28
Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes Student : Pierre Rault Director: Xavier Guillaud Supervisor : Frédéric Colas Supervisor RTE : Samuel Nguefeu April 3rd 2012

Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

  • Upload
    hatu

  • View
    232

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

Modelling and analysis of Multi-terminal HVDC grid

Ph.D. with RTE / Ecole Centrale de Lille

(2011-2013)

CNER / Département Postes

Student : Pierre Rault

Director: Xavier Guillaud

Supervisor : Frédéric Colas

Supervisor RTE : Samuel Nguefeu

April 3rd 2012

Page 2: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

2 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Outline

1) Context

1) TWENTIES project

2) Thesis objectives

2) VSC modelling

3) AC/DC Initialization

4) Conclusion

Page 3: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

3 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

The TWENTIES wind energy project Secure large-scale integration of wind power into the European electricity grid • Demonstration project • Lunched by EU • 62 M€ (32M€ Directly provided by EU) • 26 Electrical companies & Research institutions • 10 Member states are represented • Coordinated by Red Eléctrica de España

RTE task: Improving safety and security for offshore wind generation • Control & protection to roll out HVDC grid

Further information • http://www.twenties-project.eu

Page 4: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

4 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Twenties : Work-Package content

Task n°1 Contribution from

intermittent generation and load system sevices

Task n°2 Allow for offshore wind

development

Task n°3 Give more flexibility to the transmission

grid

Demo RTE Démo ENERGINET

Demo IBR Demo DONG

Demo ELIA

Demo REE

WP6 R&D

WP12 Demo

WP7 R&D

WP13 Demo

WP8 R&D

WP14 Demo

WP5 R&D

WP11 Demo

WP4 R&D

WP10 Demo

WP3 R&D

WP9 Demo

WP15 Economic impacts of the demonstrations barriers towards scaling up and solution (Comillas –IIT)

WP15 : EU-wide integrated assessment of the demonstration replication potential (RISOE)

WP15 : Offshore barries (TENNET)

Page 5: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

5 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Demo 3

1) Main objective

1) Assess main drivers for the development of offshore HVDC networks

2) Approach

1) Optimal planning and operation of AC/DC interconnected power systems

2) Local control of HVDC networks

3) Design and quantify experimental DC networks (N-1, faults)

4) Design and test control functions, protection systems …

5) Benchmark several network topologies

5

Protection and fault recovery in MTDC

Grid J. Descloux

Control of MTDC Grid

P. Rault 2 PhD

Page 6: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

6 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

PhD thesis objective

Multi-terminal HVDC network

How can we control this mesh HVDC grid?

Reinforcement HVDC transmission

Transport HVDC transmission

Off-shore wind farm

Page 7: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

7 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

PhD thesis objective

Multi-terminal HVDC network

Reinforcement HVDC transmission

Transport HVDC transmission

Off-shore wind farm

Wind Farm independent control

Page 8: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

8 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Outline

1) Context

2) VSC modelling

1) Power part

2) Converter

3) Control part

3) AC/DC Initialization

4) Conclusion

Page 9: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

9 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Substation model : power part 𝐿𝑆𝑅 𝑅𝑆𝑅

𝐶𝑠

𝑅𝑠 𝐿𝑠 𝐿𝑇 , 𝑅𝑇

𝐶

Device Characteristics Values (mks) Values (pu)

Transformer Yd

U1 (primary) 400kV 1pu

U2 (secondary) 320kV 1pu

Apparent power 1500MVA 1pu

Lcc (secondary) 32.6mH 0.15pu

Rcc (secondary) 0.34Ω 0.005 pu

LC Filter C 6.2µF 7.5pu

𝐿𝑠 32.6mH 0.15 pu

Capacitor 𝐶𝑠 50 µF 5.6 ms

Smoothing reactor 𝑅𝑆𝑅 0,01Ω

𝐿𝑆𝑅 10mH

Page 10: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

10 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Converter modeling

𝑛1𝑔𝑢𝑠

𝑛2𝑔𝑢𝑠

𝑛3𝑔𝑢𝑠

𝑢𝑠 𝑣1𝑁

𝑣2𝑁

𝑣3𝑁

−𝑖𝑚

𝑖𝑚 = 𝑛1𝑔 𝑖1 + 𝑛2𝑔𝑖2 + 𝑛3𝑔𝑖3

𝑛3𝑔

11 T 11 D

12 T 12 D

21 T 21 D

22 T 22 D

31 T 31 D

32 T 32 D

𝑖1

𝑖2

𝑖3

𝑛2𝑔 𝑛1𝑔

Instantaneous model Mean-time model

N

𝑣1𝑁

𝑣2𝑁

𝑣3𝑁

𝑖1

𝑖2

𝑖3

N

𝐵11 𝐵21 𝐵31 𝐵12 𝐵22 𝐵32

𝑖𝑚

𝑢𝑠

𝑖𝑚

Continuous mode Discontinuous mode 𝐵𝑖𝑗 : IGBT control signal

Continuous mode Mean values 𝑛𝑖𝑔 : Mean Conversion

function

𝑛𝑖𝑔 =1

𝑇𝑒 𝑛𝑖𝑑𝑡

𝑘+1 𝑇𝑒𝑘𝑇𝑒

𝑣𝑖𝑁 = 𝑛𝑖𝑔𝑢𝑠

𝑖𝑚 = 𝑛𝑖𝑔𝑖𝑖

Page 11: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

11 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

VSC: control

Current controller

Power controller

- + 𝑃𝑔∗, 𝑄𝑔

∗ 𝑖𝑠𝑑𝑞∗

𝑣𝑚∗

+ -

𝑎𝑏𝑐 → 𝑑𝑞0

𝑑𝑞0 → 𝑎𝑏𝑐

𝑃𝐿𝐿

𝜃

+ -

V

Voltage controller

𝑢𝑠∗ 1 2

𝑖𝑠𝑑𝑞∗

𝑖𝑠𝑑∗

PWM

𝐵11 𝐵21 𝐵31 𝐵12 𝐵22 𝐵32

pu

pu

pu

AC GRID DC

GRID

Page 12: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

12 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Outline

1) Context

2) VSC modelling

3) AC/DC Initialization

1) Substation parameters

2) DC part initialization

3) AC part initialisation

4) Control part initialization

5) Start AC/DC simulation from steady state

4) Conclusion

Page 13: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

13 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Substation parameters

Default values

Substation_ini.dwj • Per unit values • Loop time responses

Rules

mySim_m.dwj Substation parameters

Specific initial values • Nominal power • Power reference

Substation parameters

Ubase=640e3;//(V) Sbase=1000e6; //(VA) PM0 = -500e6; //(W)

//AC Filter parameters var Rs_pu = 0.005 ;//(pu) Filter resistance

Var Zbase=Ubase*Ubase/Sbase; var Rs=Rs_pu*Zbase

Page 14: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

14 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Objective

1) Initialize DC power flow = run steady state solution

2) Initialize AC power flow = run load flow solution

AC GRID

DC GRID

AC GRID

AC GRID

𝑃1

𝑃3

𝑃2

Page 15: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

15 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

DC part initialization 1) Use ideal DC sources (Voltage & Current) 2) Run steady state solution 3) Steady state results are stored in html file at DC

frequency

SS results

mySimss.html DC grid

Page 16: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

16 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

AC part initialization 1) Use Load Flow busses 2) Run Load Flow solution 3) Load Flow results are stored in a html file at AC

frequency

LF results

mySim_lf.html

AC Grid + AC Filter

PQ bus 𝑃𝑚, 𝑄𝑚

AC GRID

Page 17: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

17 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Initialization: Control part (1)

Current controller

Power controller

- + 𝑃𝑔∗, 𝑄𝑔

∗ 𝑖𝑠𝑑𝑞∗

𝑣𝑚∗

+ -

𝑎𝑏𝑐 → 𝑑𝑞0

𝑑𝑞0 → 𝑎𝑏𝑐

𝑃𝐿𝐿

𝜃

+ -

V

Voltage controller

𝑢𝑠∗ 1 2

𝑖𝑠𝑑𝑞∗

𝑖𝑠𝑑∗

PWM

𝐵11 𝐵21 𝐵31 𝐵12 𝐵22 𝐵32

pu

pu

pu

𝑃𝑔 𝑄𝑔 𝑃𝑚 𝑄𝑚

AC GRID

Page 18: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

18 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Initialization: Control part (ex: current controller)

Park

𝑖𝑠𝑎(𝑡) 𝑖𝑠𝑏(𝑡) 𝑖𝑠𝑐(𝑡)

𝛿𝑔(𝑡)

𝑖𝑠𝑑(𝑡)

𝑖𝑠𝑞(𝑡)

PI + -

+ +

init

𝐿𝜔

𝑖𝑠𝑑∗

𝑖𝑠𝑑(𝑡)

𝑖𝑠𝑞(𝑡)

𝑣𝑚𝑑∗ (𝑡) 0

+ +

𝑣𝑔𝑑(𝑡)

𝑖𝑛𝑖𝑡 = 𝑣𝑚𝑑𝑠𝑠 − 𝑣𝑔𝑑𝑠𝑠 − 𝐿𝜔𝑖𝑠𝑞𝑠𝑠

Example : Current controller

Measures & transformations

Park

𝑣𝑔𝑎(𝑡) 𝑣𝑔𝑏(𝑡) 𝑣𝑔𝑐(𝑡)

𝛿𝑔(𝑡)

𝑣𝑔𝑑(𝑡) 𝑣𝑔𝑞(𝑡)

Page 19: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

19 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Initialization: Control part (ex: current controller)

PI + -

+ +

init

𝐿𝜔

𝑖𝑠𝑑∗

𝑖𝑠𝑑

𝑖𝑠𝑞

𝑣𝑚𝑑

+ +

𝑣𝑔𝑑

𝑖𝑛𝑖𝑡 = 𝑉𝑚𝑑𝑆𝑆 − 𝑣𝑔𝑑𝑠𝑠 − 𝐿𝜔𝑖𝑠𝑞𝑠𝑠

Current controller

Initialization block diagram

init

𝑉𝑚𝑑𝑆𝑆

Hold t0 𝑣𝑔𝑑 (𝑡)

𝑖𝑠𝑞(𝑡) Hold t0

- +

𝐿𝜔

- +

𝑣𝑔𝑑𝑠𝑠

𝑖𝑠𝑞𝑠𝑠

Page 20: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

20 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Initialization: Control part

LF results

mySim_lf.html

Mathematical operations e.g. Park transformation

Fetch Steady state values

JavaScript

Initial values for controllers

SS results

mySimss.html

INIT

mySim.dwj

Page 21: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

21 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Starting simulation

+

Initialization DC voltage Or current

Converter unplugged

PQ 𝑃𝑚, 𝑄𝑚

SB 𝑉𝑔, 𝛿𝑔

Generator & impedance initialized

by the SB node Generator initialized

by the PQ node

Page 22: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

22 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Transition initialization/simulation

Converter unplugged

t=0 (steady state solution)

+

t>0

• Ideal switches are used between 2 configurations

• Change before the first calculation step

Converter plugged

Page 23: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

24 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Initialisation methodology on AC/DC Simulation

Run Steady State solution

Run Load Flow solution

Run time domaine simulation

JavaScript

• Initiaze DC grid

• Initialize AC grid & Control

• Start from Load flow solution • Start from Steady state • Time domaine simulation response

Page 24: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

25 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Results

Open DC breaker at t=0,4s

Page 25: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

26 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

DC currents and voltage

Page 26: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

27 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Results (Power)

Page 27: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

28 Pierre RAULT / EMTP User group / RTE – April 3rd 2012

Results (AC voltage)

Page 28: Modelling and analysis of Multi-terminal HVDC grid · Modelling and analysis of Multi-terminal HVDC grid Ph.D. with RTE / Ecole Centrale de Lille (2011-2013) CNER / Département Postes

Thank you for your attention!