18
1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory Department of Biomedical Engineering, Yonsei University Chang-Hwan Im, Ph.D. http://bem.yonsei.ac.kr Bioelectromagnetics and Neuroimaging Lab. Bioelectromagnetics and Neuroimaging Lab. Yonsei BME http://bem.yonsei.ac.kr BrainStorm A free GUI software developed by USC group Operated under Matlab (Mathwork, co.) environment (You have no need to know it). EEG, MEG, Combined Analysis RAP-MUSIC, Minimum Norm Estimation, LCMV Writer: R.M. Leahy, S. Baillet, J. C. Mosher

MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

1

MEG Source Imaging with BrainStorm

Bioelectromagnetics and Neuroimaging Laboratory

Department of Biomedical Engineering, Yonsei University

Chang-Hwan Im, Ph.D.

http://bem.yonsei.ac.kr

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

BrainStorm

A free GUI software developed by USC group

Operated under Matlab (Mathwork, co.) environment (You have no need to know it).

EEG, MEG, Combined Analysis

RAP-MUSIC, Minimum Norm Estimation, LCMV

Writer: R.M. Leahy, S. Baillet, J. C. Mosher

Page 2: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

2

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Download BrainStorm

http://neuroimage.usc.edu/brainstrom

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Before Learning BrainStorm…

BrainStorm is not that user-friendly…

Users should understand basic theories of MEG forward/inverse problems to apply BrainStorm to your own data.

Page 3: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

3

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Basics

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Brain Electrical Sources

• 대부분의 Neuron은 cerebral cortex (대뇌피질)의 gray matter (회백질)에 위치

• Cortical surface에 수직하게 배열된 pyramidal cell이 동시에 활성화 되면 이때의 전류(primary current)가 이차 전류(secondary current)를 유발하고 이전류의 흐름들이 외부에 측정가능한 field를생성한다.

Baillet et al, IEEE Signal Processing Mag. Nov. 2001.

Page 4: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

4

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Measuring Electromagnetic Field

EEG 측정 모습MEG 측정 모습

뇌자도(腦磁圖, Magnetoencephalography(MEG)) : 뇌로부터발생되는 자장신호를SQUID센서를 이용하여 측정.

뇌전도(腦電圖, Electroencephalography(EEG)) : 뇌 표면에서발생하는 전기포텐셜차이를 전극을이용하여 측정.

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Neuromagnetic Forward/Inverse Problems

Brain electrical sources Electromagnetic fields

Forward Problem(Forward Problem(정문제정문제)):

Head & source models

Inverse Problem(Inverse Problem(역문제역문제)):

ECD, distributed source models

뇌자도의 목적 – 머리 외부에서 측정한 자기 신호를 이용하여뇌 내부의 전류원을 추정하는 것.

Page 5: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

5

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Source Models

1. Equivalent Current Dipole (ECD, Cohen et al., 1978) – 실제로분포되어 있는primary current source를 point source로 가정, 하나의 ECD를추정하기 위해서 6개의 parameter를 정해주어야함. (위치 + 방향 vector), 가장일반적으로사용

2. Equivalent Current Multipole (ECM, Jerbi et al., 1999) – 3차원공간에서 전류원의 공간적인 분포를 고려함. Green Function의 Taylor’s expansion에서 유도

3. Extended Source (Wagner et al., 2002) – Cortical surface에서 분포된 전류원 모델. 각 전류원 값의중첩으로 표현

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Forward Problem 1 – Homogeneous Sphere Model

MEG (J. Sarvas, 1987)

EEG (D. Yao, 2000)

03 2

0

cos1{ 2 [ ]}4 cosp p p

r RVr R r R r r

ϕπσ ϕ

− −= + +

+ −0 0R r R rP Ri

EEG의경우에 비해비교적정확함.

축방향 성분은 외부자장을 생성하지않음

실제 문제에 적용하기에는 부적합함.

02

( ) ( , )( )

4 ( , )Q Q Q

Q

F FB r

Fμπ

× − × ⋅ ∇=

Q r Q r r r rr r

2( , ) ( )Q QF a ra r= + − ⋅r r r r

Page 6: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

6

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Forward Problem 2 – Concentric Sphere Model

brain

Inner skull

Outer skull

scalp

• EEG의 경우에는 정해 (exact solution) 존재, MEG의경우에는 근사해만 존재.

• MEG의 경우에는 거의 사용 안 함 . MEG의 경우에는 두개골(skull) 밖으로나가는 전류가 대부분 차단되기 때문에단일 구형 도체 모델을 사용하는 경우와정확도 차이가거의 없음.

• EEG의 경우에는 정확도가 많이 향상됨. 하지만 실제 뇌의 구조를 고려하는경우와는 정확도 차이가 많이 남. 특수한영역에서만 정확도 보장

실제 문제에서는 보다 정확한 모델이필요하다.

Head fitting

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Forward Problem 3 – 경계요소법(BEM)

0 0( ) ( ) 2 ( )

1 '( ) ( ') ( ') ,2 ij

i j

i j Sij

V V

V d

σ σ σ

σ σπ

+ =

+ − Ω∑ ∫ r

r r

r r ∫⋅∇

=G

p

dvR

V ')'('4

1)(0

0rJr

πσ

∑ ∫ ×−+=ij

S ijjiij RV 'dSRrrBrB 3

00 )'()(

4)()( σσ

πμ

∫ ×= ')'(4

)( 30

0 dvR

pG

RrJrBπμ

In EEG

In MEG, after solving EEG problem

일반적으로 3~4층의 다른 전기전도도를 지니는 영역으로 분류

하고 각 영역은균일하고isotropic conductivity를가진다

고 가정함.

뇌자도는 일반적으로 두개골안쪽 경계 부분만사용

Page 7: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

7

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Forward Problem 4 – 유한요소법 (FEM)

백질(white matter)의 이방성: Diffuse tensor MRI 이용 - 아직 연구 중인 topic

두개골의 이방성

(축방향 전도도가 더 크다)

유한요소법 (FEM)현재 기술로 정확한 이방성 추정 어려움

pV J⋅∇=∇⋅∇ )(σ

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Neuroelectromagnetic Inverse Problem

Inverse Methods

• 등가 전류 쌍극자 (equivalent current dipole: ECD) 모델

• 분산 전류원 모델 (distributed source model)

Page 8: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

8

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Equivalent Current Dipole Localization

ECD MethodDistributed sources are concentrated at some discrete points

K. Uutela, M. Hämäläinen and R. Salmelin, “Global optimization in the localization of neuromagnetic sources,”

IEEE Trans. Biomed. Eng., vol. 45 pp.716-723, 1998.

• 가장 간단하면서 오래된 방법

• Dipole 의 위치 (x, y, z)및 dipole moment vector (Qx,Qy,Qz) 의 값 을최적화 알고리즘을 이용하여 찾음.

• 최근에는 spatio-temporal dipole fit을많이 사용함.

• Deterministic algorithms: Levenberg-Marquardt method, Downhill simplex search, etc. – 국소 최적점에 수렴할가능성 크다.

• Global optimization algorithms: Genetic Algorithm (GA), Simulated Annealing (SA), etc. – 많 은 수 의dipole을 localize하기 힘들다.

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Equivalent Current Dipole Localization (Cont’d)

Instantaneous Dipole Fit vs Spatio-temporal Dipole Fit

Spatio-temporal Dipole Fit이 Noise 성분에 대해 보다 robust하다 (대부분 사용).

2|| ( ) ||FE = −x A p sError Function

where x is the measured electromagnetic signals, A lead field matrix that relates sensor positions and source locations, p location parameters of dipoles, and s corresponding dipole moment vectors.

Page 9: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

9

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Equivalent Current Dipole Localization (Cont’d)

Limitations of the ECD method

1. ECD의 개수를 미리 추정할 수 없다 – 가장 큰 문제!

2. ECD의 초기 위치가 실제 해와 차이가 클 경우 국소 최적점에 수렴할 가능성이 크다. Global optimization algorithm은 다수의 ECD에 적용하기에 부적합하다.

3. 기존의 ECD법은 해부학적인 사전 정보를 사용하지 않기 때문에 cerebral cortex바깥 영역에 localize되는 경우가 흔히 발생한다.

BESA라는 상용 소프트웨어를 이용한결과. (4, 5번 dipole의 위치가 cortex를벗어남.)

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

(Cortically) Distributed Source ModelDirectly reconstruct the distribution of current sources

C. H. Im, K. O. An, H. K. Jung, H. Kwon and Y. H. Lee, “Assessment criteria for MEG/EEG cortical patch tests,”

Phys. Med. Biol., Vol. 48, pp. 2561-2573, 2003.

• 많은 수의 ECD를 cortical surface에수직하게 배치한다 . 선형 (L2) 또는 비선형(L1) 역산 과정 각ECD의 moment vector를 복원한다.

• ECD의 위치나 개수에 대한 사전정보가 필요 없다.

• 해부학적 정보를 사용하기 때문에ECD법에 비해서 생리학적으로 더실제적이다.

• 최근 많이 사용되고 있는 방법임.

Distributed Source Model

Localization Imaging

Page 10: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

10

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Distributed Source Model (Cont’d)

x = As + n x is a colume vector gathering the measurements on NM sensors at a given time instant; s is a 3N column vector made of the corresponding dipole moments (Qx, Qy, Qz); A is the NM×3Nlead field matrix which columns are the step responses of every dipole source to the sensor array; n is a perturbation (or noise) vector.

M is the regularization operator, λis a parameter which controls the weight given to the minimization of the side constraint, and s+ is an a priori estimate for the solution s.

L1, Lp norm – nonlinear optimization (linear programming) 사용

L2 norm – linear inverse operator 사용

min { || || || ( ) || }p pp paug λ +− + −As x M s s

Tikhonov regularization

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Distributed Source Model (Cont’d)

min { || || || ) || }p pp paug λ +− + −As x M(s s

λ(hyperparamter)의 결정: L-curve method, cross-validation method, and other

iterative methods

적절한 a priori term의 결정: 일반적인 Minimum Norm (L2) Estimation

M = I, s+ = 0

LORETA(Low resolution electromagnetic tomography)

M = , s+ = 0

Leadfield Normalization: Leadfield에 sensitivity를 고려한 weighting을 곱해줌.

2∇

Page 11: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

11

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Distributed Source Model (Cont’d)

Wagner et al., in BIOMAG 2000

여러 방법들의 비교

보다 focal함 보다 smooth함L2 norm estimation

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Pre-processing for EEG/MEG Analysis

Boundary Element Method와 Distributed Source Model을 사용한다고 가정하였을 때의 Pre-processing 과정 사례

Page 12: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

12

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Preprocessing for MEG Analysis

1.1. Transforming Sensor Coordinates into Transforming Sensor Coordinates into

Head Coordinates Head Coordinates

2. Generation of Boundary Element

Meshes

3. Segmentation and Tessellation of

Cortical Surface

4. Transforming MRI Coordinates into Head

Coordinates

5. Cortical Surface Decimation

Marking coil과 digitized head position을 이용하여 좌표 변환

148채널 magnetometer 시스템.

Pre-processing for EEG/MEG Analysis

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Preprocessing for MEG Analysis

1. Transforming Sensor Coordinates into

Head Coordinates

2.2. Generation of Boundary Element Meshes Generation of Boundary Element Meshes

3. Segmentation and Tessellation of

Cortical Surface

4. Transforming MRI Coordinates into Head

Coordinates

5. Cortical Surface Decimation Inner skull boundary만을 삼각형 요소를 이용하여 분할.

Pre-processing for EEG/MEG Analysis

Page 13: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

13

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Preprocessing for MEG Analysis

1. Transforming Sensor Coordinates into

Head Coordinates

2. Generation of Boundary Element

Meshes

3.3. Segmentation and Tessellation of Segmentation and Tessellation of

Cortical SurfaceCortical Surface

4. Transforming MRI Coordinates into Head

Coordinates

5. Cortical Surface Decimation BrainSuite (USC)를 이용하여 삼각형 요소로 tessellation수행

Pre-processing for EEG/MEG Analysis

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Preprocessing for MEG Analysis

1. Transforming Sensor Coordinates into

Head Coordinates

2. Generation of Boundary Element

Meshes

3. Segmentation and Tessellation of

Cortical Surface

4.4. Transforming MRI Coordinates into Head Transforming MRI Coordinates into Head

CoordinatesCoordinates

5. Cortical Surface Decimation Tessellated scalp surface 와digitized head position을 맞춤으로써 좌표 변환.

Pre-processing for EEG/MEG Analysis

Page 14: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

14

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Preprocessing for MEG Analysis

1. Transforming Sensor Coordinates into

Head Coordinates

2. Generation of Boundary Element

Meshes

3. Segmentation and Tessellation of

Cortical Surface

4. Transforming MRI Coordinates into Head

Coordinates

5.5. Cortical Surface Decimation Cortical Surface Decimation

Initial cortical surface:

510,267 triangular elements

255,329 vertices

Decimation

Extracting about 10,000 vertices.

초기의 요소는 visualization을 위해서 사용된다.

Pre-processing for EEG/MEG Analysis

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

In BrainStorm

Page 15: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

15

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

1. RAP-MUSIC

RAP-MUSIC (Recursively Applied and Projected MUltiple SIgnal Classification)

Suggested by J.C. Mosher and R.M. Leahy

a{ } 0, ≈aESC n

Decomposing measured signal into signal and noise subspaces Scanning dipole sources Find local peaks

{ }, 1sSC E a ≈

or

Source position

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

In BrainStorm

Subspace correlation

Regularization Parameter (10 means 10% of maximum singular value), You can adjust this (dependent on users’choice)

Use when you know you have synchronous activity in two separate brain areas

You know what this means

Page 16: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

16

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

2. Min. Norm Imaging (MNLS)

W = RAT (ARAT + λ I)-1

x = Ws

Noise normalization: noise gain이 location의함수이므로 위치별로 gain normalize(baseline window 지정 필요)

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

In BrainStorm

Regularization Parameter (10 means 10% of maximum singular value), You can adjust this (dependent on users’choice)

Page 17: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

17

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

LCMV Beamformer

A spatial filter

Leadfield at a source

Linearly constrained minimum variance (LCMV)

Measurement at time t

Resultant source vector

Tikhonov regularization

Noise normalization Neural Index

Noise only covariance

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

In BrainStorm

Baseline region의Standard deviation으로normalize

Page 18: MEG Source Imaging with BrainStormcone.hanyang.ac.kr/BioEST/Kor/pds/brainstorm2.pdf · 2018-02-05 · 1 MEG Source Imaging with BrainStorm Bioelectromagnetics and Neuroimaging Laboratory

18

Bioelectromagnetics and Neuroimaging Lab.Bioelectromagnetics and Neuroimaging Lab. Yonsei BMEhttp://bem.yonsei.ac.kr

Practice with Demo Data