52
May 2007 France Telecom - IHP Slide 1 doc.: IEEE 802.15-07-0688-01-003c Submission Project: IEEE P802.15 Working Group for Wireless Personal Area N Project: IEEE P802.15 Working Group for Wireless Personal Area N etworks ( etworks ( WPANs WPANs ) ) Submission Title: [France Telecom - IHP Joint Physical Layer Proposal for IEEE 802.15 Task Group 3c] Date Submitted: [7 May 2007] Source: [ Pascal Pagani 1 , Maxim Piz 2 , Isabelle Siaud 1 , Eckhard Grass 2 , Wei Li 1 , Klaus Tittelbach-Helmrich 2 , Anne-Marie Ulmer-Moll 1 , Frank Herzel 2 ] Company [ 1 France Telecom, 2 IHP] Address [see contributors list.] Voice: [], Fax: [], E-Mail: [] Re: [] Abstract: [Proposition of a high data rate wireless system in the 60 GHz range, providing data rates ranging from 335 Mbps to 3 Gbps.] Purpose: [] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

May 2007 doc.: IEEE 802.15-07-0688-01-003c Project: IEEE ... · May 2007 Slide 3 France Telecom - IHP doc.: IEEE 802.15-07-0688-01-003c Submission Overview • Proposal for high data

Embed Size (px)

Citation preview

May 2007

France Telecom - IHPSlide 1

doc.: IEEE 802.15-07-0688-01-003c

Submission

Project: IEEE P802.15 Working Group for Wireless Personal Area NProject: IEEE P802.15 Working Group for Wireless Personal Area Networks (etworks (WPANsWPANs))

Submission Title: [France Telecom - IHP Joint Physical Layer Proposal for IEEE 802.15 Task Group 3c]

Date Submitted: [7 May 2007]

Source: [ Pascal Pagani1, Maxim Piz2,

Isabelle Siaud1, Eckhard Grass2,

Wei Li1, Klaus Tittelbach-Helmrich2 ,

Anne-Marie Ulmer-Moll1, Frank Herzel2]

Company [1 France Telecom, 2 IHP]

Address [see contributors list.]

Voice: [], Fax: [], E-Mail: []

Re: []

Abstract: [Proposition of a high data rate wireless system in the 60 GHz range, providing data rates

ranging from 335 Mbps to 3 Gbps.]

Purpose: []

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for

discussion and is not binding on the contributing individual(s) or organization(s). The material in this

document is subject to change in form and content after further study. The contributor(s) reserve(s) the

right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE

and may be made publicly available by P802.15.

May 2007

France Telecom - IHPSlide 2

doc.: IEEE 802.15-07-0688-01-003c

Submission

Contributors List

France Telecom

Pascal Pagani (presenter) [email protected]

4, rue du Clos Courtel, 35510 Cesson-Sévigné, France

Voice: +33 299 12 48 72

Isabelle Siaud [email protected]

Wei Li [email protected]

Anne-Marie Ulmer-Moll [email protected]

IHP

Eckhard Grass (presenter) [email protected]

Im Technologiepark 25, Frankfurt (Oder)

D-15236, Germany

Voice: +49 335 5625 731

Maxim Piz [email protected]

Klaus Tittelbach [email protected]

Frank Herzel [email protected]

May 2007

France Telecom - IHPSlide 3

doc.: IEEE 802.15-07-0688-01-003c

Submission

Overview

• Proposal for high data rate, 60 GHz PHY layer for 802.15.3 MAC

• Main features

– Data rates from 335 Mbps to 3 Gbps for applications such as video streaming, file transfer, home network distribution or in-vehicle media supply

– Efficient channelization adapted to worldwide regulation

– OFDM based system providing high spectrum efficiency

– Scalable parameters for increased robustness

– Low power and cost-effective implementation

May 2007

France Telecom - IHPSlide 4

doc.: IEEE 802.15-07-0688-01-003c

Submission

Applications and Frequency Band Plan

May 2007

France Telecom - IHPSlide 5

doc.: IEEE 802.15-07-0688-01-003c

Submission

Applications

• Uncompressed video streaming (UM1)

• Kiosk file downloading (UM5)

• High data rate WPAN distribution

– Multiple user high data rate networking

– Home or office video streaming

– Express file transfer

LiveBox

home gateway

AP

UWB

AP

60 GHz 60 GHz

Shadow • Media supply in trains,

busses and aircraft

– Possibly use of secondary system (e.g. UWB) for 100% coverage

May 2007

France Telecom - IHPSlide 6

doc.: IEEE 802.15-07-0688-01-003c

Submission

Applications

• Environments

– Indoor environments (Residential / Office / Library)

– Hot spots

– Confined environments (train, aircraft, …)

– Potential nomadic mode within coverage area

• Cell mode coverage

– Envisioned usage requires radio coverage within one (or more) cell

– Antennas with wide beamwidth are preferred (30°to 60°beamwidth)

– Robust modulation scheme required to deal with channel distortion and related ISI � solution based on OFDM

May 2007

France Telecom - IHPSlide 7

doc.: IEEE 802.15-07-0688-01-003c

Submission

57 58 59 60 61 62 63 64 65 66

Australia

Canada

Japan

USA

59.4 62.9

f [GHz]

Europe??

63 64

RTTT

• Channel bandwidth: 1 GHz (500 MHz and 2 GHz optional)

• Efficient utilization of international ‚frequency grid‘

• Nine channels allocated from 57 GHz up to 66 GHz

Frequency Channels

RTTT: Road Transport and Traffic Telematics

Frequency Regulation in Europe is in Progress

May 2007

France Telecom - IHPSlide 8

doc.: IEEE 802.15-07-0688-01-003c

Submission

Proposed Spectral Mask per Channel

fc

FFT Bandwidth = 1 GHz

Used Subcarriers = 890 MHz

- 30 dB

- 36 dB

Bandwidth to neighbor subcarrier = 1.11 GHz

0 dB

May 2007

France Telecom - IHPSlide 9

doc.: IEEE 802.15-07-0688-01-003c

Submission

System Architecture

May 2007

France Telecom - IHPSlide 10

doc.: IEEE 802.15-07-0688-01-003c

Submission

System Architecture

Basic MAC features:– Standard IEEE 802.15.3 MAC

adapted to 60 GHz PHY

– Centrally controlled TDMA schemePiconet controller + several terminals

– QoS (Quality of Service) support

– Authentication, privacy, dynamic channel selection, power management, etc.

– Unicast, Multicast and Broadcast capabilities

– Point to point and point to multipoint connection

May 2007

France Telecom - IHPSlide 11

doc.: IEEE 802.15-07-0688-01-003c

Submission

PHY-Dependent MAC Parameters

Parameter name proposed value – 60 GHz

pPHYMIFSTime 1 µs

pPHYSIFSTime 8 µs

pCCADetectTime 2 µs

pPHYChannelSwitchTime 500 µs

pPHYClockAccuracy +/- 15 ppm

pMaxFrameBodySize 4082 octets

pMaxTransferUnitSize 4066 octets

pMinFragmentSize 128 octets

May 2007

France Telecom - IHPSlide 12

doc.: IEEE 802.15-07-0688-01-003c

Submission

Frame Format

• Preamble of about 6.6 µs duration.

• First OFDM symbol = Signal Field. Always sent at the lowest data rate of 375 Mbit/s (BPSK ½). Contains PHY header, lengths of up to 20 MAC frames, 1st MAC header.Protected by header check sum (HCS) = 16 bit CRC.

• More OFDM symbols = Frame body . Variable length and modulation scheme / data rateContains up to 20 MAC payloads, FCS, and MAC headers (except 1st)

• If required, the last OFDM symbol is filled with arbitrary stuff bytes.

Preamble Signal field (BPSK ½) Frame body (variable length /data rate)

PHY

para-

meters

frame lengths

of up to 20

MAC frames

First

MAC

header

header

check

sum

First

MAC

payload

First

MAC

FCS

Second

MAC

header

Second

MAC

payload

2nd

MAC

FCS

...

May 2007

France Telecom - IHPSlide 13

doc.: IEEE 802.15-07-0688-01-003c

Submission

Definition of Signal FieldOne OFDM symbol BPSK ½ (375 Mbit/s) = 52.5 bytes

Assigned bits Length Logical name Description and range

Byte 0, bits 0-2 3 bits PHY_VERSION PHY version (currently set to zero)

Byte 0, bits 3-7 5 bits PD_MODE Transmission mode for data payload (see table 2)

Byte 1, bits 0-2 3 bits N_PERM N_PERM+1 specifies the interleaver size in multiples of

OFDM symbols, range = 1…8

Byte 1, bits 3-5 3 bits N_STREAM N_STREAM+1 = number of parallel coding streams

Byte 1, bit 6 1 bit FRM_FOLLOW 1 = after the MIFS time, a subsequent frame is intended to

be sent, 0 = no subsequent frame is intended to be sent

Byte 2, bits 0-4 5 bits N_MAC_FRM N_MAC_FRM+1 = number of transmitted MAC frames in

this physical frame, range = 1…20

Byte 3, bits 0-7

Byte 4, bits 0-6

15 bits PD_SCR_INIT Initial state for data scrambler

Byte 5, bits 0-7

Byte 6, bits 0-3

12 bits NDATA_1 NDATA_1 = packet length in MAC frame 1

· · · · · · · · · · · ·

Byte 33, bits 4-7

Byte 34, bits 0-7

12 bits NDATA_20 NDATA_20 = packet length in MAC frame 20

Byte 35-Byte 44 10 bytes MHD_1 MAC header of packet 1

Byte 49, bits 0-7

Byte 50, bits 0-7

16 bits CRC_HD PHY header checksum (16-bit CRC)

Byte 51, bits 6-7

Byte 52, bits 0-3

6 bits 6 Viterbi tail bits

May 2007

France Telecom - IHPSlide 14

doc.: IEEE 802.15-07-0688-01-003c

Submission

Preamble Format and Utilization

Preamble Part 1 Pr. Part 2 SF Data Payload

A A A A A A A A A A A A A A A A A A

-A -A-A -A -A -A -A -A

8 A-symbols for

• AGC settling

11 A-symbols + 13 inverted A-symbols for:

• Frame detection

• Frequency correction• Coarse frame synchronization

-A -A -A -A

A

-A

T1 = 1.024µs T2 = 3.072µs

CP(B) B B

Two long B-symbols for:

• Channel estimation

• Fine frame synchronization• (Fine frequency estimation)

T3 = 0.384 µs + 2.048µs

Tpreamble = 6.528 µs

May 2007

France Telecom - IHPSlide 15

doc.: IEEE 802.15-07-0688-01-003c

Submission

Frame Detection Mechanism

A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’

-A’-A’-A’-A’-A’-A’-A’-A’-A’-A’-A’-A’

A’

A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’

-A’ -A’-A’-A’-A’ -A’-A’-A’-A’-A’-A’-A’

A’

short ACFdelayed short ACF

short ACFdelayed short ACF

first peak

second peakR11 R12

R31

R21

R22

R32

R41 R42

],[ maxmin1 DDxx kk ∈−+

• A normalized autocorrelator is related to a delayed version

• Samples satisfying an “antiphase-condition” are marked

• Marked samples are grouped in clusters, such that the distance of

adjacent cluster samples is below some value d

• The middle point in each cluster is defined as a peak at position xk

• Two peaks must be found in the frame with a distance

• With the first peak as a time reference, a second ACF is evaluated

for final frame detection and frequency offset correction

A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’

-A’-A’-A’-A’-A’-A’-A’-A’-A’-A’-A’-A’

A’

Applying second (long) ACF for frequency correction and final frame detectionSTEP 1

STEP 2

May 2007

France Telecom - IHPSlide 16

doc.: IEEE 802.15-07-0688-01-003c

Submission

Signal Waveform of Synchronizer-ACFs

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.2

0.4

0.6

0.8

ACF signals over time for some channel response of CM2.3, SNR = 20 dB

long acf

short acf

delayed short acf

First peak Second peak

May 2007

France Telecom - IHPSlide 17

doc.: IEEE 802.15-07-0688-01-003c

Submission

Channel Estimation and Time Synchronization

CP(B) B B

• Two FFTs are applied on the second preamble part for initial channel estimation

• A phase-unwrapping method is used to estimate the position of the centroid of the channel impulse response in the frequency domain

• The frame FFT start position is taken at a fixed offset position from theestimated centroid

• The BPSK modulated OFDM symbol for the signal field (SF) isexploited after SF decoding to improve channel estimation (DFE)

SFCP

FFT FFT FFT

Initial channel estimate (Gain = 3 dB)

Updated channel estimate (Gain = 4.77 dB)

May 2007

France Telecom - IHPSlide 18

doc.: IEEE 802.15-07-0688-01-003c

Submission

Detection Performance

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SNR [dB] in 1 GHz noise bandwidth

fram

e failu

re r

ate

(lin

ear)

detection performance for all channels (100%)

CM 1.3

CM 2.3

CM 2.3 normalized

CM 3.1

-15 -10 -5 0 5 10 150

0.2

0.4

0.6

0.8

1

1.2

1.4

power [dBu]

cummulative distribution function of received power

channel model 1.3

channel model 2.3

channel model 3.1

• Good performance down to SNR = 1 dB for CM1.3, CM3.1 and CM2.3(norm.)

• Bad performance for unnormalized CM2.3 due to strong power fluctuation

• No false alarm was ever observed

• 5000 simulated frames / SNR-value, virtual simulation time / SNR-value = 82ms

• Power amplifier backoff: IBO = OBO = 10 dB

• Phase noise: -92 dBc/Hz@ 1MHz, cutoff (pole) = 100 kHz, noise floor = -130 dBc/Hz

May 2007

France Telecom - IHPSlide 19

doc.: IEEE 802.15-07-0688-01-003c

Submission

Frequency Synchronization

• Performance can be improved with less phase noise / wider PLL loop bandwidth

0 2 4 6 8 10 12 14 16 18 200.012

0.014

0.016

0.018

0.02

0.022

0.024

SNR [dB] in 1 GHz noise bandwidth

mean absolute frequency estimation error, normalized to subcarrier spacing

CM 1.3

CM 2.3 normalized

CM 3.1

Limited by phase noise

May 2007

France Telecom - IHPSlide 20

doc.: IEEE 802.15-07-0688-01-003c

Submission

PHY Baseband Description

May 2007

France Telecom - IHPSlide 21

doc.: IEEE 802.15-07-0688-01-003c

Submission

PHY Baseband Architecture

• OFDM system architecture

Binarysource

Data scrambler

Puncturer

Binaryinterleaver

Constellation Mapping

Toneinterleaver

S->PPilot inser-tion

IFFT P->SCP

insertion

cos(2πfct)

DAC

Convolutional

encoder

Guard

sub-carriers

insertion

PuncturerConvolutional

encoderB

ina

rym

ap

pin

g

Bin

ary

map

pin

g

… …

Mandatory: 1 stream, Optional: N streams

May 2007

France Telecom - IHPSlide 22

doc.: IEEE 802.15-07-0688-01-003c

Submission

System Parameters

1120 ns / 1184 ns / 1244 nsSymbol interval

96 ns / 160 ns / 220 nsCyclic prefix duration

1024 nsIFFT/FFT period

0.977 MHzSubcarrier frequency spacing

1 GHzChannel bandwidth

1024FFT size

113Number of guard subcarriers

5Number of DC zero

subcarriers

66Number of pilot subcarriers

840Number of data subcarriers

ValueParameter

• Nominal channel bandwidth of 1 GHz

• Compatible with 500 MHz and 2 GHZ channels

• 3 different values of CP duration depending on the channel characteristics

May 2007

France Telecom - IHPSlide 23

doc.: IEEE 802.15-07-0688-01-003c

Submission

Modulation and Coding Schemes

4202/364-QAM3000 Mbps

3505/616-QAM2500 Mbps

2802/316-QAM2000 Mbps

2101/216-QAM1500 Mbps

1402/3QPSK1000 Mbps

1051/2QPSK750 Mbps

702/3BPSK500 Mbps

52.51/2BPSK375 Mbps

Data bytes per OFDM

symbol

Coding RateModulationData Rate

Valid for CP duration of 96 ns. See backup slides for longer CP values.

May 2007

France Telecom - IHPSlide 24

doc.: IEEE 802.15-07-0688-01-003c

Submission

Coding Scheme

• Convolutional encoder, with code rate R = 1/2 and generator polynomials g0 = (133)8 and g1 = (171)8

• Parallel encoding for high data rates

Binary

source

Data

scrambler

Puncturer

Binary

interleaver

Convolutional

encoder

PuncturerConvolutional

encoder

PuncturerConvolutional

encoder

PuncturerConvolutional

encoderBin

ary

mapp

ing

Bin

ary

dem

ap

pin

g

May 2007

France Telecom - IHPSlide 25

doc.: IEEE 802.15-07-0688-01-003c

Submission

Binary Interleaving

• Optimized binary interleaver to increase encoder performance

• An iterative structure of the algorithm generates different permutation rules in a scalable way

( )

, ( )j

p qI k(2)

, ( )p qI k

I I Ik I

, ( )p qI k

( )

, ( )j

p qI k(2)

, ( )p qI k

I I Ik I

, ( )p qI k

( ) ( )( )

( ) [ ][ ]

( ) [ ][ ]KK

j

qp

j

qp

KKqp

j

qpINOUT

IpkpqkkI

kpkpqkkI

kIXkX

)1(

,

)(

,

)0(

,

)(

,

−⋅−−⋅⋅++=

⋅−−⋅⋅++=

=

α

α

parameterOffset :

parametersr Interleave : , ,

size,Block :

p

K

jqp

K

May 2007

France Telecom - IHPSlide 26

doc.: IEEE 802.15-07-0688-01-003c

Submission

Interleaving Process

• L(k) gives the position of the k-thoutput sample in the input sequence

• Selection of interleaving patterns

– Targeted values for s to maximize

∆L(s)

– Parameters {p, q, j} are selected when

XOUT (k) 0

0

L(0)L(k)

k

L(k+s)

k+s

XOUT (k)=XIN (L(k))

{ }{ }( j ) ( j )

p ,q p ,q0 k K 1

Max L( s ) Min I ( k s ) I ( k )∆≤ ≤ −

= + −

( )kIkLj

qp

)(

,)( =

May 2007

France Telecom - IHPSlide 27

doc.: IEEE 802.15-07-0688-01-003c

Submission

Binary Interleaving Properties� Controlled interleaving spreading ∆L(s) between bits separated by (s-1)

bits. � s depends on the maximisation criterion of ∆L(s)

� ∆L(s) maximisation in each data symbol � s={1,…,m-1}m :number of encoded bits per sub-carrier

� ∆L(s) maximisation between adjacent sub-carriers � [s]m=0

� Preservation of an interleaving mapping pattern� Adapted to parallel encoding of independent bit streams and special binary mapping

� 2 interleaving sizes K1 and K4 (1 and 4 OFDM symbol lengths)� A common interleaving pattern for binary and sub-carrier interleaving

� Binary interleaving located in the parallel FEC structure � generates additional interleaving depths with common interleaving patterns

� Overall interleaving depths {1, 2, 4, 8 OFDM symbol length}

S=1 S=1 S=p

x'0 x'1 x'2 x'3 … x'p-1 x'p…. x'2p-1 x'pm x'1+pmx'2+pm x'3+pm ..x'p(m+1)-1

[1], [2]

May 2007

France Telecom - IHPSlide 28

doc.: IEEE 802.15-07-0688-01-003c

Submission

Binary Interleaving Parameters

• Setting of parameters {p, q, j}

Interleaving spreading ∆L(s)InterleavingparametersInterleaving

depth K

858572125128615371296840x4

16-QAM (binary)Sub-carrier, 4

OFDMs

64-QAM (binary)

16-QAM (binary)

64-QAM (binary)

BPSK (binary)Sub-carrier, 1 OFDM

Interleaving set up

4602978823015186748732288840x4x6

318623561593594239493221840x4x4

24541724122786220893236840x6

182684112861433212840

s=6s=4s=3s=2s=1jqp

May 2007

France Telecom - IHPSlide 29

doc.: IEEE 802.15-07-0688-01-003c

Submission

Tone Interleaving

• After constellation mapping, the complex symbols assigned to different frequency tones are interleaved over 1 or 4 OFDM symbols

• Purpose is to increase the system frequency diversity and reduceinterference from narrow band interferers

• Similar interleaving scheme is used as for binary interleaving

• Dynamic implementation: two different permutation rules are usedcyclically

Permutation rule #1 Permuation rule #2 Permutation rule #1 Permuation rule #2

#2#1 #4#3OFDM symbol

Two different permuation rules

f

f

f

f

YOUT (k)=YIN (L(k))

L1(k) L2(k)

May 2007

France Telecom - IHPSlide 30

doc.: IEEE 802.15-07-0688-01-003c

Submission

Tone Interleaving Parameters

• Setting of parameters {p, q, j}

Interleaving spreading ∆L(s)InterleavingparametersInterleaving

depth K

858572125128615371296840x4Sub-carrier,

4 OFDM symbols

Sub-carrier,1 OFDM symbol

Interleaving set up

182684112861433212840

s=6s=4s=3s=2s=1jqp

May 2007

France Telecom - IHPSlide 31

doc.: IEEE 802.15-07-0688-01-003c

Submission

Boosted Pilots

• Two full OFDM symbols are used in each frame for channelestimation

• Additionally, in each OFDM symbol, 66 pilot tones are insertedto mitigate phase noise and frequency offsets

• The information carried by these symbols / pilots is highly sensitive for an efficient compensation of channel impairments

• It is recommended to allocate more power to these signals

• Assymetric pilot positions can also be considered over successive OFDM symbols

Channel estimationsymbol

Data symbol #1 Data symbol #2 Data symbol #3

Pilot tone

Freq.

Pow.

May 2007

France Telecom - IHPSlide 32

doc.: IEEE 802.15-07-0688-01-003c

Submission

System Performance

May 2007

France Telecom - IHPSlide 33

doc.: IEEE 802.15-07-0688-01-003c

Submission

Simulation Assumptions

• TG3c channel models (Golden Sets)

– Residential LOS (CM1.3), NLOS (CM2.3), Office LOS (CM3.1)

– Spatial filtering: 30°HPBW at Rx

• Simulation scenario

– 64 packets (payload 2048 bytes) for 100 different channel realizations (a total of about 108 transmitted bits)

– Computation of 90% BER/PER link success probability

• Other simulation assumptions

– Realistic channel estimation

– Phase noise: single-zero, single pole model

• fp = 1 MHZ, fz = 100 MHz, PSD(0)=-87dBc/Hz (-92dBc/Hz for 3 Gbps)

– Amplifier non-linearities: Rapp model without AM-PM distortion

• OBO = 10 dB, p = 2

May 2007

France Telecom - IHPSlide 34

doc.: IEEE 802.15-07-0688-01-003c

Submission

Simulation Results – 2 Gbps

CM1.3, CM2.3, CM3.1

Channel models tested

2 GbpsData rate

4 OFDM symbols

Interleaver

depth

Channel coding, rate

Modulation

Guard time

Data subcarriers

Number of subcarriers

RF bandwidth

Parameter

840

16-QAM

Convolutionalcode, R = 2/3

96 ns (CP)

1024

1 GHz

Value

• 90% BER link success probability

0 5 10 15 20 2510

-6

10-5

10-4

10-3

10-2

10-1

100

BE

R

Eb / N

0

2 Gbps

CM1.3

CM2.3

CM3.1

May 2007

France Telecom - IHPSlide 35

doc.: IEEE 802.15-07-0688-01-003c

Submission

Simulation Results – 2 Gbps

CM1.3, CM2.3, CM3.1

Channel models tested

2 GbpsData rate

4 OFDM symbols

Interleaver

depth

Channel coding, rate

Modulation

Guard time

Data subcarriers

Number of subcarriers

RF bandwidth

Parameter

840

16-QAM

Convolutionalcode, R = 2/3

96 ns (CP)

1024

1 GHz

Value

• 90% PER link success probability

0 5 10 15 20 2510

-2

10-1

100

PE

R

Eb / N

0

2 Gbps

CM1.3

CM2.3

CM3.1

May 2007

France Telecom - IHPSlide 36

doc.: IEEE 802.15-07-0688-01-003c

Submission

Simulation Results – 3 Gbps

CM1.3, CM2.3, CM3.1

Channel models tested

3 GbpsData rate

4 OFDM symbols

Interleaver

depth

Channel coding, rate

Modulation

Guard time

Data subcarriers

Number of subcarriers

RF bandwidth

Parameter

840

64-QAM

Convolutionalcode, R = 2/3

96 ns (CP)

1024

1 GHz

Value

• 90% BER link success probability

• CM2.3n = normalized channels of CM2.3

• Phase noise: PSD(0) = -92 dBc/Hz

10 12 14 16 18 20 22 24 26 28 3010

-6

10-5

10-4

10-3

10-2

10-1

100

BE

R

Eb / N

0

3 Gbps

CM1.3

CM2.3

CM2.3n

CM3.1

May 2007

France Telecom - IHPSlide 37

doc.: IEEE 802.15-07-0688-01-003c

Submission

Simulation Results – 3 Gbps

CM1.3, CM2.3, CM3.1

Channel models tested

3 GbpsData rate

4 OFDM symbols

Interleaver

depth

Channel coding, rate

Modulation

Guard time

Data subcarriers

Number of subcarriers

RF bandwidth

Parameter

840

64-QAM

Convolutionalcode, R = 2/3

96 ns (CP)

1024

1 GHz

Value

• 90% PER link success probability

• CM2.3n = normalized channels of CM2.3

• Phase noise: PSD(0) = -92 dBc/Hz

10 12 14 16 18 20 22 24 26 2810

-2

10-1

100

PE

R

Eb / N

0

3 Gbps

CM1.3

CM2.3

CM2.3n

CM3.1

May 2007

France Telecom - IHPSlide 38

doc.: IEEE 802.15-07-0688-01-003c

Submission

Link Budget Example

• CM1.3, LOS path loss model, 2 Gbps

m5,89Maximum operating range (d = 10 PL/10n

)

dB15,4Tolerable path loss (PL = PT+GT+GR-PN-S-Mshadowing-I-PL0)

dB3Implementation Loss (I)

dB5Shadowing link margin (Mshadowing)

dB11,6Minimum Eb/N0 for CM1.3 channel (S) (for BER = 1E-6)

dBm-75Average noise power per bit (PN = N + NF)

dB6Rx Noise Figure Referred to the Antenna Terminal (NF)

dBm-81Average noise power per bit (N=-174+10*log10(Rb)))

dBi9Rx antenna gain (GR)

68.00dB68Path loss at 1 meter (PL0 = 20log10(4*PI*fc/c)), c = 3*108

m/s

60GHz60Center frequency (fc)

dBi9Tx antenna gain (GT)

dBm10Average Tx power (PT)

Gb/s2PHY-SAP Payload Bit Rate (Rb)

UnitValueParameter

May 2007

France Telecom - IHPSlide 39

doc.: IEEE 802.15-07-0688-01-003c

Submission

MAC Goodput without ACK

PHY overhead time = 8.8 µs

(6.6 µs preamble + 1.2 µs signal field + 1 µs MIFS time)

100 1k 10k 100k 1M

0

500

1000

1500

2000

2500

3000

without ACK

MA

C g

oo

dp

ut

(Mb

it/s

)

MAC payload size (bytes)

Nominal PHY data rate

3000 Mbit/s

2000 Mbit/s

1500 Mbit/s

750 Mbit/s

375 Mbit/s

80 kByte

97 %

May 2007

France Telecom - IHPSlide 40

doc.: IEEE 802.15-07-0688-01-003c

Submission

MAC Goodput with Group ACK

PHY overhead time = 32.8 µs

(2x 6.6 µs preamble + 2x 1.2 µs signal field + 1.2 µs ACK payload + 2x 8 µs SIFS time)

100 1k 10k 100k 1M

0

500

1000

1500

2000

2500

3000M

AC

goo

dpu

t (M

bit/s

)

MAC payload size (bytes)

Nominal PHY data rate

3000 Mbit/s

2000 Mbit/s

1500 Mbit/s

750 Mbit/s

375 Mbit/s

including group ACK

80 kByte

91 %

May 2007

France Telecom - IHPSlide 41

doc.: IEEE 802.15-07-0688-01-003c

Submission

System Implementation

May 2007

France Telecom - IHPSlide 42

doc.: IEEE 802.15-07-0688-01-003c

Submission

Estimated Chip Area

• Scaling a current FPGA implementation, the following figures can be estimated (4 data streams, max. 500 MHz digital CLK, 65 nm digital CMOS, 130 nm analog SiGe-BiCMOS assumed!):

– MAC Processor: 10 mm2 (ca. 10 Mio Gates)

– Baseband Processor: 15 mm2 (ca. 15 Mio Gates)

– Data Converters: 10 mm2

– Analog Frontend (incl. PA) 6 mm2

– Size Complete Transceiver PCB: 5 cm x 4 cm x 3 cm

– Size of Antenna (Patch Array): 30 mm x 40 mm x 2 mm

May 2007

France Telecom - IHPSlide 43

doc.: IEEE 802.15-07-0688-01-003c

Submission

Estimated Power Dissipation

• Total Power Dissipation at 2 Gb/s

(65 nm CMOS digital; 130 nm analog SiGe)

TX RX

– MAC Processor: 200 mW 200 mW

– Baseband Processor: 200 mW 350 mW

– Data Converters: 100 mW 150 mW

– Analog Frontend 200 mW 200 mW

– Power Amplifier 150 mW 20 mW

• Total (continuous): 850 mW 920 mW

May 2007

France Telecom - IHPSlide 44

doc.: IEEE 802.15-07-0688-01-003c

Submission

Prototype

May 2007

France Telecom - IHPSlide 45

doc.: IEEE 802.15-07-0688-01-003c

Submission

OFDM-Baseband Processor (FPGA)

A/D Converter

D/A Converter

Main FPGA Board for BB Proc.

BB I/Q Signals to/from IF Block

Signal Bandwidth: 500 MHz; Max data rate: 1 Gbps

May 2007

France Telecom - IHPSlide 46

doc.: IEEE 802.15-07-0688-01-003c

Submission

60 GHz Analog Frontend

60 GHz TX60 GHz RX

5 GHz TX

5 GHz RX

0.25 um SiGe BiCMOS Technology; Max data rate: 720 Mbit/s @ 500 MHz Bandwidth demonstrated

May 2007

France Telecom - IHPSlide 47

doc.: IEEE 802.15-07-0688-01-003c

Submission

Open issues

• Addition of a Low Data Rate (LDR) mode for signalling and LDR applications

– Specific 60 GHz channel

– Other technology (UWB, 5 GHz, …)

• Compatibility with other techniques for 60 GHz transmission isdesirable

– SC with FDE, SC, …

• Use of multiple antennas could increase efficiency

– Beamforming

– MIMO STBC

– …

May 2007

France Telecom - IHPSlide 48

doc.: IEEE 802.15-07-0688-01-003c

Submission

Conclusion

• This proposal presents an OFDM based PHY allowing 60 GHz transmission at data rates from 335 Mbps to 3 Gbps

• OFDM presents technical advantages meeting TG3c requirements :

– Inherently robust against any type of fading channel

– Providing high spectrum efficiency and allowing to reach high data rates

• OFDM is a future proof technology

– Mature, widely used technology (WiFi, WiMax, DAB, DVB, ECMA UWB)

– Large scope of possible applications: from point-to-point data transfer to cell mode coverage

– Compatible with advanced techniques: beamforming, MIMO STBC, …

• We are in discussions to converge with Wireless HD, and open to discussions with any companies interested in OFDM or compatible technologies

May 2007

France Telecom - IHPSlide 49

doc.: IEEE 802.15-07-0688-01-003c

Submission

References

[1] Siaud.I, Ulmer-Moll A.M, "A Novel Adaptive sub-carrier Interleaving : application to millimeter-wave WPAN OFDM Systems (IST MAGNET project)", IEEE portable 2007 conf, 25-29 March 2007, Orlando (USA).

[2] Siaud.I, Ulmer-Moll, "Advanced Interleaving algorithms for OFDM based millimeter wave WPAN transmissions", SCEE Seminar, 8 February 2007, France.

[3] Pagani, P., Siaud, I., Ulmer-Moll, A. & Li, W., "High rate OFDM system for 60 GHz WPAN", IEEE 802.15 Working Group for WPANs, no. IEEE 802.15-07/539, Jan. 2007.

[4] Pagani, P., Siaud, I., Ulmer-Moll, A. & Li, W., "Advanced interleaving for high data rate 60 GHz communications", IEEE 802.15 Working Group for WPANs, no. IEEE 802.15-07/627, March 2007.

[5] E. Grass, M. Piz, F. Herzel, R. Kraemer ‘Draft PHY Proposal for 60 GHz WPAN’ IEEE 802.15 Meeting, Document Number: IEEE 802.15-05/0634r1, Vancouver (Can), Nov. 2005.

[6] E. Grass, M. Piz, F. Herzel, K. Schmalz, Y. Sun, S. Glisic, K. Tittelbach-Helmrich ‘60 GHz Demonstrator in 0.25 µm SiGe:C BiCMOS Technology’, IEEE 802.15 Meeting, Document Number: IEEE 802.15-06/0320r0, San Diego (CA), July 2006.

[7] E. Grass, F. Herzel, M. Piz, Y. Sun, R. Kraemer, 'Implementation Aspects of Gbit/sCommunication Systems in the 60 GHz Band' Wireless World Research Forum (WWRF) / WG5, San Diego (CA), July 07-08, 2005.

[8] F. Herzel, S. Glisic, W. Winkler ‘Integrated Frequency Synthesizer in SiGe BiCMOS Technologyfor 60 GHz and 24 GHz Wireless Applications’, Electronics Letters 43(3), 154 (2007)

May 2007

France Telecom - IHPSlide 50

doc.: IEEE 802.15-07-0688-01-003c

Submission

Thank you !

Questions ?

[email protected]

[email protected]

[email protected]

May 2007

France Telecom - IHPSlide 51

doc.: IEEE 802.15-07-0688-01-003c

Submission

Backup slides

May 2007

France Telecom - IHPSlide 52

doc.: IEEE 802.15-07-0688-01-003c

Submission

Modulation and Coding Schemes

472.53/464-QAM3000 Mbps

4202/364-QAM2700 Mbps

3153/416-QAM2000 Mbps

2101/216-QAM1350 Mbps

157.53/4QPSK1000 Mbps

1051/2QPSK675 Mbps

78.753/4BPSK500 Mbps

52.51/2BPSK335 Mbps

Data bytes per OFDM

symbol

Coding RateModulationMinimum

Data Rate

for CP lengths of 160 ns and 220 ns