22
Modeling and Refining Heterogeneous Systems With SystemC-AMS: Application to WSN M. Vasilevski F. Pecheux, N. Beilleau, H. Aboushady K. Einwich* Laboratory LIP6 University Pierre and Marie Curie, Paris 6, France *Fraunhofer IIS/EAS, Dresden, Germany March 2008

Modeling and Refining Heterogeneous Systems With SystemC-AMS: Application to WSN

  • Upload
    cutler

  • View
    29

  • Download
    9

Embed Size (px)

DESCRIPTION

Modeling and Refining Heterogeneous Systems With SystemC-AMS: Application to WSN. M. Vasilevski F. Pecheux, N. Beilleau, H. Aboushady K. Einwich*. Laboratory LIP6 University Pierre and Marie Curie, Paris 6, France *Fraunhofer IIS/EAS, Dresden, Germany. March 2008. Issues - PowerPoint PPT Presentation

Citation preview

Page 1: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

Modeling and Refining HeterogeneousSystems With SystemC-AMS:

Application to WSN

M. Vasilevski

F. Pecheux, N. Beilleau, H. Aboushady

K. Einwich*

Laboratory LIP6 University Pierre and Marie Curie, Paris 6, France*Fraunhofer IIS/EAS, Dresden, Germany

March 2008

Page 2: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

1.Issues

2.SystemC-AMS Languagea. Models of Computation

b. SDF Behavioral Description

c. SDF Multi-rates

3.RF and AMS Modelinga. AMS Models

b. RF Models

4.Wireless Sensor Network Node

5.Conclusion

Page 3: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

3

1. Issues : Mixed Systems Design

A/D Converter Microcontroller RF Transceiver

SystemC

VerilogVHDL

Matlab

Verilog-AVHDL-AMS

Spice-RF

Matlab

Verilog-AVHDL-AMS

Spice

Page 4: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

1.Issues

2.SystemC-AMS Languagea. Models of Computation

b. SDF Behavioral Description

c. SDF Multi-rates

3.RF and AMS Modelinga. AMS Models

b. RF Models

4.Wireless Sensor Network Node

5.Conclusion

Page 5: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

5

SystemC Simulation Kernel

DE, MoCs(CP,FSM,

etc…)

Synchronisation Layer

OtherModeling

Formalism

LNModeling

FormalismSDFModeling

Formalism OtherSolver

LNSolver

SystemCSystemC-AMS

SynchronousData Flow

LinearNetwork

2.a Models of Computation

Models of computation :

•Conservative Linear network

•Synchronous Data Flow

Page 6: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

6

2.b SDF Behavioral Description

A

B

Inp

ut

Ou

tpu

tBehaviour

C

SCA_SDF_MODULE(B)

SCA_SDF_IN<double>SCA_SDF_OUT<double>

void sig_proc( )

f(input)Output

Sb...Sbb

Sa...SaaH(S) m

m10

nn10

Page 7: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

7

2.c SDF Multi-Rates

A B C1 2 1 3 2 1

8 Hz 16 kHz 48 kHz 24 kHz

rate_sample_in

freq_sample_in

rate_sample_out

freq_sample_out

s5.62 Simulation sample time

Simulation rates

Tin Tout

Cluster

Page 8: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

1.Issues

2.SystemC-AMS Languagea. Models of Computation

b. SDF Behavioral Description

c. SDF Multi-rates

3.RF and AMS Modelinga. AMS Models

b. RF Models

4.Wireless Sensor Network Node

5.Conclusion

Page 9: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

9

3.a AMS models : Integrator

S

A

SCA_SDF_MODULE (integrator){ sca_sdf_in < double >in; sca_sdf_out < double >out;

double f; sca_vector < double >NUM,DEN,S; sca_ltf_nd ltf1;

void set_coeffs(double A){ DEN (0) = 0.0; DEN (1) = 1.0; NUM (0) = A; } void sig_proc(){ out.write(

ltf1(NUM, DEN, S, in.read())); } SCA_CTOR (integrator) {}};

In/Out ports

Other Attributes

Initialisation method

Signal processing method

Page 10: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

10

3.a AMS models : Decimator

1z1

Decimator

21z1 2 1z1 2

SCA_SDF_MODULE (decimator){ sca_sdf_in < double >in; sca_sdf_out < double >out;

double old_input;

void init(){ in.set_rate(2); out.set_rate(1); old_input=0; } void sig_proc(){ double input=in.read(0)/2; out.write(old_input+input); old_input=input; } SCA_CTOR (decimator){}};

Page 11: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

1.Issues

2.SystemC-AMS Languagea. Models of Computation

b. SDF Behavioral Description

c. SDF Multi-rates

3.RF and AMS Modelinga. AMS Models

b. RF Models

4.Wireless Sensor Network Node

5.Conclusion

Page 12: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

12

3.b RF models

Power gain NF Rin RoutIIP3

Na

input outputRout

Rin a1 = f(Power gain, Rin, Rout)

a3 = f(a1, IIP3)

Na = f(NF)

a1x+a3x³

Page 13: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

13

Input amplitude = -16.02 dBm

Power Gain = 10 dB

IIP3 = 10 dBm

NF = 30 dB

3.b RF models : IIP3 and Noise Figure Test

FFT BW = 120kHz

Page 14: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

14

X(t) = DC + I1cos(t) + I2cos(2t) + I3cos(3t) + Q1cos(t) + Q2cos(2t) + Q2cos(3t)

DC I1 I2 I3

Q1 Q2 Q3

0 2 3xBB(t) =

3Q

2Q

1Q

3I

2I

1I

DC

3.b RF models : Baseband Equivalent

Page 15: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

15

SCA_SDF_MODULE (adder){ sca_sdf_in < double >inI; sca_sdf_in < double >inQ; sca_sdf_out < double >out;... void sig_proc () { out.write (inI.read()+ inQ.read()); }...

class BB{ double DC,I1,I2,I3, Q1,Q2,Q3;... BB operator+(BB x)const{ BB z(this->DC+x.DC, this->I1+x.I1, this->I2+x.I2, this->I3+x.I3, this->Q1+x.Q1, this->Q2+x.Q2, this->Q3+x.Q3); return z; }...};

SCA_SDF_MODULE (adder){ sca_sdf_in < BB >inI; sca_sdf_in < BB >inQ; sca_sdf_out < BB >out;... void sig_proc () { out.write (inI.read()+ inQ.read()); }...

3.b RF models : Baseband Equivalent Implementation

)tsin()BA()tsin(B)tsin(A

)tcos()BA()tcos(B)tcos(A

Page 16: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

1.Issues

2.SystemC-AMS Languagea. Models of Computation

b. SDF Behavioral Description

c. SDF Multi-rates

3.RF and AMS Modelinga. AMS Models

b. RF Models

4.Wireless Sensor Network Node

5.Conclusion

Page 17: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

17

4. Wireless Sensor Network Node

• Wireless sensor network for environmental and physical monitoring:

o Temperature, vibration, pressure, motion, polluants

Page 18: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

18

4. Wireless Sensor Network Node

A/D Converter Microcontroller

RF Transceivermodulator

decimator

Application Binary File

8.53 MHz 2.4 MHz 2.4 GHz

SystemC

SystemC-AMS

2nd orderOSR=6410 bits

RZ feedback

QPSKfc=2.4GHz

ATMEGA1288 bits

Page 19: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

19

4. Wireless Sensor Network NodeRF : QPSK 2.4 GHz

64OSR

order2nd

ADC :

S

1

S

1

DAC

decimator+

- -+

encoder demux

filter

filter

muxLNA

T

1

T

1

)tf2cos( c)tf2cos( c

)tf2sin( c )tf2sin( c

Page 20: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

20

4. Wireless Sensor Network Node : Results

RF Simulation

(2.4 GHz)

SC-AMS classical simulation

SC-AMS BB eq. RF simulation

1000 bits

transmission

63.0s 0.036s

DC offset 19.9s 0.018s

Frequency offset

24.9s 0.022s

Phase mismatch

44.4s 0.031s

Noisy channel DC offset

Frequencyoffset

Phase mismatch

Page 21: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

21

4. Wireless Sensor Network Node : Results

Settings Simulation Matlab SystemC-AMS

ADC alone OSR=64

10 bits

8.53MHz

16*1024 pts 1.6 s 0.9 s

RF alone 2.4 GHz 10e3 bits

10e7 pts RF

150.7 s classic BB

63.0 s 0.036s

2-nodestransmission

Same

settings

10e3 bits - 181.7 s

Page 22: Modeling and Refining Heterogeneous Systems With SystemC-AMS:  Application to WSN

M. Vasilevski University Paris 6 Fraunhofer IIS/EAS

22

Conclusion

Advantages to use SystemC-AMS:• Digital and Analog-Mixed Signal systems simulation

Interface with SystemC

• Simulations very fast C++ based

• Polymorphism Easy to refine components with C++ inheritance ability Generic declaration of components with C++ templates

• Easy software programmer contribution Example of a free FFT library used for IIP3 test.