30
Microtunneling and Horizontal Drilling French National Project “Microtunnels” Recommendations FSTT French Society for Trenchless Technology affiliated society of ISTT International Society for Trenchless Technology

Microtunneling and Horizontal Drilling€¦ · Microtunneling and Horizontal Drilling French National Project “Microtunnels” Recommendations FSTT French Society for Trenchless

  • Upload
    others

  • View
    46

  • Download
    1

Embed Size (px)

Citation preview

  • Microtunneling and

    Horizontal Drilling French National Project “Microtunnels”

    Recommendations

    FSTT

    French Society for Trenchless Technology

    affiliated society of

    ISTT International Society for Trenchless Technology

    dcd-wgC1.jpg

  • This page intentionally left blank

  • Microtunneling and

    Horizontal Drilling

  • This page intentionally left blank

  • Microtunneling and

    Horizontal Drilling French National Project “Microtunnels”

    Recommendations

    FSTT

    French Society for Trenchless Technology

    affiliated society of

    ISTT International Society for Trenchless Technology

  • First published in Great Britain in 2004 by Hermes Science Publishing Ltd Published with revisions in Great Britain and the United States in 2006 by ISTE Ltd

    Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

    ISTE Ltd ISTE USA 6 Fitzroy Square 4308 Patrice Road London W1T 5DX Newport Beach, CA 92663 UK USA

    www.iste.co.uk © Hermes Science Publishing Ltd, 2004 © ISTE Ltd, 2006

    The rights of FSTT to be identified as the author of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

    Library of Congress Cataloging-in-Publication Data Comité français des travaux sans tranchée. Microtunneling and horizontal drilling: French national project "microtunnels" guidelines / FSTT. p. cm. ISBN-13: 978-1-905209-00-2 1. Trenchless construction. 2. Tunneling. I. Title. TA815.C66 2006 624.1'93--dc22

    2005033972

    British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 10: 1-905209-00-2 ISBN 13: 978-1-905209-00-2

    Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.

  • Table of Contents

    Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 André COLSON

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Michel MERMET

    PART I. MICROTUNNELING . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    Chapter 1. Introduction to Guidelines: Subject and Fields of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    1.1. General introduction of “trenchless technology” . . . . . . . . . . . . . . 25 1.2. History and characteristics of microtunneling methods . . . . . . . . . . 27 1.3. Purpose of the guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    Chapter 2. Techniques and Theory of Operation for the Installation of Pipes by Microtunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    2.1. General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2. Different functions of a boring machine . . . . . . . . . . . . . . . . . . . 32

    2.2.1. Mechanized excavation of the soil . . . . . . . . . . . . . . . . . . . 32 2.2.1.1. Blasting the soil. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.1.2. Confinement of the face . . . . . . . . . . . . . . . . . . . . . . 33

    2.2.2. Discharge of excavated earth (or mucking). . . . . . . . . . . . . . 34 2.2.2.1. Hydraulic mucking. . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.2.2. Mucking with a screw conveyor . . . . . . . . . . . . . . . . . 35 2.2.2.3. Pneumatic mucking . . . . . . . . . . . . . . . . . . . . . . . . 36

  • 6 Microtunneling and Horizontal Drilling

    2.2.3. Guidance and trajectory correction. . . . . . . . . . . . . . . . . . . 36 2.2.4. Installation of pipelines by jacking. . . . . . . . . . . . . . . . . . . 37

    2.3. Various types of pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1. Materials used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.2. Joints between pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.3. Resistance capacity of pipes. . . . . . . . . . . . . . . . . . . . . . . 39

    Chapter 3. Summary of Parameters Affecting Work at the Site . . . . . . . 41

    3.1. Summary of parameters affecting the microtunneling. . . . . . . . . . . 41 3.1.1. Rate of penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    3.1.1.1. Duration for pipe jacking only . . . . . . . . . . . . . . . . . . 43 3.1.1.2. Total duration for the installation of a pipe in the ground . . 46

    3.1.2. Alignment deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.2.1. Human factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.2.2. Technological factors . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2.3. Factors linked to the soil . . . . . . . . . . . . . . . . . . . . . 50

    3.1.3. Frictional forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.3.1. Principle of analysis for experimental data. . . . . . . . . . . 52 3.1.3.2. Effect of the overcut . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.3.3. Impact of the downtimes . . . . . . . . . . . . . . . . . . . . . 54 3.1.3.4. Impact of lubrication. . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.3.5. Impact of misalignment . . . . . . . . . . . . . . . . . . . . . . 64 3.1.3.6. Impact of granulometry . . . . . . . . . . . . . . . . . . . . . . 64

    3.1.4. Stresses at the head . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.1.4.1. Presentation of general results . . . . . . . . . . . . . . . . . . 64 3.1.4.2. Influence of blasting and mucking. . . . . . . . . . . . . . . . 67 3.1.4.3. Influence of trajectory deviations . . . . . . . . . . . . . . . . 68

    3.2. Description of the main hitches that can occur when constructing a microtunneling site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    3.2.1. Blocking of the machine . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.1.1. Various boulders and obstacles . . . . . . . . . . . . . . . . . 69 3.2.1.2. Excessive friction. . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.1.3. Abrasiveness of the soil . . . . . . . . . . . . . . . . . . . . . . 71 3.2.1.4. Sticking of clay . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    3.2.2. Damaged pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.3. Surface disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    3.2.3.1. Settlement caused by the annular space. . . . . . . . . . . . . 74 3.2.3.2. Instability of the face, poor balancing of the pressure at the face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    3.2.4. Excessive roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

  • Table of Contents 7

    Chapter 4. Guidelines for Investigations . . . . . . . . . . . . . . . . . . . . . . 77

    4.1. General approach of the investigations. . . . . . . . . . . . . . . . . . . . 77 4.1.1. General objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1.2. Progress of the investigations . . . . . . . . . . . . . . . . . . . . . . 78 4.1.3. Cost of investigations . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    4.2. Data to be acquired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1. Geological configuration of the site . . . . . . . . . . . . . . . . . . 80 4.2.2. Hydrogeological conditions . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.3. Geotechnical characteristics of the ground . . . . . . . . . . . . . . 81 4.2.4. Cavities and artificial obstacles . . . . . . . . . . . . . . . . . . . . . 82 4.2.5. Environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . 82

    4.3. Methodology and means of investigation . . . . . . . . . . . . . . . . . . 82 4.3.1. Documentary survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.2. Geophysical investigations . . . . . . . . . . . . . . . . . . . . . . . 83

    4.3.2.1. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.2.2. Usefulness of different methods . . . . . . . . . . . . . . . . . 84 4.3.2.3. General guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 86

    4.3.3. In situ boreholes and geotechnical tests . . . . . . . . . . . . . . . . 87 4.3.3.1. Objectives of boreholes . . . . . . . . . . . . . . . . . . . . . . 87 4.3.3.2. Layout of boreholes . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.3.3. Types of in situ tests . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.3.4. Guidelines on the choice of boreholes and tests . . . . . . . . 88

    4.3.4. Geotechnical tests at the laboratory . . . . . . . . . . . . . . . . . . 89 4.4. Contents of the geological record . . . . . . . . . . . . . . . . . . . . . . . 89

    Chapter 5. Guidelines for the Choice of Machines and Attachments . . . . 93

    5.1. General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2. The choice of machines according to their mucking process . . . . . . . 94 5.3. Choice of attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    5.3.1. The heads: opening, cutting tools . . . . . . . . . . . . . . . . . . . 96 5.3.2. The overcut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.3. The crusher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.4. Bore fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    Chapter 6. Guidelines for Project Design, Dimensions of Pipes and the Pipe Jacking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    6.1. Design of shafts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2. Calculation of pipe jacking stresses . . . . . . . . . . . . . . . . . . . . . 105

    6.2.1. Definition of friction between the soil and the pipes . . . . . . . . 105

  • 8 Microtunneling and Horizontal Drilling

    6.2.1.1. General definition . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.1.2. Specific friction values . . . . . . . . . . . . . . . . . . . . . . 106

    6.2.2. Experimental results relating to unit friction . . . . . . . . . . . . . 106 6.2.2.1. Results of the French National Research Project “Microtunnels” . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2.2.2. Results of other studies . . . . . . . . . . . . . . . . . . . . . . 110

    6.2.3. Calculation methodology for frictional forces . . . . . . . . . . . . 111 6.2.3.1. Verification of the stability of the excavation . . . . . . . . . 112 6.2.3.2. Ground convergence effect . . . . . . . . . . . . . . . . . . . . 113 6.2.3.3. Calculation of frictional forces for unstable excavation in granular soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.3.4. Calculation of frictional forces for unstable excavation in cohesive soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.3.5. Calculation of frictional forces for a stable excavation. . . . 119

    6.2.4. Comparison of various approaches with experimental values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    6.2.4.1. Calculations-measurements comparison: granular soil without lubrication . . . . . . . . . . . . . . . . . . . . . . 120 6.2.4.2. Calculations-measurements comparison: granular soil with lubrication . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.4.3. Calculations-measurements comparison: cohesive soil without lubrication . . . . . . . . . . . . . . . . . . . . . 123 6.2.4.4. Calculations-measurements comparison: cohesive soil with lubrication . . . . . . . . . . . . . . . . . . . . . . . 124

    6.2.5. Guidelines for the calculation of pipe jacking stresses . . . . . . . 124 6.2.5.1. Dynamic friction: non-cohesive soil . . . . . . . . . . . . . . 125 6.2.5.2. Dynamic friction: cohesive soil . . . . . . . . . . . . . . . . . 126 6.2.5.3. Additional friction caused by stoppage in jacking . . . . . . 128 6.2.5.4. Stress on the cutter head. . . . . . . . . . . . . . . . . . . . . . 129 6.2.5.5. Estimate of the maximum pipe jacking stress . . . . . . . . . 129

    6.3. Calculation of the maximum acceptable thrust by the pipes during jacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    6.3.1. Calculation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.2. Permissible stress in the pipes . . . . . . . . . . . . . . . . . . . . . 132

    6.4. Calculation of the cross-section of pipes. . . . . . . . . . . . . . . . . . . 133 6.4.1. Various verifications of the calculation of the size of pipes . . . . 133 6.4.2. General calculation principles: basic Terzaghi model. . . . . . . . 134 6.4.3. Vertical loads to the soil alone . . . . . . . . . . . . . . . . . . . . . 135

    6.4.3.1. The experimental Terzaghi model . . . . . . . . . . . . . . . . 135 6.4.3.2. The ATV A161 method . . . . . . . . . . . . . . . . . . . . . . 137 6.4.3.3. Leonards’ model . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.4.3.4. Guidelines for the calculation of vertical loads . . . . . . . . 138

    6.4.4. Horizontal loads of the ground . . . . . . . . . . . . . . . . . . . . . 140

  • Table of Contents 9

    6.4.5. Surface loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.4.5.1. Permanent surface loads. . . . . . . . . . . . . . . . . . . . . . 141 6.4.5.2. Traffic loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    6.4.6. Water pressure: presence of groundwater . . . . . . . . . . . . . . . 145 6.4.7. Permissible stress in the pipes . . . . . . . . . . . . . . . . . . . . . 147

    6.5. Bore fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.5.1. General information . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.5.2. Selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.5.3. Products used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.5.4. Recycling and processing . . . . . . . . . . . . . . . . . . . . . . . . 152 6.5.5. Implementation at the site . . . . . . . . . . . . . . . . . . . . . . . . 153 6.5.6. Slurry treatment: technical and regulatory aspects . . . . . . . . . 153

    6.5.6.1. General considerations . . . . . . . . . . . . . . . . . . . . . . 153 6.5.6.2. Current regulations . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.5.6.3. Lines for removal of drilling residues. . . . . . . . . . . . . . 156 6.5.6.4. Prospects for reclamation . . . . . . . . . . . . . . . . . . . . . 158

    Chapter 7. Guidelines for the Site Supervision . . . . . . . . . . . . . . . . . . 159

    7.1. Guidelines for guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.1.1. Necessity of controlling trajectory deviations . . . . . . . . . . . . 159 7.1.2. Guidelines for the measurement of deviations . . . . . . . . . . . . 160 7.1.3. Guidelines for the monitoring of deviations . . . . . . . . . . . . . 160

    7.1.3.1. Initial adjustments and starting of jacking . . . . . . . . . . . 161 7.1.3.2. Corrections during jacking . . . . . . . . . . . . . . . . . . . . 161 7.1.3.3. Adjustment of the overcut. . . . . . . . . . . . . . . . . . . . . 162

    7.2. Guidelines on the drilling parameters . . . . . . . . . . . . . . . . . . . . 162 7.2.1. Avoid instability of the face. . . . . . . . . . . . . . . . . . . . . . . 163 7.2.2. Avoid excessive thrust on the head and the blocking of the cutterhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.2.3. Checking the roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    7.3. Guidelines on lubrication. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.4. Guidelines regarding stoppages during jacking. . . . . . . . . . . . . . . 166

    7.4.1. Provision for the increase in the thrust during restarting . . . . . . 166 7.4.2. Limit the increase of the thrust during restarting . . . . . . . . . . 167

    7.5. Data acquisition during the project . . . . . . . . . . . . . . . . . . . . . . 167

  • 10 Microtunneling and Horizontal Drilling

    Chapter 8. Socio-Economic and Contractual Aspects . . . . . . . . . . . . . . 169

    8.1. Social and economic aspects: concept of social cost. . . . . . . . . . . . 169 8.1.1. Value of modern urban sites. . . . . . . . . . . . . . . . . . . . . . . 170

    8.1.1.1. Total cost of the work . . . . . . . . . . . . . . . . . . . . . . . 170 8.1.1.2. Direct cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8.1.1.3. Overhead cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8.1.1.4. Social cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

    8.1.2. Traditional urban sites: nuisance factors . . . . . . . . . . . . . . . 171 8.1.2.1. Traffic disruption . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.1.2.2. Damage to the environment . . . . . . . . . . . . . . . . . . . 172 8.1.2.3. Risk of accidents . . . . . . . . . . . . . . . . . . . . . . . . . . 172 8.1.2.4. Economic impacts . . . . . . . . . . . . . . . . . . . . . . . . . 173

    8.1.3. Reduction in nuisance by trenchless techniques . . . . . . . . . . . 174 8.1.4. Methods for evaluating the social cost. . . . . . . . . . . . . . . . . 176

    8.1.4.1. Methods used in a context other than that of urban sites. . . 177 8.1.4.2. Approaches as part of urban underground sites . . . . . . . . 179 8.1.4.3. Comparison methodology for the costs of trench and trenchless techniques . . . . . . . . . . . . . . . . . . . . 181

    8.1.5. Other suggestions to reduce the social cost . . . . . . . . . . . . . . 187 8.1.5.1. Susceptibility maps . . . . . . . . . . . . . . . . . . . . . . . . 188 8.1.5.2. Financial incentives . . . . . . . . . . . . . . . . . . . . . . . . 188

    8.1.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 8.2. Contractual aspects: objectives and success factors . . . . . . . . . . . . 189

    8.2.1. Proper contractualisation of a microtunneling project . . . . . . . 190 8.2.1.1. Well defined respective roles. . . . . . . . . . . . . . . . . . . 190 8.2.1.2. Appropriate risk management . . . . . . . . . . . . . . . . . . 192 8.2.1.3. Knowledge of the structure and underground use. . . . . . . 195 8.2.1.4. Suitable allotment and contracting . . . . . . . . . . . . . . . 195

    8.2.2. Establishment of appropriate tender documents and a consultation regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    8.2.2.1. Tender documents based on a defined strategy . . . . . . . . 196 8.2.2.2. Specifications adapted to every item of the tender documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8.2.2.3. A properly described project . . . . . . . . . . . . . . . . . . . 197 8.2.2.4. Correctly sized and adapted products . . . . . . . . . . . . . . 201 8.2.2.5. Well defined and controlled microtunneling procedures . . . . . . . . . . . . . . . . . . . . . . . . . 201

    8.2.3. Presentation of compliant and pertinent offers by the contractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    8.2.3.1. Appropriate qualifications . . . . . . . . . . . . . . . . . . . . 202 8.2.3.2. Adequate and adapted references . . . . . . . . . . . . . . . . 203 8.2.3.3. A complete and definite technical submission. . . . . . . . . 204

  • Table of Contents 11

    PART II. HORIZONTAL DRILLING . . . . . . . . . . . . . . . . . . . . . . . 207

    Chapter 9. Introduction to Guidelines: Purpose and Fields of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    9.1. General introduction of “the trenchless technology”. . . . . . . . . . . . 209 9.2. History and characteristics of drilling methods . . . . . . . . . . . . . . . 211 9.3. Purpose of the recommendations and fields of application . . . . . . . . 219

    Chapter 10. Techniques and Principles of Operation for Horizontal Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

    10.1. General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 10.2. Different stages of horizontal drilling. . . . . . . . . . . . . . . . . . . . 225

    10.2.1. Pilot drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10.2.2. Reaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 10.2.3. Guidance and trajectory corrections . . . . . . . . . . . . . . . . . 228

    10.2.3.1. Walk-over systems . . . . . . . . . . . . . . . . . . . . . . . . 228 10.2.3.2. Downhole systems or wireline steering systems . . . . . . . 230

    10.2.4. Site organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 10.2.4.1. Administrative authorizations. . . . . . . . . . . . . . . . . . 230 10.2.4.2. Access, site installation . . . . . . . . . . . . . . . . . . . . . 230 10.2.4.3. Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 10.2.4.4. Slurry transfers . . . . . . . . . . . . . . . . . . . . . . . . . . 231 10.2.4.5. Work areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

    10.3. Different types of pipes or conduits . . . . . . . . . . . . . . . . . . . . . 231 10.3.1. Thermoplastic pipelines . . . . . . . . . . . . . . . . . . . . . . . . 232

    10.3.1.1. Polyethylene pipes . . . . . . . . . . . . . . . . . . . . . . . . 232 10.3.1.2. Polyvinylchloride pipes . . . . . . . . . . . . . . . . . . . . . 238

    10.3.2. Metal pipelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 10.3.2.1. Steel pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 10.3.2.2. Pipes in ductile cast iron . . . . . . . . . . . . . . . . . . . . . 242

    Chapter 11. Summary of Parameters Affecting the Start of a Building Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

    11.1. Summary of parameters affecting the execution of horizontal drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 11.2. Parameters related to the ground. . . . . . . . . . . . . . . . . . . . . . . 247 11.3. Parameters related to groundwater and soil permeability . . . . . . . . 248

  • 12 Microtunneling and Horizontal Drilling

    11.4. Parameters related to obstacles . . . . . . . . . . . . . . . . . . . . . . . 249 11.5. Parameters related to the nature of the pipeline to be installed . . . . . 249 11.6. Parameters related to the drive length . . . . . . . . . . . . . . . . . . . 249 11.7. Parameters related to the radius of curvature . . . . . . . . . . . . . . . 251 11.8. Parameters related to the characteristics of the drilling mud . . . . . . 251 11.9. Parameters related to the characteristics of the drilling rig . . . . . . . 251 11.10. Parameters related to the regularity of the profile, the piloting and the guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 11.11. Parameters related to preliminary exploration . . . . . . . . . . . . . . 251 11.12. Parameters related to the (overall dimensions) congestion of the site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 11.13. Parameters related to delays . . . . . . . . . . . . . . . . . . . . . . . . 252 11.14. Parameters related to weather conditions . . . . . . . . . . . . . . . . . 252

    Chapter 12. Guidelines for Explorations . . . . . . . . . . . . . . . . . . . . . . 253

    12.1. General theory of explorations. . . . . . . . . . . . . . . . . . . . . . . . 253 12.1.1. General objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 12.1.2. Stages of explorations . . . . . . . . . . . . . . . . . . . . . . . . . 254 12.1.3. Cost of explorations. . . . . . . . . . . . . . . . . . . . . . . . . . . 254

    12.2. Data to be acquired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 12.2.1. Geological configuration of the site . . . . . . . . . . . . . . . . . 255 12.2.2. Hydrogeological conditions . . . . . . . . . . . . . . . . . . . . . . 257 12.2.3. Geotechnical characteristics of the soils . . . . . . . . . . . . . . . 257 12.2.4. Pockets and artificial obstacles . . . . . . . . . . . . . . . . . . . . 258 12.2.5. Environmental parameters . . . . . . . . . . . . . . . . . . . . . . . 258

    12.3. Methodology and means of explorations . . . . . . . . . . . . . . . . . . 259 12.3.1. Documentary survey . . . . . . . . . . . . . . . . . . . . . . . . . . 259 12.3.2. Geophysical investigations. . . . . . . . . . . . . . . . . . . . . . . 260

    12.3.2.1. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 12.3.2.2. Advantage of various methods . . . . . . . . . . . . . . . . . 260 12.3.2.3. General recommendations. . . . . . . . . . . . . . . . . . . . 263

    12.3.3. Drilling and in situ geotechnical tests . . . . . . . . . . . . . . . . 264 12.3.3.1. Test drilling objectives. . . . . . . . . . . . . . . . . . . . . . 264 12.3.3.2. Setting up investigations boreholes . . . . . . . . . . . . . . 264 12.3.3.3. Test drilling methods. . . . . . . . . . . . . . . . . . . . . . . 265 12.3.3.4. Samples for laboratory tests. . . . . . . . . . . . . . . . . . . 267 12.3.3.5. In situ tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

    12.4. Contents of the geological-geotechnical dossier of a project . . . . . . 269

  • Table of Contents 13

    Chapter 13. Guidelines for the Choice of Drilling Rigs and Equipment . . 273

    13.1. General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 13.2. Choice of drilling rigs according to their power . . . . . . . . . . . . . 274

    13.2.1. Mini drilling rigs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 13.2.2. Medium drilling rigs . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13.2.3. Maxi drilling rigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13.2.4. Mega drilling rigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

    13.3. Choice of drilling rigs according to their technical characteristics. . . 277 13.3.1. Chassis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

    13.3.1.1. Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 13.3.1.2. Trailer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 13.3.1.3. Track mounted chassis . . . . . . . . . . . . . . . . . . . . . . 278 13.3.1.4. Wheeled chassis. . . . . . . . . . . . . . . . . . . . . . . . . . 278

    13.3.2. Transmission of forces . . . . . . . . . . . . . . . . . . . . . . . . . 278 13.3.2.1. Chain driven . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 13.3.2.2. Rack and pinion . . . . . . . . . . . . . . . . . . . . . . . . . . 279 13.3.2.3. Hydraulic jacks . . . . . . . . . . . . . . . . . . . . . . . . . . 279

    13.3.3. Power limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 13.4. Drilling rods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 13.5. Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

    13.5.1. Wing cutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 13.5.2. Spiral compactor bells . . . . . . . . . . . . . . . . . . . . . . . . . 282 13.5.3. Fluted reamers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 13.5.4. Rock reamers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 13.5.5. Barrel reamers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

    Chapter 14. Guidelines for a Project Design . . . . . . . . . . . . . . . . . . . 285

    14.1. Basic principles of a pilot pattern . . . . . . . . . . . . . . . . . . . . . . 285 14.1.1. Rack angle and exit angle . . . . . . . . . . . . . . . . . . . . . . . 285 14.1.2. First and last part of the drilling. . . . . . . . . . . . . . . . . . . . 286 14.1.3. Radius of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

    14.1.3.1. Radius of curvature of the pilot hole. . . . . . . . . . . . . . 287 14.1.3.2. Combined radii . . . . . . . . . . . . . . . . . . . . . . . . . . 288

    14.1.4. Roofing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 14.1.5. Relation between the diameters of the pipeline and the borehole . . . . . . . . . . . . . . . . . . . . . . . . . . 289

  • 14 Microtunneling and Horizontal Drilling

    14.2. Drilling plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 14.2.1. Longitudinal profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 14.2.2. Plan view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 14.2.3. Cross-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 14.2.4. Work site installation plans . . . . . . . . . . . . . . . . . . . . . . 291 14.2.5. Catenary and launching ramp . . . . . . . . . . . . . . . . . . . . . 291

    14.3. Design notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 14.3.1. Calculation for the work stage. . . . . . . . . . . . . . . . . . . . . 292

    14.3.1.1. Pulling forces at the level of the drilling head . . . . . . . . 292 14.3.1.2. Tractive forces at the level of the drilling machine . . . . . 292 14.3.1.3. Calculation methods of pulling forces. . . . . . . . . . . . . 293 14.3.1.4. Calculation of the drilling machine dimensions . . . . . . . 293 14.3.1.5. Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 14.3.1.6. Stresses suffered by the tubes. . . . . . . . . . . . . . . . . . 294 14.3.1.7. Protection against collapse . . . . . . . . . . . . . . . . . . . 294

    14.3.2. Calculation of operations stage . . . . . . . . . . . . . . . . . . . . 294 14.4. Work planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 14.5. Drilling fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

    14.5.1. General information. . . . . . . . . . . . . . . . . . . . . . . . . . . 295 14.5.2. Selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 14.5.3. Products used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 14.5.4. Recycling and processing . . . . . . . . . . . . . . . . . . . . . . . 299 14.5.5. Implementation at the site . . . . . . . . . . . . . . . . . . . . . . . 301 14.5.6. Sludge treatment: technical and regulatory aspects . . . . . . . . 301

    14.5.6.1. General considerations . . . . . . . . . . . . . . . . . . . . . . 301 14.5.6.2. Drilling wastes eliminations solutions. . . . . . . . . . . . . 303 14.5.6.3. Development prospects . . . . . . . . . . . . . . . . . . . . . 306

    Chapter 15. Guidelines for the Management of the Site . . . . . . . . . . . . 307

    15.1. Guidelines on lubrication, drilling fluids . . . . . . . . . . . . . . . . . . 307 15.1.1. General information. . . . . . . . . . . . . . . . . . . . . . . . . . . 307 15.1.2. Selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 15.1.3. Products used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 15.1.4. Implementation at the site . . . . . . . . . . . . . . . . . . . . . . . 308 15.1.5. Polluted sites, environment, slurry . . . . . . . . . . . . . . . . . . 308

    15.2. Recommendations on reaming . . . . . . . . . . . . . . . . . . . . . . . . 309 15.2.1. Reaming diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 15.2.2. Choice of the reamer . . . . . . . . . . . . . . . . . . . . . . . . . . 309 15.2.3. Multiple bores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 15.2.4. Reaming sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 15.2.5. Reaming speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 15.2.6. Installing a protective sleeve. . . . . . . . . . . . . . . . . . . . . . 313

  • Table of Contents 15

    15.3. Guidelines on safety and protection of environment . . . . . . . . . . . 314 15.3.1. Safety at the work station (at the site) . . . . . . . . . . . . . . . . 314

    15.3.1.1. Work on inclines . . . . . . . . . . . . . . . . . . . . . . . . . 314 15.3.1.2. Work on rotating mechanical parts and tools. . . . . . . . . 314 15.3.1.3. Risk of slipping increased by the presence of drilling mud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 15.3.1.4. Respiratory risks related to the inhalation of bentonite powder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 15.3.1.5. Handling of loads during lifting (drilling rod, reamers, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . 315 15.3.1.6. Significant torsional moments during the tightening or loosening of drilling rod/tool unions . . . . . . . . . . . . . . . . . . . 315 15.3.1.7. Communication between the control cab, the drilling rig and the pipeline side. . . . . . . . . . . . . . . . . . . . 315 15.3.1.8. Work under thoroughfares. . . . . . . . . . . . . . . . . . . . 315 15.3.1.9. Risks of aggressions on underground structures . . . . . . . 315

    15.3.2. Security of machines . . . . . . . . . . . . . . . . . . . . . . . . . . 316 15.3.3. Security of drilling tools . . . . . . . . . . . . . . . . . . . . . . . . 316 15.3.4. Protection of the environment . . . . . . . . . . . . . . . . . . . . . 316

    Appendix 1. Glossary of Symbols Used . . . . . . . . . . . . . . . . . . . . . . . 319

    Appendix 2. Glossary of Horizontal Drilling . . . . . . . . . . . . . . . . . . . 323

    Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

  • This page intentionally left blank

  • Preface

    The “Guidelines for Microtunneling and Horizontal Drilling projects” is one of the outcomes of the French National Research Project “Microtunnels”, for which research and surveys have been undertaken from 1994 to 2002 at a cost of €2.2 million.

    Trenchless technology allows the installation or renovation of pipelines by limiting the inconvenience caused to residents, particularly in urban areas. These innovative sites were introduced in France at the end of the 1980s. They include various techniques ranging from the installation of new networks by boring or horizontal drilling to the refurbishment or renovation of existing networks.

    For almost 15 years these techniques have been widely developed in France, thereby contributing to the taking into consideration of environmental constraints in urban infrastructure projects. To this day, hundreds of kilometers of networks have been laid using these techniques.

    But for all that, during the early years when these techniques were first introduced in France, there were difficulties and even setbacks which indicated the need to progress not only in terms of equipment but also in terms of research in order to refine the methods of calculation, bore fluids, work parameters and soil-machine interactions, etc.

    The FSTT (French Society for Trenchless Technology) understood this well and immediately set up an elaborate research program. This approach, entrusted to FSTT and IREX (the Institute for applied research and experimentation in civil engineering) and the Research Directorate in scientific and technical projects (DRAST), actively sustained the National Project, as it was scientific, rigorous, affordable, pragmatic and very simple to apply.

  • 18 Microtunneling and Horizontal Drilling

    The present guidelines are meant to be a comprehensive aid in design and fulfillment, intended for those whose work is specifically to implement those techniques which respect urban life and its users.

    These guidelines successfully bring these techniques out from the realms of confidentiality by popularizing their use. They represent essential stages to be followed by every microtunneling project in order to ensure its success. Every contracting authority, every contractor, every design office and every builder will find here answers to questions which inevitably arise from the setting up of these tricky sites.

    I would like to thank here all those who believed in the necessity of this important work of applied research and who objectively made use of their successful as well as uncompleted experience.

    Our special thanks go to President Michel Mermet who initiated this National Project and saw it through to completion with great tenacity and to Jean-Pierre and Alain Guilloux, who successively managed the project to its completion.

    André COLSON Ministry of Equipment, Transportation, Housing,

    Tourism and Oceans Research Directorate for scientific and technical affairs

    Civil engineering project leader

  • Introduction

    When the French Society for Trenchless Technology (FSTT) launched the French National Research Project “Microtunnels” in January 1993, the aim was to meet the ever-increasing requirements to take into account the objectives of the urban environment, reduction in social repercussions, quality and safety, as well as technological innovation for new network projects.

    This extensive program had at least two requirements: communications and promotion, particularly with prime contractors on the one hand, and on the other research and technological innovations to improve the reliability of equipment, and adapt it better to the French geotechnical conditions, extend its field of application and refine the quality of projects and management of worksites.

    This book, presented in the form of guidelines intended for all those involved in “trenchless” work, is in response to the second requirement. Carried out as a National Project, with the active support of the Equipment Ministry (the DRAST), and part of an agreement with IREX, the FSTT embarked on a diligent, laborious and methodical mission. The objective was to develop multidisciplinary research in order to gather better knowledge of these techniques and adapt them to the characteristics of the situation and the French market. These various research projects, all carried out as part of the National Project, included several aspects:

    – scientific (in situ monitoring of microtunneling and horizontal drilling sites, laboratory studies, numerical modeling) whose synthesis improved understanding of the many soil-machine interaction mechanisms and suggest theoretical approaches to better comprehend the projects;

    – technological (integration of data on the machines, pipes installed, products designed to make the work easier);

    – socio-economic (approach of social costs, consideration of the characteristics of trenchless work in the preparation and management of construction contracts);

  • 20 Microtunneling and Horizontal Drilling

    The current guidelines were prepared based on work undertaken from 1993 to 2002 by a group consisting of contracting authorities, project managers, laboratories and research centers, engineering departments, civil engineering firms and manufacturers of equipment and products.

    The book is divided into two parts: Microtunneling and Horizontal Drilling. Each part is structured as follows:

    1) general introduction of techniques, fields of application, 2) technique and principle of operation, 3) summary of parameters affecting progress at the site, 4) guidelines for exploration, 5) guidelines for the choice of machines and equipment, depending on the

    expected soil and the project environment, 6) guidelines for project design, 7) guidelines for the supervision of the site: guidance, tunneling parameters,

    lubrication, interruptions in shaft sinking, 8) comments on the socio-economic aspects, and particularly the concept of the

    “social” and contractual cost of projects.

    The guidelines for the microtunneling projects and the guidelines for horizontal drilling, which constitute two distinct publications, have been drafted according to the same clauses. They are designed as a guide for all those who wish to set up a “trenchless” project.

    Because this field is developing continually, these guidelines, that constitute the first stage, will have to include the lessons drawn from experience, as they are applied.

    We decided to publish the results of the long and laborious collective work of this National Project in a global and pragmatic form. Being “Guidelines”, the approach is indeed ambitious, but it is modest at the same time, because we are conscious of the progress that still remains to be made.

    The FSTT is ready to listen to all those who would like to make this document more interesting by sharing their successes as well as the difficulties inherent in these tricky sites.

    Michel MERMET President of the FSTT

    President of the French National Research Project “Microtunnels”

  • Introduction 21

    The research and study programme was financed by the members of the National Project: ANTEA – AQUAREX – BONNA – BORIE SAE – CAMPENON BERNARD – CERIB – CGG – CHANTIERS MODERNES – CONDAT – DEVIN LEMARCHAND – the NANCY District – EDG – FOUGEROLLE/BALLOT – Gas of France – GEOMEGA – GEOSCAN – INSA of LYON Geotechnical laboratory – INSTITUT FRANÇAIS DU PETROLE – JF TECH – NANCY Geomechanics laboratory – LCPC – QUILLERY – RATP – SADE – SCETAUROUTE – SPIE CITRA – TERRASOL – UNION TRAVAUX – University of LILLE/GERFEC – PARIS VI University/Geophysics Department – VALENTIN, with the support of DRAST.

    The National Project included an executive committee presided over by Mr. Mermet. Technical supervision was ensured initially by Jean-Pierre Henry and then by Alain Guilloux since 1996.

    These recommendations have been prepared by a drafting committee consisting of: – Djamel Ait Aissa (SIARCE), – Sophie Areia (SNCF), – Michel Audouin (FSTT), – Anne-Lise Beaucour (IUP de Cergy-Pontoise), – Jean-Pierre Brazzini (GDF), – Frédéric Bultel/Richard Tuphe (SCETAUROUTE), – Jack Butterworth (LMR Drilling), – Dominique Commery (Tracto Techniques), – Stéphane Delafontaine (Radiodétection), – Philippe Delorme (GDF), – Damien Deppner (REHAU), – Michel Guérin (Société française des bentonites, SFDB), – Alain Guilloux (Terrasol), – Richard Kastner (INSA de Lyon), – Jacques Lacombe (SADE), – Michel Lamy (retraité REHAU), – Christian Legaz (DDE du Val-de-Marne), – Eric Lessault (SADE), – Frédéric Ouvry puis Jean Piraud (ANTEA), – Anne Pantet (ESIP, Ecole supérieure des Ing. de Poitiers), – Daniel Philippe (SADE), – Patrice Schneider (Cogeprec),

  • 22 Microtunneling and Horizontal Drilling

    – Bernard Sustrac (BCM), – Michel Vincent (Forage 21), – Roger Wilkinson (Wise),

    based on 31 technical reports and 26 status reports of the National Project (see bibliography).

  • PART I

    Microtunneling

  • This page intentionally left blank

  • Chapter 1

    Introduction to Guidelines: Subject and Fields of Application

    1.1. General introduction of “trenchless technology”

    These guidelines apply to the construction of structures by microtunneling, which is a part of the “trenchless technologies”. These techniques are currently used in urban areas in an age where environmental degradation has become an ever-increasing concern. It involves creating new networks or repairing existing ones (water, sanitary drainage, electricity, gas, etc.) by minimizing the impact on surface sites. This reduces the inconvenience caused to the users by “open trench” (or “cut and cover”) work, which requires an excavation along the full length of the area worked on.

    Even though, most often, it does not involve work to the same extent as that for large sites such as the underground or motorways, its importance in terms of linear structures entirely justifies our interest in it, as much for its economic impacts as for its close overlapping with social life.

    It is necessary first to specify a definition which helps better determine the field of application of this work. Of course, the term “trenchless” is the opposite of “open trench” work, but it is also used for the installation of networks of small diameter, which are called “inaccessible”, particularly where a worker cannot get into the networks in normal working conditions: it is generally accepted that the upper limit is approximately 1,200 mm in diameter. We are interested in underground structures where the construction requires remote controlled techniques because the site can

  • 26 Microtunneling and Horizontal Drilling

    neither be accessed from the surface (“trenchless”) nor accessed from the inside (inaccessible).

    It is common in the field of “trenchless digging” to distinguish between various procedures, for which the techniques used are very different and whose fields of application are equally diverse. Firstly, new construction projects and old renovation projects have to be distinguished.

    Figure 1.1. Diagram of a microtunneling site

    a) The new structures involve the creation of networks where nothing exists and again for this, two categories can be considered corresponding to very different techniques:

    – microtunneling (see Figure 1.1) is used for networks with diameters generally ranging from 500 to 1,500 mm and which can go up to 2,000 mm. The boring machines resemble Tunnel Boring Machines (TBMs) of large diameters, and have the special feature of being miniaturized and remote controlled, which means that they can be operated without any human intervention inside the machine. The machines operate along a linear trajectory at variable depths ranging from just a few meters to more than ten meters and along a length of approximately 100 to 150 m: thus, they have to be installed through shafts dug from the surface up to the depth of the project. This enables the machines and its pipes to be sunk to the depth required for the project and then be recovered at the outlet.

  • Introduction to Guidelines 27

    – horizontal drilling is used in general for urban networks of small diameter (100 to 500 mm) as well as for pipelines of up to 1,000 mm in diameter. The technique is derived from traditional drilling with the added ability to locate the position of the drilling head in the plane and/or in depth and above all to correct the direction if there is a major deviation from the trajectory. It mostly relates to low depth networks (a few meters at the most) but can, in some cases with appropriate equipment, be used for installing pipes at greater depths. This is not covered in this discussion.

    b) The renovation of old structures is used for existing networks whose ageing condition does not permit them to properly fulfill the functions they were intended for. Thus, it is necessary to put them into normal operating conditions with one of the following techniques:

    – replacement, by creating a parallel new network (this brings us to the previous cases),

    – renovation, by restoring damaged pipes over large curbsides, – repair, by selective restoration.

    Many different techniques that are not mentioned in the current Guidelines may still be distinguished.

    1.2. History and characteristics of microtunneling methods

    The microtunneling techniques are relatively recent: the first boring machines were used in Japan during the 1970s. In France, the first site was constructed in 1989 in the Val-de-Marne department at the instigation of the Water and Sanitary Drainage Services (Mermet et al., 1991). Currently, the development of this technique varies greatly from country to country: in Japan the curbside reaches several hundred kilometers per year; in Germany and the UK it spans several dozen kilometers whereas in France it is less than 10 km.

    Before describing the microtunneling techniques in greater detail, it is important to state that their implementation requires a change in “culture” on the part of various contributors. In fact, if the installation techniques with trenches result in general from traditional methods which are mostly of relatively low technical nature, it should be kept in mind that the trenchless techniques more closely resemble the methods of underground work in the broad sense and therefore require a highly technical approach.

    Amongst the characteristics of underground work which form part of microtunneling, we will list the following main elements:

  • 28 Microtunneling and Horizontal Drilling

    – the equipment is relatively sophisticated; for this reason their implementation requires a good knowledge of their functioning and the maintenance aspects are very important as well,

    – their optimal functioning depends greatly on the suitability of the choice of various components of the machine, the nature and the performance of the ground to be crossed and the ability of the operator to adapt to the local conditions,

    – for this reason, prior knowledge of the ground to be excavated is essential for the success of the project: geotechnical investigations thus become an important element in the project design,

    – finally, the small diameter of structures and the low depths at which they have to be set-up, in embankments or geological formations on the surface, make the digging particularly sensitive to numerous natural (blocks) or artificial (old foundations, existing structures) heterogeneities. The investigation methods should therefore be able to detect these heterogeneities.

    1.3. Purpose of the guidelines

    These different preambles are obviously not designed to threaten the design technicians and decision-makers so that they are forced to do away with the trenchless techniques a priori, but rather to make them aware of the minimum precautions to be taken when initiating such projects. The purpose of these guidelines is to give the various parties sufficient knowledge and the necessary elements for the success of the projects.

    They are aimed at assisting the following: – contracting authorities (owners) that wish to know the potential of these

    techniques, – engineers who have to design the projects, – design offices, particularly geotechnological design, that need to recognize

    such projects, – companies who generally know the techniques well but who may need some

    “reference material”, – finally, the manufacturers of the pipes concerned about supplying the

    equipment most suited to the tool and the method used.

    We must emphasize that the trenchless digging techniques in France were the subject, during the 1990s, of “national research projects” involving owners, engineers, specialized companies, design offices and research laboratories with partial government funding, so as to better understand the performance of structures and optimize the projects. It is in particular the French National Research Project