22
Mònica Campàs, Anna Toldrà, Karl B. Andree, Edgar Bertomeu, Ana Roque, Noèlia Carrasco, Ignasi Gairín, Dolors Furones VIVALDI final meeting Brest 28/11/19

Mònica Campàs, Anna Toldrà, Karl B. Andree ... - Vivaldi · Closer to an early arning system Sample Physical state Aquarium OsHV copies/50 ng total DNA Biosensor qPCR 1 dead treated

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Mònica Campàs, Anna Toldrà, Karl B. Andree, Edgar Bertomeu, Ana Roque,

    Noèlia Carrasco, Ignasi Gairín, Dolors Furones

    VIVALDI final meeting – Brest 28/11/19

  • The objective

    Prevent Control Mitigate

    To exploit magnetic beads for the

    capture and pre-concentration of

    ostreid herpesvirus

    To develop an electrochemical

    biosensor for the detection of ostreid

    herpesvirus

  • Magnetic beads to capture the virus: the strategy

    Rapid, simple and cost-effective MB-based viable OsHV-1 capture strategy

  • Experimental design

    April 2017

    seawater magnetic

    beads

    homogenate magnetic

    beads

    seawater conjugates

    homogenate conjugates

    24°C, 22h

    stomacher

  • Virus capture and detection

    MBs are able to capture the virus from both the

    homogenate and the seawater

    The viral DNA detected in the conjugates came from virus

    particles captured by the MBs

    10 0

    10 1

    10 2

    10 3

    10 4

    10 5

    10 6

    10 7

    To

    tal O

    sH

    V-1

    DN

    A c

    op

    ies

    W-1 W-2 W-3

    To

    tal O

    sH

    V-1

    DN

    A c

    op

    ies

    0

    2000

    4000

    6000

    8000

    10000

  • Virus capture and detection

    Homogenate dilutions

    MB amount (µL)

    0.1 1 10 100 1000

    10 2

    10 3

    10 4

    10 5

    MBs dilutions

    To

    tal O

    sH

    V-1

    DN

    A c

    op

    ies

    Steric impediments may decrease capture efficiency

    MBs were not saturated

    Homogenate dilution

    1/1000 1/100 1/10 1 10

    To

    tal O

    sH

    V-1

    DN

    A c

    op

    ies

    10 0

    10 1

    10 2

    10 3

    10 4

    10 5

    10 6

    10 7

  • Experimental infections

    homogenate

    homogenate MBs

    seawater

    seawater MBs

    sterile water

    bare MBs

    Mortality monitoring, DNA analyses and RNA analyses

    ~30 oysters/aquarium

    intramuscular injection

    MB-conjugates

    Positive controls

    Negative controls

  • Mortality monitoring

    0 2 4 6 8 10

    0

    20

    40

    60

    80

    100

    Mo

    rtali

    ty (

    %)

    Days post - injection ( dpi )

    MB-conjugates are able to infect oysters

    MB-conjugates

    Positive controls

    Negative controls

    1 3 5 7 9 11

  • DNA analyses

    Days post-injection (dpi)

    1 2 3 4 5 6 7 8 9 10 11

    OsH

    V-1

    DN

    A c

    op

    ies/n

    g t

    ota

    l D

    NA

    10-1

    100

    101

    102

    103

    104

    105

    1

    8

    4

    2

    1

    11

    10

    Days post-injection (dpi)

    1 2 3 4 5 6 7 8 9 10 11

    OsH

    V-1

    DN

    A c

    op

    ies/n

    g t

    ota

    l D

    NA

    10-1

    100

    101

    102

    103

    104

    105

    4

    2

    1

    1

    1

    13

    2

    2

    Days post-injection (dpi)

    dead/moribund oysters

    living oysters

    MB-conjugates are able to infect oysters

    viral DNA loads:

    moribund/dead oysters > living oysters

    MB-conjugate with the homogenate

  • RNA analyses

    no differences among ORFs

    viral gene expression:

    moribund oysters > living oysters

    Active replication of the virus

    MB-conjugates are able to infect oysters

    MBs are able to capture viable virus particles

    moribund living

    Ta

    rge

    t C

    t n

    orm

    aliz

    ed

    to

    EF

    1

    0

    5

    10

    15

    20

    25

    ORF4

    ORF16

    ORF42

    viral genes

  • Pre-concentrating agents: homogenate

    MBs are able to pre-concentrate OsHV-1 at least 100 times

    1 1/10 1/100 1 1/10 1/100

    To

    tal O

    sH

    V-1

    DN

    A c

    op

    ies

    10 0

    10 1

    10 2

    10 3

    10 4

    10 5

    MB + qPCR qPCR

    Experimental conditions:

  • Pre-concentrating agents: seawater

    Application to seawater from a depuration experiment (April 2019)

    infected oysters

    naïve oysters

    CONTROL TREATED (HOD SYSTEM)

    UP

    - no oyster mortality - no OsHV-1 in oysters

    Closer to an early arning system

    MBs+qPCR qPCR

    https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjY8On8spvhAhUwx4UKHcnPD9EQjRx6BAgBEAU&url=https://www.maxpixel.net/Tick-Mark-Correct-Yes-Check-Check-Mark-Ok-Green-1292787&psig=AOvVaw1P7_TkHNlmZprpWm2CDGDT&ust=1553538157356102

  • DNA-based biosensor: the strategy

    Closer to an early arning system

    Amplification technique

    Fast Low-cost Simple

    Enzyme

    Antibody

    DNA

    Cell

    Electrochemical

    Optical

    Piezoelectric

    Thermal

    Bio

    reco

    gnit

    ion

    e

    lem

    en

    t

    Tran

    sdu

    cer

    Sign

    al

    miniaturised devices

    thermal cycling (↑ energy)

    in situ analysis

    PCR

    in situ analysis

    constant temperature (↓ energy)

    miniaturised devices

    Isothermal amplification

  • Experimental design

    TMBred

    TMBox

    30 min

    37 °C

    OsHV-1 tailed product

    HRP

    s gold electrode

    C3 stopper

    OsHV-1 FwP OsHV-1 RvP

    target OsHV-1

    e-

    OsHV-1 capture probe

    reporter probe

    RPA product

    RPA SHA

  • 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 0

    100

    200

    300

    400

    500

    Calibration curve and storage stability

    Closer to an early arning system

    LOD biosensor = 207 copies

    LOD qPCR = 4 copies

    OsHV-1 target copies

    Inte

    nsit

    y (

    nA

    )

    s

    Ready-to-use functionalised electrodes

    Predicted stability of 3 months at -20 °C

    -20°C 4°C

    0 7 7 17 17

    0

    20

    40

    60

    80

    100

    120

    140

    Time (days)

    Inte

    nsit

    y (

    %)

    Overnight

    https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjY8On8spvhAhUwx4UKHcnPD9EQjRx6BAgBEAU&url=https://www.maxpixel.net/Tick-Mark-Correct-Yes-Check-Check-Mark-Ok-Green-1292787&psig=AOvVaw1P7_TkHNlmZprpWm2CDGDT&ust=1553538157356102

  • Closer to an early arning system

    Sample Physical

    state Aquarium

    OsHV copies/50 ng total DNA

    Biosensor qPCR

    1 dead treated 3.34 x 10 5 7.13 x 10 5

    2 dead treated 4.78 x 10 5 4.81 x 10 5

    3 dead treated 7.26 x 10 4 1.79 x 10 5

    4 dead treated 6.10 x 10 3 6.52 x 10 3

    5 dead treated 5.21 x 10 3 4.38 x 10 3

    6 dead treated 2.75 x 10 3 1.98 x 10 3

    7 alive treated 1.97 x 10 2 1.21 x 10 2

    8 alive treated 5.27 x 10 2 7.83 x 10

    9 alive treated 1.50 x 10 2 3.24 x 10

    10 alive treated n.d. 1.04 x 10

    11 alive treated n.d. 7.93

    12 alive control n.d. n.d.

    13 alive control n.d. n.d.

    14 alive control n.d. n.d.

    15 alive control n.d. n.d.

    16 alive control n.d. n.d.

    Analysis of oysters

  • Closer to an early arning system

    Sample Physical

    state Aquarium

    OsHV copies/50 ng total DNA

    Biosensor qPCR

    1 dead treated 3.34 x 10 5 7.13 x 10 5

    2 dead treated 4.78 x 10 5 4.81 x 10 5

    3 dead treated 7.26 x 10 4 1.79 x 10 5

    4 dead treated 6.10 x 10 3 6.52 x 10 3

    5 dead treated 5.21 x 10 3 4.38 x 10 3

    6 dead treated 2.75 x 10 3 1.98 x 10 3

    7 alive treated 1.97 x 10 2 1.21 x 10 2

    8 alive treated 5.27 x 10 2 7.83 x 10

    9 alive treated 1.50 x 10 2 3.24 x 10

    10 alive treated n.d. 1.04 x 10

    11 alive treated n.d. 7.93

    12 alive control n.d. n.d.

    13 alive control n.d. n.d.

    14 alive control n.d. n.d.

    15 alive control n.d. n.d.

    16 alive control n.d. n.d.

    Analysis of oysters

  • Closer to an early arning system

    Sample Physical

    state Aquarium

    OsHV copies/50 ng total DNA

    Biosensor qPCR

    1 dead treated 3.34 x 10 5 7.13 x 10 5

    2 dead treated 4.78 x 10 5 4.81 x 10 5

    3 dead treated 7.26 x 10 4 1.79 x 10 5

    4 dead treated 6.10 x 10 3 6.52 x 10 3

    5 dead treated 5.21 x 10 3 4.38 x 10 3

    6 dead treated 2.75 x 10 3 1.98 x 10 3

    7 alive treated 1.97 x 10 2 1.21 x 10 2

    8 alive treated 5.27 x 10 2 7.83 x 10

    9 alive treated 1.50 x 10 2 3.24 x 10

    10 alive treated n.d. 1.04 x 10

    11 alive treated n.d. 7.93

    12 alive control n.d. n.d.

    13 alive control n.d. n.d.

    14 alive control n.d. n.d.

    15 alive control n.d. n.d.

    16 alive control n.d. n.d.

    Analysis of oysters

  • Closer to an early arning system

    Sample Physical

    state Aquarium

    OsHV copies/50 ng total DNA

    Biosensor qPCR

    1 dead treated 3.34 x 10 5 7.13 x 10 5

    2 dead treated 4.78 x 10 5 4.81 x 10 5

    3 dead treated 7.26 x 10 4 1.79 x 10 5

    4 dead treated 6.10 x 10 3 6.52 x 10 3

    5 dead treated 5.21 x 10 3 4.38 x 10 3

    6 dead treated 2.75 x 10 3 1.98 x 10 3

    7 alive treated 1.97 x 10 2 1.21 x 10 2

    8 alive treated 5.27 x 10 2 7.83 x 10

    9 alive treated 1.50 x 10 2 3.24 x 10

    10 alive treated n.d. 1.04 x 10

    11 alive treated n.d. 7.93

    12 alive control n.d. n.d.

    13 alive control n.d. n.d.

    14 alive control n.d. n.d.

    15 alive control n.d. n.d.

    16 alive control n.d. n.d.

    Analysis of oysters

    10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 1

    10 2

    10 3

    10 4

    10 5

    10 6

    10 7

    Ele

    ctr

    och

    em

    ical b

    iosen

    so

    r

    qPCR

    Pearson’s r = 0.988; P < 0.001

    excellent agreement

  • Summarising

    MBs are able to capture OsHV-1 from both the homogenate and seawater.

    Both homogenate and seawater conjugates have the ability to infect oysters.

    MBs are able to pre-concentrate virus particles at least 100 times.

    MBs are able to pre-concentrate viruses from seawater, being closer to an early warning system.

    An electrochemical biosensor for the detection of OsHV-1 has been developed.

    The biosensor exhibits good analytical performance, specificity, sensitivity and storage stability.

  • Publications

  • CONTACT

    This project has received funding from

    the European Union’s Horizon 2020

    Research and innovation programme

    under grant agreement N° 678589

    Mònica Campàs

    [email protected]

    www.vivaldi-project.eu

    Follow us on twitter : vivaldieuproj

    Follow us on facebook: vivaldiproject

    http://www.vivaldi-project.eu/http://www.vivaldi-project.eu/http://www.vivaldi-project.eu/