32
Modeling cancer evolution from genomic data Niko Beerenwinkel 1 Competence Center Personalized Medicine ETH/UZH

Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Embed Size (px)

Citation preview

Page 1: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Modeling cancer evolution from genomic data

Niko Beerenwinkel

1

Competence Center Personalized Medicine ETH/UZH

Page 2: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

2

Cancer is an evolutionary process

First mutant

● Normal cells

Carcinoma

Page 3: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

3

Clonal expansion

Yates et al 2012

Page 4: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

4

Intra-tumor heterogeneity

Marusyk et al 2012

Page 5: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Some challenges

1. Mutation calling

2. Predicting the phenotypic effects of mutations

3. Reconstructing the evolutionary history of a tumor

4. Predicting cancer evolution and progression

5

Page 6: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Phylogenetic vs. oncogenetic models

6

Phylogenetic models Oncogenetic models

Page 7: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

SCITE: Tree inference for single-cell data

Katharina Jahn, Jack Kuipers (RECOMB 2016)

7

Page 8: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

8

Intra-tumor phylogeny

infinite sites assumption

Page 9: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Observation error

α = false positive rate β = false negative rate

9

Page 10: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

n mutations, m samples Tree topology, T Attachment of samples, σ Error rates, θ = (α, β) Likelihood:

Posterior:

10

Likelihood

Page 11: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

11

Attachment of samples

O(nm)

Page 12: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

For n mutations and m samples, the search space is [(n + 1)(n ‒ 1)] × [(n + 1)m] × IR2

and [(n + 1)(n ‒ 1)] × IR2 after marginalization

MCMC:

12

Inference

Page 13: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

WES of 58 cancer cells 18 selected mutations 45% missing data α = 6.04 × 10‒5, β = 0.43

13

Single-cell sequencing of a myeloproliferative neoplasm (Hou et al., Cell 2012)

Page 14: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

14

Page 15: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

15

Page 16: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

nuc-seq of 47 cells 40 mutations 1.4% missing data α = 1.24 × 10‒6 β = 0.097

16

Single-cell sequencing of an ER+ breast tumor (Wang et al., Nature 2014)

Page 17: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

17

Page 18: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

18

past clonal expansions

current, co-existing subclones

Page 19: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

pathTiMEx: Mutually exclusive cancer pathways and their dependencies in tumor progression Simona Cristea, Jack Kuipers (RECOMB 2016)

19

Page 20: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Partial order among pathways

20

Page 21: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Individual progression

21

Page 22: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Genotypes at diagnosis

22

Page 23: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Observed genotypes

23

Page 24: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Waiting time distribution

24

TA » Exp(¸A)

TB » Exp(¸B)

TC » TA+Exp(¸C)

TD » max(TA; TB) + Exp(¸D)

TS » Exp(¸S)

B. & Sullivant (2009), Gerstung et al (2012)

Page 25: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

Hidden conjunctive Bayesian network (H-CBN)

25

Time to occurrence

of mutations Time to diagnosis

Genotype

Observed genotype

censoring

noise

Page 26: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

For example, as groups of mutually exclusive genes:

Can we find pathways de novo?

tum

ors

genes

Constantinescu, Szczurek, et al. 2015

Page 27: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

27

Pathways and their dependencies

Tg = waiting time of gene g

Up = waiting time of pathway p

true hidden genotype, X

observed genotype, Y

A pathway is altered as soon as one of its genes is altered. Genes depend on upstream pathways.

Page 28: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

28

Joint inference

Page 29: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

29

Progression in colorectal cancer

Vogelstein et al., Science 2013

Page 30: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

30

Progression in glioblastoma

Page 31: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

SCITE, https://gitlab.com/jahnka/SCITE Single-cell sequencing data can be used to reconstruct the

evolutionary history of individual tumors. Two intra-tumor phylogenies support an evolutionary model of

successive clonal expansions in which subclones co-exist until one of them reaches fixation.

pathTiMEx, https://github.com/cbg-ethz/pathTiMEx Tumor evolution is constrained by (partial) orders of gene and

pathway alterations. Mutually exclusive gene groups and their dependencies can be

inferred jointly from observed mutation profiles.

31

Conclusions

Page 32: Modeling cancer evolution from genomic data · PDF fileCBG Mathias Cardner. Simona Cristea . Madeline Diekmann . Christos Dimitrakopoulos . Simon Dirmeier. Monica Golumbeanu . Ariane

32

Acknowledgements

CBG Mathias Cardner Simona Cristea Madeline Diekmann Christos Dimitrakopoulos Simon Dirmeier Monica Golumbeanu Ariane Hofmann Katharina Jahn Vinay Jethava Jack Kuipers Brian Lang Hesam Montazeri Susana Posada Cesped Hans-Joachim Ruscheweyh Fabian Schmich David Seifert Jochen Singer Ewa Szczurek Thomas Thurnherr

www.cbg.ethz.ch

Funding ETH Zurich, SNSF, SHCS, SystemsX.ch, ERASysAPP, Swiss Cancer League, Horizon 2020, ERC Synergy Collaborators (oncology) Gerhard Christofori (U Basel), Mike Hall (U Basel), Markus Heim (U Basel), Willy Krek (ETHZ), Markus Manz (USZ), Florian Markowetz (CRUK), Holger Moch (USZ), Jörg Rahnenführer (TU Dortmund), Alejandro A. Schäffer (NIH), Bert Vogelstein (Johns Hopkins), Peter Wild (USZ)