20

Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2
Page 2: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

Learning  Goals  By  the  end  of  the  lesson  you  will  be  able  to  1.  Understand  what  a  redox  reac;on  is  and  how  it  

applies  to  cellular  respira;on  2.  Explain  the  main  goal(s)  of  cellular  respira;on  3.  Describe  the  stages  of  cellular  respira;on  4.  Ar;culate  how  the  body’s  energy  currency,  ATP  

is  formed    

Page 3: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

Metabolism    

•  The  sum  total  of  all  the  anabolic  and  catabolic  processes  in  a  cell  or  organism  

•  Redox  reac1ons  underlie  a  number  of  these  processes  

•  A  redox  rxn.  is  a  chemical  rxn  that  involves  the  xfr  of  e-­‐‘s    between  two  substances  

Page 4: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  2  elements  to  redox  rxn.’s;  reduc1on  &  oxida1on  – Oxida1on:  loss  of  one  or  more  e-­‐‘s  – Reduc1on;  gain  of  one  or  more  e-­‐‘s  

•  Substance  that  loses  the  e-­‐‘s  is  oxidized  and  is  thus  the  reducing  agent    

•  Substance  that  gains  the  e-­‐‘s  is  reduced  and  is  thus  the  oxidizing  agent  

 

Page 5: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  Redox  rxn.’s  can  also  happen  w/  par;al  xfr  of  e-­‐‘s  (i.e.  sharing  in  covalent  bond,  but  e-­‐‘s  drawn  closer  to  more  electronega;ve  atom  like  oxygen)    

Page 6: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  Some;mes  a  series  of  redox  rxn.’s  occur  that  fn’s  to  transport  e-­‐‘s  through  a  series  of  increasingly  stronger  e-­‐  carriers  

   

(Draw  diagram)  

•  Free  energy  released  in  each  step  because  e-­‐  moving  to  progressively  stronger  e-­‐  acceptor.  Therefore  an  exergonic  process.  

Page 7: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  OVERALL,  THE  CONTROLLED  COMBUSTION  OF  GLUCOSE  IN  CELLULAR  RESPIRATION  IS  AN  EXERGONIC  REDOX  RXN  (similar  to  combus1on  of  methane)!!!    

Page 8: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

Cellular  Respira1on  (Big  Picture)    

•  Process  by  which  organisms  break  down  glucose  (C6H12O6)  to  produce  energy  (in  the  form  of  ATP)  to  sustain  life    

 

•  Summary  of  aerobic  respira;on  (uses  oxygen).  The  actual  process  is  about  20  rxn.’s  w/  enzymes  catalyzing  each  step.    

Page 9: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  Considered  glucose  oxida;on  because  i.  H’s  from  glucose  carry  e-­‐‘s  to  O,  forming  H2O.  In  

H2O,  O  has  stronger  pull  on  e-­‐‘s  than  H,  than  C  in  glucose.  

ii.  Oxyen  bound  to  carbon  exerts  strong  electronega;ve  pull  on  e-­‐‘s,  essen;ally  cons;tu;ng  as  a  loss  of  e-­‐‘s  for  the  carbon.  Thus  also.  

•  Overall  rxn.  decreases  free  energy  because  of  loss  of  poten;al  energy  (i.e.  more  stable  bond)  

•  Overall  rxn.  also  increases  entropy.  This  is  a  “downhill”  process  that  yields  2870KJ  of  free  E/mole  of  glucose.    

Page 10: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  Exergonic  rxn.’s  normally  release  heat  &  light,  but  cells  have  a  way  of  capturing  some  of  this  energy  (~34%)  by  moving  the  posi;on  of  the  e-­‐‘s  in  certain  molecules  to  higher  free  E  states  (i.e.  ATP).  

 •  These  molecules  now  become  ready  sources  of  free  E  that  cell  can  use.    

Page 11: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  Even  though  cell.  resp.  is  an  exergonic  process,  it  is  not  spontaneous.  Why?  

 i.  Ac;va;on  energy  prevents  spontaneous  

combus;on  and  allows  living  things  to  control  oxida;on  process.  

ii.  Use  of  enzymes  also  allows  cell  to  control  rxn.’s  of  cellular  respira;on    

Page 12: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2
Page 13: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

Cellular  Respira1on  (Beginning  Details)    

•  ULTIMATE  GOAL;  extract  E  from  nutrient  molecules,  harness  &  store  E  in  a  form  that  the  cell  can  use  (i.e.  like  baferies)  

•  3  main  sub-­‐goals  of  i.  Break  bonds  between  the  6  carbons  of  glucose  to  

form  6  CO2  molecules  ii.  To  move  hydrogen  atom  e-­‐‘s  from  glucose  to  oxygen,  

forming  6  H2O  molecules  iii.  Trap  as  much  of  the  free  E  released  in  the  process  as  

possible  in  the  form  of  ATP    

Page 14: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  4  stages  in  3  loca;ons         Name   #  of  Steps   Cellular  Loca1on  

Stage  1   Glycolysis   10  Steps   Cytoplasm  

Stage  2   Pyruvate  Oxida;on   1  Step   Mitochondrial  Matrix  

Stage  3   Kreb’s  Cycle   8  Steps   Mitochondrial  Matrix  

Stage  4   Electron  Transport  Chain  &  Chemiosmosis  

Mul;-­‐step   Inner  Mitochondrial  Membrane  

Page 15: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

Adenosine  Triphosphate  (ATP)    

Page 16: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  The  energy  currency  of  the  body  

•  When  cell  needs  energy  for  an  endergonic  reac;on,  ATPase  catalyzes  hydrolysis  of  terminal  phosphate  in  ATP  

•  Cleaved  energe;c  phosphate  is  afached  to  molecule  associated  with  work  to  be  done  (i.e.  phosphorylated),  thus  energizing  and  ac;va;ng  the  molecule    

Page 17: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  2  ways  to  create  ATP,  both  of  which  involve  transferring  and  capturing  exergonic  energy  i.   Substrate-­‐level  phosphoryla1on  (Direct  ATP  

forma1on)      

With  the  help  of  an  enzyme  a  compound  with  a  phosphate  xfr’s  that  phosphate  to  ADP  à  ATP  +  dephosphorylated  compound    

Page 18: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  2  ways  to  create  ATP,  both  of  which  involve  transferring  and  capturing  exergonic  energy  ii.   Oxida1ve  phosphoryla1on  (Indirect  ATP  forma1on)  

 -­‐Crea;on  of  carrier  molecules    -­‐involves  a  series  of  redox  rxn’s  w/  oxygen  as  the  final  e-­‐    acceptor    -­‐yields  more  ATP  molecules/glucose  molecule    -­‐u;lized  an  enzyme  and  co-­‐enzymes  NAD+  &  FAD  

– NAD  (nico;namide  adenine  dinucleo;de)  removes  2H’s  from  original  glucose,  becoming  NADH  +  H+  (NADH  for  short)  •  This  rxn.  occurs  in  once  in  glycolysis,  once  in  pyruvate  oxida;on  and  3  ;mes  in  Kreb’s  cycle  

 –  FAD  (flavin  adenine  dinucleo;de)  does  similar  thing  as  NAD+    and  is  reduced  to  FADH2  •  -­‐occurs  in  one  rxn  of  Kreb’s  cycle      

Page 19: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  2  ways  to  create  ATP,  both  of  which  involve  transferring  and  capturing  exergonic  energy  in  the  molecule  ii.  Oxida;ve  phosphoryla;on  (Indirect  ATP  forma;on)  

     

Page 20: Metabolism & Cellular Respiration Lecture · Learning(Goals(By(the(end(of(the(lesson(you(will(be(able(to(1. Understand(whataredox(reac;on(is(and(how(it applies(to(cellular(respiraon(2

•  These  reduced  co-­‐enzymes  (NADH  &  FADH2)  act  as  mobile  E  carriers  w/n  the  cell,  moving  free  E  from  one  molecule  to  another.  

•  They  will  eventually  xfr  their  free  E  to  ATP  using  free  oxygen.  This  happens  in  stage  4  of  cellular  respira;on  (Electron  Transport  Chain  &  Chemiosmosis)