34
Mid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels [email protected] ESO, 26 Feb. 2013 – p.1/37

Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Mid-IR astronomy with theE-ELT: The case for evolved stars

Martin Groenewegen

Royal Observatory of Belgium, Brussels

[email protected]

ESO, 26 Feb. 2013 – p.1/37

Page 2: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Overview

(JWST and the ELTs: An Ideal Combination,Garching, April 13-16, 2010)

• Introduction:current issues in evolved star research

• Science cases for E-ELT in the Mid-IR(HR & LR spectroscopy, imaging-broadband)

• Conclusions

Some caveats:

• Focus on AGB stars (not PN, LBV/WR, SN)

• No in depth comparison to other facilities that arerelevant before 2023 ESO, 26 Feb. 2013 – p.2/37

Page 3: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

AGB stars

ESO, 26 Feb. 2013 – p.3/37

Page 4: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Central Star

Betelgeuse. ESO press release 0927 (2009). Kervella, Ohnaka. AMBER, NACOESO, 26 Feb. 2013 – p.4/37

Page 5: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Katrien Kolenberg ESO, 26 Feb. 2013 – p.5/37

Page 6: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Lifecycle of dust and gas

http://hea-www.cfa.harvard.edu/CHAMP/EDUCATION/PUBLIC/starlifecycles_pics.htmlESO, 26 Feb. 2013 – p.6/37

Page 7: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Shaping PNe

ESO, 26 Feb. 2013 – p.7/37

Page 8: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

ESO, 26 Feb. 2013 – p.8/37

Page 9: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Key Questions

What is the mass-loss return of dust and metalenrichment by AGB stars (versus SNe)

How does this depend on time, mass, metallicity ?

Driving of the wind (radiation pressure on dust, but....)

C-rich versus O-rich (different dust species, differentwind driving ? )

Thermal Pulses followed by nucleosynthesis near thecore (convection)

Pulsation

non-spherical

role of binarityESO, 26 Feb. 2013 – p.9/37

Page 10: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

HR Spectroscopy

Sahai et al. (2009), using FTS CO rot-vibr lines2100-2200 cm−1 resolution of 0.02 cm−1

4.55-4.76µm,R= 107 000 ESO, 26 Feb. 2013 – p.10/37

Page 11: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

4m telescopeno integration time, no S/N given,M= -2.3

"... these data, taken over 7 epochs, show that thecircumstellar environment of V Hya consists of acomplex high-velocity (HV) outflow containing atleast six kinematic components with expansionvelocities ranging between 70 and 120 km/s, togetherwith a slow-moving normal outflow at about 10 km/s.Physical changes occur in the HV outflow regions ona time-scale as short as two days. The intrinsicline-width for each HV component is quite large(6− 8 km/s) compared to the typical values (∼ 1

km/s) appropriate for normal AGB circumstellarenvelopes (CSEs), due to excess turbulence and/orlarge velocity gradients resulting from the energeticinteraction of the HV outflow with the V Hya CSE."

ESO, 26 Feb. 2013 – p.11/37

Page 12: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

CRIRES

Lebzelter et al. (2012) CRIRES-POP

complete 0.97-5.3µm region in 200 settings

R= 96 000 at 2.17µm

"A complete scan of a star withK = 1 mag reaching aS/N of at least 200 throughout the entire spectral rangetakes almost nine hours and is strongly dominated byobservational overheads (close to 80%)"

M -band: up to 20 min. per setting (K = M = 4.9)

25 objects (1 S, 1 C)

ESO, 26 Feb. 2013 – p.12/37

Page 13: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

4040 4042 4044 4046 4048 4050 4052 4054 4056 4058 40600.0

0.2

0.4

0.6

0.8

1.0

Si

Ca

CS

6-4

R44

CS

6-4

R43

CS

6-4

R41

CS

6-4

R38

CS

6-4

R37

CS

6-4

R36

CS

6-4

R35

CS

6-4

R34

CS

6-4

R33

CS

6-4

R31

CS

6-4

R30

CS

6-4

R29?

CS

6-4

R28

CS

2-0

P29

CS

2-0

P31

CS

2-0

P32

CS

2-0

P33

CS

2-0

P34

CS

3-1

P18?

CS

3-1

P17

CS

3-1

P19

CS

3-1

P20?

CS

3-1

P21

Fe

Fe

Fe

Fe

Fe

Fe

Fe

Fe

Fe

CO

7-4

R11

CO

7-4

R17

CO

7-4

ble

nd

CO

3-0

P42

CO

4-1

P33

CO

CO

4-1

P35

CO Si

Ni

V?

CO

6-3

R74

CN

0-1

Q1 7

6.5

CN

1-2

P1 5

9.5

CN

1-2

Q2 6

7.5

CN

1-2

P1 5

8.5

Ti

Ti?

CO

ble

nd

CN

?

C2?

CN

0-1

P1 6

7.5

CN

1-2

P2 5

7.5

CN

?

CN

?C

N 0

-1 Q

2 7

6.5

C2?

CN

2-3

P1 4

7.5

C2?

C2?

C2?

CN

/CO

CN

/CO

CN

0-1

P1 6

8.5

CN

?

CN

?

CN

2-3

P1 4

8.5

CN

0-1

Q2 7

7.5

Ti

Ti

Fe/T

i

Fe

Fe

Fe

Ca

Ca

Ca

H?

CN

0-0

Q1 8

5.5

CN

0-0

Q2 8

4.5

CN

0-0

P1 7

6.5

CN

0-0

P2 7

6.5

CN

0-0

Q1 8

4.5

CN

0-0

Q2 8

3.5

CN

0-0

P1 7

5.5

CN

0-0

P2 7

4.5

CN

3-3

Q1 5

3.5

CN

3-3

P2 4

6.5

CN

3-3

P1 4

7.5

CN

ble

nd

CN

3-3

Q2 5

4.5

CN

3-3

Q1 5

5.5

CN

3-3

Q2 5

3.5

CN

3-3

Q1 5

4.5

CN

1-1

P1 6

6.5

CN

ble

nd

CN

3-3

P2 4

4.5

CN

3-3

P1 4

6.5

CN

2-2

Q2 6

4.5

CN

2-2

P2 5

7.5

+T

i?

CN

2-2

Q1 6

5.5

C2

C2

C2?

C2

wavelength [nm]

1638 1640 1642 1644 1646 1648 1650

0.0

0.2

0.4

0.6

0.8

1.0

1276 1278 1280 1282 1284

0.0

0.2

0.4

0.6

0.8

1.0

C-star X TrA CN, CS, C2ESO, 26 Feb. 2013 – p.13/37

Page 14: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

CRIRES

Ryde et al. (2010) Bulge GiantsCNO,α elements, Fe, Si, S, and TiR= 70 000,H= 12.0, S/N= 90,tint = 80 min

1.4

1.2

1.0

0.8

0.6

0.4

0.2

4.784.764.744.724.704.684.66

Wavelength [µm]

12C16O ice

12C17O

12C18O

13C16O12C16O

Nor

mal

ized

Flu

x

12C17O: R(9) - P(9)

12C18O: R(16) - P(12)

13C16O: R(15) - P(13)

12C16O: R(0) - P(24)Lines detected:

υ = (1 − 0)Reipurth 50

Smith et al. (2009), YSOC16O, C17O, C18O; 30 min., S/N= 300, M= +2.0ESO, 26 Feb. 2013 – p.14/37

Page 15: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

LR spectroscopy ⇒ Dust

5 10 15 20 25 30 35 40Wavelength (� m)

0

1000

2000

3000

4000

5000

6000

7000

Opaci

ty (

cm2/g

r)

de Vries et al. (2010)The opacities of crystalline silicate forsterite

ESO, 26 Feb. 2013 – p.15/37

Page 16: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Jones et al. (2012) Q-band∼21µm ESO, 26 Feb. 2013 – p.16/37

Page 17: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Jiang et al. (2013) Spitzer IRSESO, 26 Feb. 2013 – p.17/37

Page 18: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

LR spectroscopy

MSX LMC 61 (Groenewegen & Sloan, in prep.)L = 20 800 L⊙, τ0.5 = 2.5, M= 6.5 · 10−7 M⊙ yr−1

210 mJy at 8.0µm

ELT ETCS/N= 30 R= 2001hourF= 0.65 mJy

L = 10 000 L⊙

⇒ 0.6 Mpc

ESO, 26 Feb. 2013 – p.18/37

Page 19: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

VISIR

Lagadec et al. (2011)

PAH (8.59µm), SiC (11.85µm), Ne II (12.81µm)

75 mas pixelscale, FoV= 19× 19 arcsec2, tint= 30 sec

FWHM from 250-500 mas

"We imaged a sample of 93 evolved stars and nebulaein the mid-infrared using VISIR/VLT, TRecs/Gemini-South and Michelle/Gemini-North.We foundthat all the proto-planetary nebulae we resolved showa clear departure from spherical symmetry. 59 out ofthe 93 observed targets appear to be non-resolved."

ESO, 26 Feb. 2013 – p.19/37

Page 20: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

ESO, 26 Feb. 2013 – p.20/37

Page 21: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

ESO, 26 Feb. 2013 – p.21/37

Page 22: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

ESO, 26 Feb. 2013 – p.22/37

Page 23: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

VISIR

Momany et al. (2012)

PAH (8.59µm)

127 mas pixelscale, FoV= 32× 32 arcsec2,1.8h per pointing

"Dusty red giants and asymptotic giant stars areconfined to the 47 Tuc [MG: at 5 kpc] long periodvariables population. In particular, dusty red giantsare limited to the upper one N8.6µm magnitude belowthe giant branch tip. This particular luminosity levelcorresponds to∼ 1000 L⊙ in previous determinationsto mark the onset of dusty mass-loss"

ESO, 26 Feb. 2013 – p.23/37

Page 24: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

(upper) 2MASS with pointings; (lower) VISIRESO, 26 Feb. 2013 – p.24/37

Page 25: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

HRD, combined with ACSN8.6= 10 corresponds to about 5 mJy ESO, 26 Feb. 2013 – p.25/37

Page 26: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Of brightest objectR= 300, 9.8µm + 11.4µm central wavelength

ESO, 26 Feb. 2013 – p.26/37

Page 27: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Broadband

MSX LMC 1298 (→ SED peaks nearM -band)L = 29 200 L⊙, τ0.5 = 10, M= 4.4 · 10−6 M⊙ yr−1

ESO, 26 Feb. 2013 – p.27/37

Page 28: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Broadband

ERO 0550261L = 11 000 L⊙, τ0.5 = 120, M= 3.6 · 10−5 M⊙ yr−1

ESO, 26 Feb. 2013 – p.28/37

Page 29: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Dust Production in the LMC

Type N ΣD % < D >

(M⊙/yr) (M⊙/yr)x-AGB 313 6.26× 10

−7 65.9 2.0× 10−9

C-AGB 1 559 1.21× 10−7 12.7 7.8× 10

−11

O-AGB 1 851 0.52× 10−7 5.5 2.8× 10

−11

aO-AGB 1 243 0.26× 10−7 2.7 2.1× 10

−11

RSG 2 611 0.31× 10−7 3.3 1.2× 10

−11

FIR∗ 50 0.96× 10−7 10.1 1.9× 10

−9

Total, no FIR 7 577 8.6× 10−7 90.5 1.1× 10

−10

Remarks:FIR= contaminants (YSO, PNe); quoted areDUST MLR, so multiplyby∼ 200.

Boyer et al. (2012)Matsuura et al. (2009, 2012) ESO, 26 Feb. 2013 – p.29/37

Page 30: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Filter magnitude Flux (mJy) magnitude Flux (mJy)MSX LMC 1298 ERO 0550261

Z 19.97 0.02Y 18.24 0.11J 15.47 0.9H 12.47 11K 10.22 54 22.1 0.001L 7.28 296 12.29 3.0M 6.53 412 10.05 16N 4.89 413 5.49 240Q 4.41 204 3.47 480MIPS 24 4.19 152 2.86 517350µm – 0.16 – 1.2

N -band 0.05 mJy S/N= 30 1hour (ETC for 42m)(METIS 0.03 mJy S/N= 10 1hour)L = 5 000 L⊙⇒ 1.9 Mpcouter radius of 1000 inner radii⇒ 20 mas @ 1.9 MpcESO, 26 Feb. 2013 – p.30/37

Page 31: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Some famous AGB+SGsStar Radius (mas) Distance (kpc)M -mag N -magR Dor 31.5 0.055 -4.4 -5.0α Ori 23.2 0.15 -4.3 -5.0CW Leo 17.7 0.12 -5.5 -7.7o Cet 15.6 0.09 -3.4 -4.4R Cas 9.9 0.13 -2.3 -3.6VY CMa 6.9 1.2 -4.2 -6.1U Hya 6.7 0.2 -1.3 -1.8R Scl 5.6 0.3 -1.2 -1.8U Ant 4.8 0.3 -0.9 -1.4R For 2.9 0.7 -0.9 -2.0S Sct 2.6 0.4 0.5 -0.0V CrB 2.5 0.7 0.3 -1.0AFGL 3116 2.3 0.7 -0.4 -3.0AFGL 3068 2.0 1.2 1.6 -3.0OH 26.5 1.9 1.6 0.3 -2.0TT Cyg 1.5 0.5 1.5 1.0AFGL 190 0.93 2.9 4.1 -0.8IRC +10 420 0.48 7.0 2.2 -3.3AFGL 2343 0.22 5.0 4.8 1.3

ESO, 26 Feb. 2013 – p.31/37

Page 32: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Concluding remarks

+ HR spectroscopy: abundances, isotope ratios, in(nearby) LG galaxies

− NIR will be better/sufficient in most cases

+ HR spectroscopy: kinematics (shaping of PNe)

− To study the acceleration of wind, resolution of100 000 is low-ish (<1 km/s desirable).

ALMA in most extended configuration with16 km baseline:6 mas @ 675 GHz, 37 mas @ 110 GHz0.01 km/s @ 110 GHz

ESO, 26 Feb. 2013 – p.32/37

Page 33: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

Concluding remarks

+ LR spectrocopy: dust in LG galaxies

− JWST more sensitive, and larger wavelengthcoverage, but at lower spatial resolution.Case forQ-band

+ Imaging: shape of CSE, shaping of P-AGB, PNe

− Saturation limit?Neutral Density filter versus CoronographNeed to probe as close as∼ 1.5R⋆

+ Imaging: SED of dustiest AGB stars in LG

− JWST more sensitive, but at lower spatialresolution.Case forQ-band

ESO, 26 Feb. 2013 – p.33/37

Page 34: Mid-IR astronomy with the E-ELT: The case for evolved stars fileMid-IR astronomy with the E-ELT: The case for evolved stars Martin Groenewegen Royal Observatory of Belgium, Brussels

THE END

ESO, 26 Feb. 2013 – p.34/37