1
Multiscale discretizations for multiphase porous media flow coupled with geomechanics Ivan Yotov , Mary F. Wheeler , Guangri Xue , Benjamin Ganis , Bin Wang Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA The University of Texas at Austin, Institute for Computational Engineering and Sciences, Austin, Texas, USA [email protected], [email protected] 1. Poroelastic Model Problem Biot Model for poroelasticity describe fluid flow in a deformable porous media, allowing the computation of compaction, subsi- dence, uplift, and damage. Geomechanics: ∇· σ = f u = displacement σ = λ (∇· u) I +2μ - αp I (u)=(u + u T )/2 = strain Data: body force f , Lam ´ e parameters λ and μ, Biot constant α. Single phase flow: ∂t (c o p + α∇· u)+ ∇· z = q p = pore pressure z = -K(p - ρg) z = fluid velocity. Data: volumetric source term q , permeability K, gravity g, density ρ = ρ(p), storage coefficient c 0 . 1.1 Applications Very large scale applications: 100 ft 2500-10000 ft Reservoir or saline aquifer Caprock Basin Scale Carbon Sequestration Enhanced Oil Recovery Hydraulic Fracturing 5000 x 5000 x 100 ft >1M elements 250 mi A distorted hexahedral grid for the Frio CO 2 Pilot Test. 1.2 Modeling Goals Locally conservative discretization Capable of handing rough geometry Multiscale and multi-physics Parallel framework using domain decomposition Efficient solvers 1.3 Multiscale Mortar Modeling Methodology Ω p = poroelastic region with both mechanics and fluid flow Ω e = elastic region with mechanics and no-flow (α =0) Ω p and Ω e are divided into non-overlapping subdomains with nonmatching grids of characteristic length h Interface conditions are imposed via a mortar finite element space on a coarse grid scale of characteristic length H Ω p Ω e n p,e n Ω h H p,e e,e p,p D N Reservoir Interface conditions: Continuity of medium: [u]= 0 on Γ e,e , Γ p,p , Γ p,e Continuity of normal stress: [σ (u)] n =0 on Γ e,e , Γ p,p , Γ p,e No-flow outside pay-zone: z · n =0 on Γ p,e Continuity of pressure: [p]=0 on Γ p,p Continuity of normal flux: [z · n]=0 on Γ p,p The algebraic system is reduced to a coarse scale mortar in- terface problem that is solved efficiently using a multiscale flux basis 2. Multipoint Flux Mixed Finite Element (MFMFE) Method Mixed finite element variational formulation Reduces to a cell centered method on general hexahedral meshes First order accurate; second order fluxes on smooth grids Piola transformation maps MFE space on a reference element to the hexahedral mesh, preserving normal velocity components. Enhanced BDDF 1 space V h : 4 DOF per face (bilinear) W h : const r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 F E DF ij = ∂F i ˆ x j J = |det(DF )| V h (E )= 1 J E DF E ˆ V( ˆ E ) Find z h V h and u h W h such that (K -1 z h , v) Q - (u h , ∇· v)=0, v V h , (∇· z h ,w)=(f,w), w W h Quadrature rule (·, ·) Q allows to eliminate the flux in terms of the pressure degrees of freedom. (K -1 q, v) E =(M E ˆ q, ˆ v) ˆ E , M E = 1 J E DF T E K -1 DF E Symmetric numerical quadrature (smooth grids): (K -1 q, v) Q,E := Trap (M E ˆ q, ˆ v) ˆ E = 1 8 8 X i=1 M E r i qr i ) · ˆ vr i ) Non-symmetric quadrature (rough grids): f M E = 1 J E DF E r c ) K -1 DF E , ˆ r c : center of ˆ E, K : average of K. (K -1 q, v) Q,E Trap( f M E ˆ q, ˆ v) ˆ E Local velocity elimination E Cell-centered pressure stencil 2.1 Theoretical Results Theorem There exists a constant C independent of h such that ku - u h k L 1 (H 1 ) + kz - z h k L 2 (L 2 ) + kp - p h k L 1 (L 2 ) Ch ( kuk H 1 (H 2 ) + kp k H 1 (H 1 ) + kzk L 2 (H 1 ) ) . 2.2 Flow and geomechanics in 2D Analytical Solutions: u = sin(t )x (1 - x )y (1 - y ) sin(t )x (1 - x )y (1 - y ) p = t sin(2x ) sin(2y ) Parameters: =1 =0.2 E =1 λ = E (1 + )(1 - 2) μ = E 2(1 + ) c o =0.1 K =1 μ f =1 g =0 Final Time: T =0.1, Time Step Size: Δt = 10 -3 . 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 10 2 10 3 10 4 10 -3 10 -2 Number of elements Error Rate is 1 displacement error velocity error pressure error 2.3 Single phase flow in 3D 3D distorted hexahedra with non-planar faces p(x, y, z )= x 2 (x - 1) 2 y 2 (y - 1) 2 z 2 (z - 1) 2 K = 211 121 112 2.4 Single phase compressible flow Brugge Example: From left to right: computational mesh, porosity field, pressure at day 10, pressure at day 100. Coupled Smooth-Nonsmooth Grid Example: Pressure Velocity field The total production rate is shown for a series of mesh refine- ments. 2.5 Multiscale Mortar MFMFE Method Find u h V h , p h W h , and λ H M H such that (K -1 u h , v) Q,Ω i - (p h , ∇· v) Ω i = - hλ H , Π RT v · n i i Γ i , v V h,i , (∇· u h ,w) Ω i =(f,w) Ω i , w W h,i , n X i=1 hΠ RT u h · n i i Γ i =0, μ M H . Theorem: ku - u h k + kp - p h k≤ C (H m+1/2 + h), k∇ · (u - u h )k≤ Ch |||u - Π RT u h ||| ≤ C (H m+1/2 + hH 1/2 ), |||p - p h ||| ≤ C (H m+3/2 + hH ) Example: p(x, y, z )= x + y + z - 1.5, K = x 2 + y 2 +1 0 0 0 z 2 +1 sin(xy ) 0 sin(xy ) x 2 y 2 +1 x x +0.03 cos(3π ˆ x) cos(3π ˆ y ) cos(3π ˆ z ), y y - 0.04 cos(3π ˆ x) cos(3π ˆ y ) cos(3π ˆ z ), z z +0.05 cos(3π ˆ x) cos(3π ˆ y ) cos(3π ˆ z ). pres 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 errp 6.5E-03 6.0E-03 5.5E-03 5.0E-03 4.5E-03 4.0E-03 3.5E-03 3.0E-03 2.5E-03 2.0E-03 1.5E-03 1.0E-03 5.0E-04 3. Parallel Simulation of Compositional Flow Coupled with Geomechanics ( φ N i ) t = −∇i( J i α α ) + q i J i α = ρ α ξ i α u α φρ α S α D i α ξ i α u α = k r α μ α K ( p α ρ α g ) p α = p + p c α ( S α ) φ = φ 0 {1 + c r ( p p 0 )} ξ i α = ξ i α ( p, T , N i ) μ α = μ α ( p, T , ξ i α ) S α = S α ( p, N i , ξ i α , T ) ρ α = ρ α ( p, T , ξ i α ) k r α = k r α ( S α ) Mass balance equation Velocity of phase α Porosity Mole fraction of component i in phase α Saturation of phase α Molar density of phase α Relative permeability for phase α Viscosity of phase α Fluid Pressure for phase α Flux of component i in phase α 3.1 Numerical Example C || R p || L < Tol || δφ n+ 1,k + 1 *, f δφ n+ 1,k + 1 * || L < Tol Yes Start a new time step n+1 Start a new Newton iteration k+1 Solve compositional flow model for , update δφ n+ 1,k + 1 *, f = φ 0 c er δ p n+ 1,k + 1 δ p n+ 1,k + 1 Solve mechanics for , using Update δ u n+ 1,k + 1 p n+ 1,k + 1 = p n+ 1,k + δ p n+ 1,k + 1 δφ n+ 1,k + 1 * = αi δ u n+ 1,k + 1 + 1 M δ p n+ 1,k + 1 No 4200 psi ob σ = Dimension 3500 X 3500 X 100 (ft) Grids 35 X 35 X 3 Components C1, C3, C6, C10, C15, C20 Initial pressure (psi) 3984.3, 3990.3, 4000.0 Porosity 0.3 Oil production rate (STB/D) 12000 Initial water saturation 0.2 X, Y-perm (md) 500, 50, 200 Z-perm (md) 50, 50, 25 Young’s modulus (psi) 1.E5 Poisson’s ratio 0.3 Vertical Displacement @ 120 days Horizontal Displacement @ 120 days Pressure @ 120 days 1 2 3 4 5 6 7 Coupled Simulation 1.000 1.823 3.141 6.050 9.795 18.449 30.586 Ideal Speed Up 1 2 4 8 16 32 64 0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 Coupled Simulation Ideal Speed Up 4. Future Work The compositional flow model is currently being rewritten to use the MFMFE method. Various methods for coupling linear elastic domains with mor- tars are currently being explored. 2011 DOE Applied Mathematics Program Meeting, October 17-19, 2011, Washington, DC, USA

Modelo de Poster

Embed Size (px)

Citation preview

  • Multiscale discretizations for multiphase porous media flow

    coupled with geomechanicsIvan Yotov, Mary F. Wheeler, Guangri Xue, Benjamin Ganis, Bin Wang

    Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA The University of Texas at Austin, Institute for Computational Engineering and Sciences, Austin, Texas, USA

    [email protected], [email protected]

    1. Poroelastic Model Problem

    Biot Model for poroelasticity describe fluid flow in a deformableporous media, allowing the computation of compaction, subsi-dence, uplift, and damage.Geomechanics:

    = f u = displacement = ( u) I + 2 p I (u) = (u +uT )/2 = strain

    Data: body force f , Lame parameters and , Biot constant .Single phase flow:

    t (cop + u) + z = q p = pore pressurez = K(p g) z = fluid velocity.

    Data: volumetric source term q, permeability K, gravity g, density = (p), storage coefficient c0.

    1.1 ApplicationsVery large scale applications:Applications with Geomechanics

    100 ft

    2500-10000 ft

    Reservoir or saline aquifer

    Caprock Basin Scale

    Carbon Sequestration Enhanced Oil Recovery Hydraulic Fracturing

    5000 x 5000 x 100 ft

    >1M

    elements

    250 mi

    A distorted hexahedral grid for the Frio CO2 Pilot Test.

    1.2 Modeling Goals Locally conservative discretization Capable of handing rough geometryMultiscale and multi-physics Parallel framework using domain decomposition Efficient solvers

    1.3 Multiscale Mortar Modeling Methodology

    p = poroelastic region with both mechanics and fluid flowe = elastic region with mechanics and no-flow ( = 0)

    p and e are divided into non-overlapping subdomains withnonmatching grids of characteristic length h Interface conditions are imposed via a mortar finite element

    space on a coarse grid scale of characteristic length H

    p

    e

    np,e

    n

    hH

    p,e

    e,e

    p,pDN

    Pay-zone / Nonpay-zone

    Reservoir

    Interface conditions:

    Continuity of medium: [u] = 0 on e,e, p,p, p,eContinuity of normal stress: [(u)] n = 0 on e,e, p,p, p,eNo-flow outside pay-zone: z n = 0 on p,eContinuity of pressure: [p] = 0 on p,pContinuity of normal flux: [z n] = 0 on p,p

    The algebraic system is reduced to a coarse scale mortar in-terface problem that is solved efficiently using a multiscale fluxbasis

    2. Multipoint Flux Mixed Finite Element (MFMFE) Method

    Mixed finite element variational formulation Reduces to a cell centered method on general hexahedral

    meshes First order accurate; second order fluxes on smooth grids

    Piola transformation maps MFE space on a reference element tothe hexahedral mesh, preserving normal velocity components.

    Enhanced BDDF1 spaceVh: 4 DOF per face (bilinear)Wh: const

    Bench of anisotropic problems

    A multipoint flux mixed finite element method on generalhexahedra

    Mary F. Wheeler1, Guangri Xue1 and Ivan Yotov2

    1 The University of Texas at Austin; 2 University of Pittsburgh, USA

    MFMFE method

    = Ku, = f in , u = 0 on ,MFMFE method: find h Vh and uh Wh such that

    (K1h,v)Q (uh, v) = 0, v Vh,( h, w) = (f, w), w Wh

    Enhanced BDDF1 spaces:Vh: 4 DOF per face (bilinear)Wh: const

    r1 r2

    r3r4

    r5 r6

    r7r8

    FE DFij =Fixj

    J = |det(DF )|

    Vh(E) =1

    JEDFEV(E)(Piola)

    MPFA-type reduction to a cell-centeredsystem

    (K1q,v)E = (MEq, v)E , ME =1

    JEDFTEK

    1DFE

    Symmetric numerical quadrature:

    (K1q,v)Q,E := Trap (MEq, v)E =1

    8

    8i=1

    ME(ri)q(ri) v(ri)

    Non-symmetric quadrature (Klausen-Winther):

    ME =1

    JEDFE(rc)K

    1DFE, rc : center of E, K : average of K.

    (K1q,v)Q,E Trap(MEq, v)E

    Local velocity elimination

    E

    Cell-centered pressure stencil

    Coercivity

    (K1q,v)Q =ETh

    (K1q,v)Q,E =cCh

    vTcMcqc,

    Lemma: Assume thatMc is uniformly positive definite for all c Ch:

    hdT . TMc, Rnc.Then (K1, )Q is coercive in Vh:

    (K1v,v)Q h v2, v Vh.

    Non-symmetric MFMFE: restriction on element geometry and tensoranisotropy.

    No restriction for the symmetric MFMFE.

    Convergence properties

    TheoremOn h2-perturbed parallelepipeds:

    h . h1, ( h) . h 1,u uh . h(1 + u1).

    On general hexahedra, the non-symmetric MFMFE satisfies:

    h + u uh . h(||1 + u2),where is the canonical interpolation operator onto Vh.

    Convergence on faces

    v2Fh :=ETh

    eE

    |E||e| v ne

    2e,

    TheoremOn general hexahedra, the non-symmetric MFMFE satisfies:

    hFh . h(1 + u2).

    Results for Test 1 Mild anisotropy onKershaw meshes; min = 0, max = 2

    Symmetric MFMFEi nu nmat umin uemin umax uemax1 512 10648 4.66E-03 3.03E-02 1.97E+00 1.96E+002 4096 97336 4.23E-03 1.06E-02 1.99E+00 1.99E+003 32768 830584 -2.42E-03 1.75E-03 2.00E+00 2.00E+004 262144 6859000 7.49E-05 7.14E-04 2.00E+00 2.00E+00

    i u uh rate h rate hFh rate ||| h|||Fh rate1 2.08E-01 3.01E+00 4.74E+00 4.30E+00 2 1.17E-01 0.83 1.11E+00 1.44 2.17E+00 1.13 1.94E+00 1.153 5.96E-02 0.97 3.95E-01 1.45 7.44E-01 1.54 6.62E-01 1.554 2.95E-02 1.01 1.54E-01 1.36 2.43E-01 1.61 2.01E-01 1.72

    Non-symmetric MFMFEi nu nmat umin uemin umax uemax1 512 10648 -1.25E-03 3.03E-02 2.01E+00 1.96E+002 4096 97336 -3.35E-03 1.06E-02 2.00E+00 1.99E+003 32768 830584 -2.08E-03 1.75E-03 2.00E+00 2.00E+004 262144 6859000 5.02E-05 7.14E-04 2.00E+00 2.00E+00

    i u uh rate h rate hFh rate ||| h|||Fh rate1 2.20E-01 2.81E+00 2.52E+00 2.14E+00 2 1.19E-01 0.89 9.15E-01 1.62 1.23E+00 1.03 1.07E+00 1.003 5.95E-02 1.00 3.06E-01 1.58 4.27E-01 1.53 3.66E-01 1.554 2.94E-02 1.02 1.18E-01 1.37 1.40E-01 1.61 1.00E-01 1.87

    Results for Test 1 Mild anisotropy on randommeshes; min = 0, max = 2

    Symmetric MFMFEi nu nmat umin uemin umax uemax1 64 1000 -1.43E-02 4.46E-02 1.90E+00 1.82E+002 512 10648 2.03E-02 3.17E-02 1.96E+00 1.95E+003 4096 97336 -1.07E-03 2.69E-03 1.99E+00 1.99E+004 32768 830584 1.14E-03 1.23E-03 2.00E+00 2.00E+00

    i u uh rate h rate hFh rate ||| h|||Fh rate1 2.54E-01 1.15E+00 1.01E+00 4.26E-01 2 1.25E-01 1.02 6.14E-01 0.91 4.91E-01 1.04 1.79E-01 1.253 6.29E-02 0.99 3.82E-01 0.68 2.86E-01 0.78 1.00E-01 0.844 3.15E-02 1.00 2.96E-01 0.37 2.34E-01 0.29 8.84E-02 0.18

    Non-symmetric MFMFEi nu nmat umin uemin umax uemax1 64 1000 -2.17E-02 4.46E-02 1.90E+00 1.82E+002 512 10648 1.52E-02 3.17E-02 1.96E+00 1.95E+003 4096 97336 -1.42E-03 2.69E-03 1.99E+00 1.99E+004 32768 830584 5.59E-04 1.23E-03 2.00E+00 2.00E+00

    i u uh rate h rate hFh rate ||| h|||Fh rate1 2.54E-01 1.19E+00 1.01E+00 3.83E-01 2 1.25E-01 1.02 5.54E-01 1.10 4.32E-01 1.23 1.23E-01 1.643 6.30E-02 0.99 2.78E-01 0.99 2.05E-01 1.08 4.63E-02 1.414 3.15E-02 1.00 1.39E-01 1.00 1.09E-01 0.91 2.32E-02 1.00

    Results for Test 3 Flow on random meshes;min = 1, max = 1

    Symmetric MFMFEi nu nmat umin uemin umax uemax1 64 1000 -6.20E+00 -7.59E-01 5.75E+00 6.91E-012 512 10648 -1.93E+00 -9.39E-01 2.05E+00 9.23E-013 4096 97336 -1.20E+00 -9.85E-01 1.19E+00 9.82E-014 32768 830584 -1.06E+00 -9.96E-01 1.04E+00 9.96E-01

    i u uh rate h rate hFh rate ||| h|||Fh rate1 1.88E+00 1.67E+03 1.76E+03 1.22E+03 2 4.27E-01 2.14 5.84E+02 1.52 5.31E+02 1.73 3.34E+02 1.873 1.48E-01 1.53 2.97E+02 0.98 2.32E+02 1.19 1.19E+02 1.494 6.71E-02 1.14 2.02E+02 0.56 1.59E+02 0.55 7.57E+01 0.65

    Non-symmetric MFMFEi nu nmat umin uemin umax uemax1 64 1000 -1.20E+02 -7.59E-01 3.76E+01 6.91E-012 512 10648 -5.01E+02 -9.39E-01 6.34E+02 9.23E-013 4096 97336 -3.34E+01 -9.85E-01 4.97E+01 9.82E-014 32768 830584 -2.16E+03 -9.96E-01 4.12E+03 9.96E-01

    i u uh rate h rate hFh rate ||| h|||Fh rate1 2.94E+01 1.07E+05 9.36E+04 3.45E+04 2 8.96E+01 < 0 3.45E+05 < 0 2.78E+05 < 0 1.41E+05 < 03 5.84E+00 3.39E+04 2.50E+04 1.11E+044 3.56E+02 < 0 3.23E+06 < 0 2.53E+06 < 0 1.08E+06 < 0

    Results for Test 5 Locally refined meshes;min = 100, max = 100

    i nu umin uemin umax uemax2 176 -4.36E+01 -3.54E+01 4.36E+01 3.54E+013 1408 -8.30E+01 -7.89E+01 8.30E+01 7.89E+014 11264 -9.56E+01 -9.43E+01 9.56E+01 9.43E+015 90112 -9.89E+01 -9.86E+01 9.89E+01 9.86E+01

    i u uh rate h rate h rate ||| RTh||| rate2 2.28E+01 1.77E+03 9.49E+02 3.38E+02 3 1.19E+01 0.94 8.80E+02 1.00 4.96E+02 0.94 8.18E+01 2.054 6.02E+00 0.98 4.38E+02 1.00 2.51E+02 0.98 2.03E+01 2.015 3.02E+00 1.00 2.19E+02 1.00 1.26E+02 0.99 5.06E+00 2.00

    The two methods are identical on cuboid grids Piecewise linear mortars on the non-matching interfacesO(h2)-superconvergence for ||| RTh|||.

    Discussion

    Test 1, Kershaw meshes: both methods giveO(h) for pressure and velocity

    O(h2) for face velocities

    Test 1, Random meshes: Both methods give O(h) for pressure

    Sym. MFMFE: no convergence for velocity (due to element dis-tortion)

    Non-sym. MFMFE: O(h) convergence for velocity

    Test3:Non-sym. MFMFE is not coercive (due to element distortion andanisotropy)

    Sym. MFMFE: O(h) for pressure and O(h1/2) for velocity

    Test 5: both methods giveO(h) for pressure and velocity

    O(h2) for face velocities

    DFij =Fixj

    J = |det(DF )|Vh(E) =

    1

    JEDFEV(E)

    Find zh Vh and uh Wh such that(K1zh,v)Q (uh, v) = 0, v Vh,

    ( zh, w) = (f, w), w WhQuadrature rule (, )Q allows to eliminate the flux in terms of thepressure degrees of freedom.

    (K1q,v)E = (MEq, v)E , ME =1

    JEDF TEK

    1DFE

    Symmetric numerical quadrature (smooth grids):

    (K1q,v)Q,E := Trap (MEq, v)E =1

    8

    8i=1

    ME(ri)q(ri) v(ri)

    Non-symmetric quadrature (rough grids):

    ME = 1JEDFE(rc)K

    1DFE, rc : center of E, K : average of K.

    (K1q,v)Q,E Trap(MEq, v)E

    Local velocity elimination

    E

    Cell-centered pressure stencil

    2.1 Theoretical Results

    A-Priori Error Estimate

    Theorem

    There exists a constant C independent of h such that

    ku uhkL1(H1) + kz zhkL2(L2) + kp phkL1(L2) Ch kukH1(H2) + kpkH1(H1) + kzkL2(H1) .

    G.Xue (UT-Austin) Coupling MFMFE and CG for Poroelasticity July 20, 2011 25 / 32

    2.2 Flow and geomechanics in 2DConvergence Test

    Analytical Solutions:

    u =

    sin(t)x(1 x)y(1 y)sin(t)x(1 x)y(1 y)

    p = t sin(2x) sin(2y)

    Parameters:

    = 1 = 0.2 E = 1

    =E

    (1 + )(1 2) =E

    2(1 + )

    co = 0.1 K = 1 f = 1 g = 0

    Final Time: T = 0.1, Time Step Size: t = 103.

    Table: Convergence on Rectangles

    h ku uhkL1(H1) Rate kz zhkL2(L2) Rate kp phkL1(L2) Rate1/10 1.25e-02 2.53e-02 2.14e-02 1/20 5.80e-03 1.10 1.28e-02 0.98 1.10e-02 0.961/40 2.84e-03 1.03 6.41e-03 1.00 5.54e-03 0.991/80 1.41e-03 1.01 3.21e-03 1.00 2.78e-03 0.99

    G.Xue (UT-Austin) Coupling MFMFE and CG for Poroelasticity July 20, 2011 26 / 32

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    102 103 104103

    102

    Number of elements

    Erro

    r

    Rate is 1

    displacement errorvelocity errorpressure error

    2.3 Single phase flow in 3D3D distorted hexahedra with non-planar faces

    p(x, y, z) = x2(x 1)2y2(y 1)2z2(z 1)2

    K =

    2 1 11 2 11 1 2

    2.4 Single phase compressible flowBrugge Example:

    SPE-141534-PP 13

    Table 1: Average numbers of GMRES iterations with AMG preconditioner

    Mesh 2 9 9 4 27 27 8 81 81 16 243 243Iterations 5 6 7 8

    In Figure 9, we report the total production rates under the different mesh refinements. We use the total production rateobtained on the finest level 16 243 243 as a reference solution. As the grids get refined, we clearly observe convergenceof the total production rates to the reference curve.

    The resulting linear algebraic system is solved using the software HYPRE (high performance preconditioners) developedby researchers at Lawrence Livermore National Laboratory 3. Specifically, we use the generalized minimum residual (GMRES)method with algebraic multigrid method as a preconditioner. The stopping criteria for GMRES is relative residual less than109. The numbers of iterations reported in Table 1 indicate the robustness of the solver with respect to refining the mesh.

    Example 2: In this example we illustrate the ability of the MFMFE method to simulate flow on realistic irregular geometriesand heterogeneous media. We consider a hexahedral mesh, porosity, x-, y-, and -z permeability fields from the Bruggebenchmark project (Peters, Arts, Brouwer, Geel, Cullick, Lorentzen, Chen, Dunlop, Vossepoel, Xu, Sarma, Alhuthali, andReynolds, 2010), see Figure 10. Both the permeabilities and the porosity are highly heterogeneous. Similar to Example 1,the pressure is initially given by the hydrostatic computation with 1500 psi at the top of the reservoir. We specify threeinjection wells with bottomhole pressure 2600 psi and eight production wells with bottomhole pressure 1000 psi. The welllocations are indicated in Figure 11. The pressure field for day 10 and day 100 is shown in Figure 11.

    Fig. 10: Brugge data set: mesh, porosity, permeabilities

    4 Computational results for two-phase flow

    We describe the incompressible two-phase flow equations. Let denote either a wetting phase w or a non-wetting phasen. The mass conservation equation for the phase reads

    t(s) + u = q, = w, n, (44)

    where is the porosity, s is the phase saturation, and q is a source or sink term. The phase velocity u is given by Darcyslaw:

    u = K(p g), (45)where K is the permeability, p is the phase pressure, and is the phase density. The phase mobility is defined as:

    (s) =kr(s)

    , (46)

    3https://computation.llnl.gov/casc/hypre/software.html

    14 SPE-141534-PP

    Fig. 11: Well locations (left), pressure at day 10 (middle) and pressure at day 100 (right)

    where is the dynamic viscosity and kr is the relative permeability. In addition, the saturations satisfy the volume balanceequation

    sw + sn = 1, (47)

    and the capillary pressure is defined by

    pc = pn pw. (48)The capillary pressure is usually a function of the wetting phase saturation determined by experiments.

    Define the total velocity ut and the total mobility t as

    ut = uw + un, t = w + n. (49)

    Using (45), the total velocity can be expressed as

    ut = tK(pw wg + n

    t(pc (n w)g)

    ). (50)

    Summing (44) for the two phases gives

    ut = qw + qn. (51)The primary variables are chosen to be the wetting phase pressure pw and the wetting phase saturation sw. Then (51) andthe wetting phase equation (44) give a closed system of equations with an initial condition

    sw(x, 0) = s0, (52)

    and a no-flow boundary condition for the total velocity

    ut n = 0 on . (53)

    We use an iterative coupling approach (Lu, 2008; Wheeler and Xue, 2010) to solve the pressure and saturation equations.At each time step, we first solve the wetting phase pressure equation given by (50) and (51) using the latest saturationvalues, and then solve the equation (44) with = w. The pressure equation is solved implicitly while the saturation is solvedexplicitly. The time step for the saturation is chosen to satisfy the CFL condition. As a result, the time step size for thesaturation could be smaller than the pressures. The iteration is then repeated until the relative error of local mass balancesis smaller than a given tolerance. See Figure 12 for a flow chart of the iterative coupling.

    More precisely, at time step m+ 1 and iterative coupling step k + 1,

    um+1,k+1t = m+1,kt K(pm+1,k+1w + F (pm+1,kw , sm+1,kw )) , (54)

    um+1,k+1t = qm+1,kw + qm+1,kn , (55)

    From left to right: computational mesh, porosity field, pressure atday 10, pressure at day 100.

    Coupled Smooth-Nonsmooth Grid Example:

    Slightly Compressible Single-Phase FlowPhysical parameters

    Computational domain:300 ft 900 ft 900ft

    Permeability (unit md): diag(50, 200, 200)Porosity: 0.3Fluid compressibility: 104

    Two wells:Bottom-hole pressure

    =

    1600 psi injection1000 psi production

    Computed solutions at Day 5

    Pressure Velocity field

    G.Xue (UT-Austin) Cell-Centered Schemes for Flow SPE RSS, Feb. 21, 2011 28 / 39

    Convergence Study: Total Production Rate

    G.Xue (UT-Austin) Cell-Centered Schemes for Flow SPE RSS, Feb. 21, 2011 29 / 39The total production rate is shown for a series of mesh refine-ments.

    2.5 Multiscale Mortar MFMFE MethodFind uh Vh, ph Wh, and H MH such that

    (K1uh,v)Q,i (ph, v)i = H,RTv nii, v Vh,i,( uh, w)i = (f, w)i, w Wh,i,

    ni=1

    RTuh ni, i = 0, MH.

    Theorem:

    u uh + p ph C(Hm+1/2 + h), (u uh) Ch|||uRTuh||| C(Hm+1/2 + hH1/2), |||p ph||| C(Hm+3/2 + hH)Example:

    p(x, y, z) = x + y + z 1.5,

    K =

    x2 + y2 + 1 0 00 z2 + 1 sin(xy)0 sin(xy) x2y2 + 1

    x = x + 0.03 cos(3pix) cos(3piy) cos(3piz),

    y = y 0.04 cos(3pix) cos(3piy) cos(3piz),z = z + 0.05 cos(3pix) cos(3piy) cos(3piz).Computed solution and error for Example 2

    pres1.210.80.60.40.20

    -0.2-0.4-0.6-0.8-1-1.2

    A. Computed solution

    errp6.5E-036.0E-035.5E-035.0E-034.5E-034.0E-033.5E-033.0E-032.5E-032.0E-031.5E-031.0E-035.0E-04

    B. Error

    Discontinuous quadratic mortars. Pressure (shade) and velocity (arrows).

    Department of Mathematics, University of Pittsburgh 34

    3. Parallel Simulation of Compositional Flow Coupledwith GeomechanicsCompositional Flow Model

    (Ni )t

    = i( Ji

    )+ qi

    Ji= i

    u SDi

    i

    u =

    krK (p g

    )

    p = p+ pc (S ) = 0{1+ cr ( p p0 )}

    i = i

    ( p,T ,Ni )

    = ( p,T ,i )

    S = S ( p,Ni ,i ,T )

    = ( p,T ,i )

    kr = kr (S )

    Mass balance equation

    Velocity of phase

    Porosity

    Mole fraction of component i in phase

    Saturation of phase

    Molar density of phase

    Relative permeability for phase

    Viscosity of phase

    Fluid Pressure for phase

    Flux of component i in phase

    3.1 Numerical Example

    Center for Subsurface Modeling

    Fixed-Stress Split

    || Rp ||L