69
Physics Study Program Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung FI-4241 Topik Khusus Fisika Reaktor Mengenal Reaktor Nuklir Abdul Waris, Ph.D

Mengenal Reaktor Nuklir

Embed Size (px)

DESCRIPTION

Reaktor Nuklir

Citation preview

Page 1: Mengenal Reaktor Nuklir

Physics Study ProgramFaculty of Mathematics and Natural SciencesInstitut Teknologi Bandung

FI-4241Topik Khusus Fisika Reaktor

Mengenal Reaktor Nuklir

Abdul Waris, Ph.D

Page 2: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Basics of a Power Plant The basic premises for the majority of

power plants is to: 1) Create heat 2) Boil Water 3) Use steam to turn a turbine 4) Use turbine to turn generator 5) Produce Electricity

Some other power producing technologies work differently (e.g., solar, wind, hydroelectric, …)

Page 3: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Nuclear Power Plants use the Rankine Cycle

Page 4: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Create Heat Heat may be

created by: Burning coal Burning oil Other combustion Nuclear fission

1) oil, coal or gas 2) heat3) steam 4) turbine  5) generator 6) electricity 7) cold water8) waste heat water9) condenser

Page 5: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Boil Water The next process it

to create steam. The steam is

necessary to turn the turbine.

Westinghouse Steam Generator

Page 6: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Turbine Steam turns the turbine.

Page 7: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Generator As the generator is

turned, it creates electricity.

Page 8: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Heat From Fission

Page 9: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Fission Chain Reaction

Page 10: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Nuclear History 1939. Nuclear fission discovered. 1942. The world´s first nuclear chain reaction takes place in Chicago

as part of the wartime Manhattan Project. 1945. The first nuclear weapons test at Alamagordo, New Mexico. 1951. Electricity was first generated from a nuclear reactor, from

EBR-I (Experimental Breeder Reactor-I) at the National Reactor Testing Station in Idaho, USA. EBR-I produced about 100 kilowatts of electricity (kW(e)), enough to power the equipment in the small reactor building.

1970s. Nuclear power grows rapidly. From 1970 to 1975 growth averaged 30% per year, the same as wind power recently (1998-2001).

1987. Nuclear power now generates slightly more than 16% of all electricity in the world.

1980s. Nuclear expansion slows because of environmentalist opposition, high interest rates, energy conservation prompted by the 1973 and 1979 oil shocks, and the accidents at Three Mile Island (1979, USA) and Chernobyl (1986, Ukraine, USSR).

2004. Nuclear power´s share of global electricity generation holds steady around 16% in the 17 years since 1987.

Page 11: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Reaksi fisi nuklir

Page 12: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Contoh reaksi fisi

Page 13: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Neutron induced fission

Inti berat dapat pecah jika ditumbuk Tumbukan menyebabkan

nucleon kehilangan keadaan

setimbangannya Tumbukan yang keras

merupakan kondisi terbaik untuk menginduksi fisi

Neutrons merupakan proyektil ideal untuk menginduksi fisi

Page 14: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Klasifikasi Reaktor Nuklir Berdasarkan perbedaan spektrum energi neutron

(reaktor cepat, reaktor termal) Berdasarkan jenis material yang digunakan

sebagai moderator dan pendingin (Magnox, AGR, LWR, HWR, RBMK, HTGR)

Bardasarkan fungsi (reaktor riset, converter,

reaktor daya)

Page 15: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Klasifikasi Reaktor Nuklir …

Berdasarkan perbedaan spektrum energi neutron (reaktor cepat, reaktor termal)

Berdasarkan jenis material yang digunakan sebagai moderator dan pendingin (Magnox, AGR, LWR, HWR, RBMK, HTGR)

Bardasarkan fungsi (reaktor riset, converter,

reaktor daya)

Page 16: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Klasifikasi Reaktor DayaReactor types

Reactor names

Moderator Coolant

Thermal Magnox GCR Graphite CO2

reactors AGR Graphite CO2

PWR H2O H2O

BWR H2O H2O

BLWR(FUGEN) D2O H2O

PHWR(CANDU) D2O D2O

HTR Graphite He

THTR Graphite He

RBMK Graphite H2O

Fast reactor LMFBRs None Na or

Pb/Pb-Bi

Page 17: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Evolusi Reaktor Daya

Page 18: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Diagram Skematik dari PLTN

Page 19: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Reaktor Nuklir di Jepang Nuclear power plants

generate a significant portion of Japan’s electricity. Japan has pursued nuclear power as a source of energy in part to limit imports of petroleum. More than 50 nuclear power plants are scattered throughout the country, such as this plant in Fukui Prefecture, Honshū Island.

Page 20: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Kapal Induk Bertenaga Nuklir

Nuclear power propels the huge bulk of the Abraham Lincoln through the water. Part of the fleet of the U.S. Navy, the Abraham Lincoln provides a flight deck for high-performance planes. By naval standards the ship is very long, but its runway is still shorter than most air strips on land. To compensate for this, incoming planes use hooks on their undersides to catch arresting cables on the ship’s deck.

Page 21: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Kapal Selam nuklir

Nuclear submarines consume a relatively small amount of energy and make very little noise. Because they carry their energy source with them, nuclear submarines are able to travel at least 640,000 km (400,000 mi) without refueling. The nuclear reactor provides energy in the form of heat, which is converted to electricity by the generators in the engine compartment. A propeller is used to send the submarine through the water, whereas rudders (horizontal rudders are also called diving planes) guide the submarine through maneuvers. The periscope and other monitors mounted on the sail give the crew information about the surface while the submarine stays safely beneath. A modern submarine is capable of carrying several missiles, torpedos, or nuclear warheads that may be fired from beneath the water to strike targets sometimes thousands of miles away (launching tubes not shown here).

Page 22: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Page 23: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Page 24: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Page 25: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Pressurized Water Reactor (PWR)

Page 26: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Vendor PWR

Awal, Westinghouse Bettis Atomic Power Lab. Untuk kapal perang

Westinghouse Nuclear Power Div. U/ komersial, Shippingport NPP (Duquesne Light, sampai 1982)

Vendor yg menyusul Westinghouse : Asea Brown Boveri Combution Eng. (ABB-CE),

Framatome, Kraftwerk Union, Siemens, Mitsubishi

Babcock & Wilcox (B&W) dengan vertical once-through SG

Lebih 60% PLTN di dunia menggunakan PWR

Page 27: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

NSSS (Nuclear Steam Supply System)

Blok utama dari sebuah PLTN adalah apa yang disebut sebagai sistem penyuplai uap bertenaga nuklir, yaitu sebuah teras reaktor nuklir dan sistem pendingin primer

Page 28: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Hubungan antara suhu & tekanan air

Page 29: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

PWR Core (Teras PWR

Page 30: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

PWR Fuel Assembly

Page 31: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Cooling Tower

Page 32: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Evolution of PWR Core

Page 33: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

PWR Steam Generator

(Heat Exchanger)

Page 34: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

PWR Primary Coolant Pump

Page 35: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

PWR Schematic

Size

Page 36: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

PWR Size (Review, Oconee (South Carolina U.S.A.).)

Keluaran kalor (MWt) 2568

Suhu air masuk teras (oC) 290

Suhu keluar (oC) 319

Suhu elemen bakar maks (oC)

2343

Tekanan operasi (Pa) 1,5 x 107

Jumlah fuel Assembly 177

Batang elemen bakar tiap assembly

208

Assembly batang kendali 69

Massa UO2 (kg) 94100

Laju alir pendingin (kg/s) 16546

Page 37: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Boiling Water Reactor (BWR)

Page 38: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Vendor BWR

Awal, Allis-Chambers & General Electric (GE)

Selanjutnya hanya GE yang bertahan. Vendor yang menyusul GE : Asea Atom,

Kraftwerk Union, Hitachi, 20 % PLTN di dunia adalah BWR

Page 39: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

BWR

Page 40: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

BWR Schematic Diagram

Page 41: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

BWR Fuel Assembly

Page 42: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

CANadian Deuterium Uranium (CANDU, PHWR)

Page 43: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

VVER (Russian PWR)

Page 44: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

RBMK (Chernobyl type reactor)

Page 45: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

RBMK (Schematic diagram)

Page 46: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

RBMK Core

Page 47: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Future Reactor Designs

Research is currently being conducted for design of the next generation of nuclear reactor designs.

The next generation designs focus on: Proliferation resistance of fuel Passive safety systems Improved fuel efficiency (includes breeding) Minimizing nuclear waste Improved plant efficiency (e.g., Brayton

cycle) Hydrogen production Economics

Page 48: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Advanced Reactor

Dasar pemikiran:

One-step license

Standardization

Passive or inherent safety

Page 49: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Jenis –jenis advanced reactor

Yang telah mendapat sertifikat dari NRC ABWR APWR AP600 System 80+

Advanced reactor yang lain EPR GT-MHR

Page 50: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Generation IV

At the beginning of 2002, 438 nuclear power reactors were in operation in 31 countries around the world, generating electricity for nearly 1 billion people. They account for approximately 17 percent of worldwide installed base load capacity for electricity generation and provide half or more of the electricity in a number of countries. These reactors are generating electricity in a reliable, environmentally safe and affordable manner without emitting noxious gases into the atmosphere.

Page 51: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Generation IV…

Concerns over energy resource availability, climate change, air quality, and energy security suggest an important role for nuclear power in future energy supplies. While the current Generation II and III nuclear power plant designs provide an economically, technically, and publicly acceptable electricity supply in many markets, further advances in nuclear energy system design can broaden the opportunities for the use of nuclear energy.

Page 52: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Generation IV…

To explore these opportunities, the U.S. Department of Energy's Office of Nuclear Energy, Science and Technology has engaged governments, industry, and the research community worldwide in a wide-ranging discussion on the development of next-generation nuclear energy systems known as "Generation IV". This has resulted in the formation of the Generation-IV International Forum (GIF), a group whose member countries are interested in jointly defining the future of nuclear energy research and development.

In short, "Generation IV" refers to the development and demonstration of one or more Generation IV nuclear energy systems that offer advantages in the areas of economics, safety and reliability, sustainability, and could be deployed commercially by 2030.

Page 53: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Goal for Generation IV

Page 54: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Generation IV International Forum (GIF)

Page 55: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Selected Six Systems

Page 56: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Very High Temperature Reactor (VHTR)

Thermal neutron spectrum

Once-through uranium cycle

Helium-cooled core Potential H

production

Page 57: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Supercritical Water-Cooled Reactor (SCWR)

Operates above the thermodynamic critical point of water

Two fuel cycle options: Open cycle with a

thermal neutron spectrum.

Closed cycle with a fast-neutron spectrum reactor with full actinide recycle.

Thermal efficiency approaching 44%

Page 58: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Supercritical Water Cooled Reactor

Page 59: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Lead-Cooled Fast Reactor (LFR)

Ability to seal core Refueling 15-20 years Relative small

capacity Use of MoX fuel

Page 60: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Lead-Cooled Fast Reactor

Page 61: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Molten Salt Reactor (MSR)

Thorough fuel burnup Fuel cycle variability

Page 62: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Molten Salt Reactor

Page 63: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Sodium-Cooled Fast Reactor (SFR)

Actinide burning Capable of

burning weapons grade fuel capable (to get rid of nuclear stockpile)

Page 64: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Sodium-Cooled Fast Reactor

Page 65: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Gas-Cooled Fast Reactor

Page 66: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Membuat A-BOMB

1. Initial neutron source2. Fissionable material (allowing

induced fission)3. Fissions must release additional

neutrons4. Material must use fissions efficiently

(critical mass)

Page 67: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Fissionable Materials

235U and 239Pu are fissionable materials

235U is rare and must be separated from 238U

239Pu is made by exposing 238U to neutrons

Page 68: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Gadget & Fat Man

239Pu sphere below critical mass (6 kg)

Crushed by explosives to above critical mass

Shell of 238U assisted implosion

Page 69: Mengenal Reaktor Nuklir

Physics Study Program - FMIPA | Institut Teknologi Bandung

PHYSI S

Little Boy

235U hollow sphere below critical mass (60 kg)

Cannon fired plug through sphere to exceed critical mass

Tungsten-carbideshell containedexplosion initially