18
MILL LINER OPTIMISATION Waldo Verster Multotec Rubber 2021

MILL LINER OPTIMISATION

  • Upload
    others

  • View
    11

  • Download
    1

Embed Size (px)

Citation preview

Page 1: MILL LINER OPTIMISATION

MILL LINER OPTIMISATION

Waldo Verster

Multotec Rubber

2021

Page 2: MILL LINER OPTIMISATION

2021 Slide: 2Mill Liner Optimisation Waldo Verster

In t roduct ion

Mill Liner Optimisation

Grind (Process

Requirement)

Installation Time

Structural Integrity

(Protecting the mill shell)

Absorbed Power

Wear Life (Abrasion,

Impact, Corrosion)

Discharge Efficiency

Page 3: MILL LINER OPTIMISATION

2021 Slide: 3Mill Liner Optimisation Waldo Verster

Types of comminut ion mechanisms

ImpactAbrasion /

ShearAttrition Compression

Page 4: MILL LINER OPTIMISATION

2021 Slide: 4Mill Liner Optimisation Waldo Verster

Zones ins ide a mi l l

Toe

(Impact

grinding)

Attrition and

compression

grinding

Kidney

shape

Shoulder

Eye

Cascading

(Abrasion)

Cateracking

Page 5: MILL LINER OPTIMISATION

2021 Slide: 5Mill Liner Optimisation Waldo Verster

Energy d is t r ibut ion ins ide a mi l l

Energy distribution is equivalent to the rate of work performed in the

different zones inside a mill (It’s a function of the collusion normal

energy and the number of collusions / particle / s)

Maximum Impact work but low rate

Page 6: MILL LINER OPTIMISATION

2021 Slide: 6Mill Liner Optimisation Waldo Verster

What dr ives mi l l ing?

Millions of impacts of grinding media and /

or larger rock on the ore particles

Need sufficient energy to break the

particles

• Excess energy is wasted

• Low energy is ineffective

Majority of grinding work is done in rising

shear region inside the charge

• Many interactions

• High pressure inside the charge

• Trapping of particles

Page 7: MILL LINER OPTIMISATION

2021 Slide: 7Mill Liner Optimisation Waldo Verster

Design parameters

Mill Design

• Diameter

• Length

• Head angle

• Trunnion diameter

• SAG, primary ball or secondary ball mill

Mill Operating parameters

• Feed PSD

• Mill Speed

• Ore Characteristics

• Total volumetric filling

• Grinding media type, size and volumetric filling

• Liner changeout plan

Liner Design

• Liner wear life

• Trajectory

• Mill effective volume

• Effective grinding length

• Discharge design

• Total throughput

• Absorbed Power

• Liner design input parameters

• In most cases the inputs are fixed

Page 8: MILL LINER OPTIMISATION

2021 Slide: 8Mill Liner Optimisation Waldo Verster

Shel l l iner des ign parameters

Cross Section through mill shell and shell liners

Shell plate

width

Shell plate

thickness

Lifter bar

release angle

Height to Angle

Lifter bar

height back

Lifter bar

height

Page 9: MILL LINER OPTIMISATION

2021 Slide: 9Mill Liner Optimisation Waldo Verster

Design parameters - Opt imisat ion

Increase mill volume and / or EGL

Increase discharge capacity

Mill liner design seeks the optimum balance between liner

life, cost, throughput and grind

Page 10: MILL LINER OPTIMISATION

2021 Slide: 10Mill Liner Optimisation Waldo Verster

Liner des ign sof tware – Single Par t ic le

Page 11: MILL LINER OPTIMISATION

2021 Slide: 11Mill Liner Optimisation Waldo Verster

Liner des ign sof tware - DEM

Page 12: MILL LINER OPTIMISATION

2021 Slide: 12Mill Liner Optimisation Waldo Verster

Case Study- Reduct ion in absorbed power

Grinding Circuit: Crusher – SAG – Ball Mill – Cyclones (Closed circuit)

Grinding media, 50 mm High Chrome balls

Fixed speed = 75 % of critical speed

Ball mill feed PSD:

PARTICLE SIZE

DISTRIBUTIONS

PSD - Sieve

Shaker x PSD - Malvern PSD - Cyclosizer

Size (µm) Mass Mass Retained Cumulative %

RetainedCumulative % Passing

+ - g %

1 1000 1400 43.60 6.3 6.3 100.0

2 850 1000 10.30 1.5 7.8 93.7

3 600 850 24.50 3.6 11.4 92.2

4 425 600 32.20 4.7 16.1 88.6

5 300 425 47.70 6.9 23.0 83.9

6 212 300 77.80 11.3 34.3 77.0

7 150 212 100.00 14.5 48.8 65.7

8 106 150 103.50 15.0 63.8 51.2

9 75 106 105.20 15.3 79.1 36.2

10 53 75 52.70 7.7 86.7 20.9

11 38 53 28.50 4.1 90.9 13.3

12 38 62.80 9.1 100.0 9.1

TOTAL 688.8

Page 13: MILL LINER OPTIMISATION

2021 Slide: 13Mill Liner Optimisation Waldo Verster

Tra jectory – New l iners

Impact

grinding on

the toe

Attrition and

compression

grinding

Page 14: MILL LINER OPTIMISATION

2021 Slide: 14Mill Liner Optimisation Waldo Verster

Tra jectory – Liner mid l i fe

No

significant

impact

grinding

Attrition and

compression

grinding

Increase in

charge cross

section

Page 15: MILL LINER OPTIMISATION

2021 Slide: 15Mill Liner Optimisation Waldo Verster

Tra jectory – Liner end of l i fe

No

significant

impact

grinding

Attrition and

compression

grinding

Page 16: MILL LINER OPTIMISATION

2021 Slide: 16Mill Liner Optimisation Waldo Verster

Absorbed Power vs . throughput

Gradual reduction in power draw over the life of the liner without

negatively influencing the grind and throughput

Attrition grinding is doing most of the work in this mill

Excess energy is wasted

Power Draw

Throughput

Page 17: MILL LINER OPTIMISATION

2021 Slide: 17Mill Liner Optimisation Waldo Verster

Conclus ion

Multotec liner design rules aim to achieve thebalance between liner life, grind efficiency, cost andthe structural integrity of the liner. The type of milldictates the liner design rules.

Every mill application is unique, and a bespoke linerdesign is required to maximize mill efficiency

Without a proper mill liner design, an increase inabsorbed power does not always result in anincrease in throughput and improved grind.

Multotec mill liner design seeks the optimum balance

between liner life, cost, throughput and grind by

considering the complete grinding circuit and process

parameters.

Page 18: MILL LINER OPTIMISATION

2021 Slide: 18Mill Liner Optimisation Waldo Verster

Thank you for your attendance at this Multotec Training Workshop

All Material & Designs in this Presentation are Proprietary Information of Multotec (Pty) Ltd.

No information may be shared or reproduced without the written consent from the author or Multotec Management.

Australia – Brisbane

Tel: +61 (7) 3442 0100

Fax: +61 (7) 3200 7733

E-mail: [email protected]

Australia – Perth

Tel: +61 (8) 9406 3500

Fax: +61 (8) 9302 1732

E-mail: [email protected]

Brazil

Tel: +55 31 99 880 1945

E-mail: [email protected]

Canada – Montréal

Tel: +1 (450) 651 5858 (ext. 203)

Fax:+1 (450) 651 0002

E-mail: [email protected]

Canada – Vancouver

Tel: +1 (604) 547 3272

E-mail: [email protected]

Chile

Tel: +56 (2) 745 3317/3302

Fax: +56 (2) 745 3432

E-mail: [email protected]

China

Tel: +86 (0) 22 22145181

E-mail: [email protected]

Botswana

Tel: +267 297 4524/4525

E-mail: [email protected]

Ghana

Tel: +233 302 517 821

E-mail: [email protected]

Mozambique

Tel: +258 2524 0057

E-mail: [email protected]

South Africa

Tel: +27 (0) 11 923 6000

Fax: +27 (0) 11 394 8701/5099

E-mail: [email protected]

Zambia

Tel: +260 212 313 354

Fax: +260 212 312 422

E-mail: [email protected]

w w w. m u l t o t e c . c o m