples:

In multi-dimensional Nuclear Magnetic Resonance (NMR) experiments quantitative information can be obtained by peak volume integration. In this case the Hit-or-Miss technique is the most efficient way.

Page 30: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Another example is the usage of Monte-Carlo integration to find virial coefficients of some volumes in Molecular Physics.

Page 31: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Some references

• D.Q. Naiman and C.E. Priebe, Computing Scan Statistic p Values Using Importance Sampling, With Applications to Genetics and Medical Image Analysis, J. Comput. Graph. Statist., Vol. 10 (2), (2001) pp. 296–328.

• C.E. Priebe, D.Q. Naiman, and L.M. Cope, Importance sampling for spatial scan analysis: computing scan statistic p-values for marked point processes, Comput. Statist. Data Anal. Vol. 35, (2001) pp. 475- 485.

• R. Romano, D.B. Paris, F. Acernese, F. Barone, and A. Motta, Fractional volume integration in two-dimensional NMR spectra: CAKE, a Monte Carlo approach. Journal of Magnetic Resonance Vol. 192, (2008) pp. 294–301.

• Y. Takano and K.N. Liou, (1995) Radiative Transfer in cirrus clouds Part III. Light scattering by irregular crystals J. Atmospheric Sci., Vol. 52   No. 7 pp. 818-837.

• A.Y. Vlasov, X.M. You, and A.J. Masters, Monte-Carlo integration for virial coefficients re-visited: hard convex bodies, spheres with a square-well potential and mixtures of hard spheres, Molecular Phys., Vol. 100, No. 20, (2002) pp. 3313-3324.

Page 32: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

SPM Analysis for PET Scan Brain Image Gaussian Random Field Analysis

Page 33: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

In multi-dimensional Nuclear Magnetic Resonance (NMR) experiments quantitative information can be obtained by peak volume integration. In this case the Hit-or-Miss technique is the most efficient way.

Page 34: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Rotating and flipping an image

Page 35: Fatin Sezgin - MCQMC2010 - Monte Carlo and Quasi-Monte Carlo

Thank you for your attention.