18

LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS
Page 2: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS
Page 3: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). Actas del Congreso Internacional de Eficiencia Energética y Edificación Histórica / Proceedings of the International Conference on Energy Efficiency and Historic Buildings (Madrid, 29-30 Sep. 2014). Madrid: Fundación de Casas Históricas y Singulares y Fundación Ars Civilis, 2014. ISBN: 978-84-617-3440-5

Edited by

Fundación de Casas Históricas y Singulares

Fundación Ars Civilis

Coordinated by

Mónica López Sánchez. Fundación Ars Civilis

Ana Yáñez Vega. Fundación de Casas Históricas y Singulares

Sofia Gomes da Costa. Fundación de Casas Históricas y Singulares

Lourdes Avellà Delgado. Fundación Ars Civilis

© Copyright

2014. Texts: the respective authors (or their employers); Proceedings: the coordinators and editors.

Page 4: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on http://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 5 -

TTaabbllee ooff ccoonntteennttss

PRESENTACIÓN ............................................................................................................... - 11 -

Eficiencia energética y edificación histórica: un reto del presente..................................... - 13 - Cristina Gutiérrez-Cortines y Mónica López Sánchez. Fundación Ars Civilis

Eficiencia energética y edificación histórica: un reto del futuro ........................................ - 14 - Ana Yáñez Vega. Fundación de Casas Históricas y Singulares

Committees .................................................................................................................... - 15 -

Programme ..................................................................................................................... - 16 -

Governance, management, participation and mediation..........................................- 21 -

SUSTAINABLE ENERGY ACTION FOR WORLD HERITAGE MANAGEMENT ............................ - 22 - RONCHINI, C.; POLETTO, D.

ENERGY EFFICIENCY AND URBAN RENEWAL OF A UNESCO-LISTED HISTORICAL CENTER: THE CASE OF PORTO .......................................................................................... - 38 -

SANTOS, Á.; VALENÇA, P.; SEQUEIRA, J.

HISTORICAL HERITAGE: FROM ENERGY CONSUMER TO ENERGY PRODUCER. THE CASE STUDY OF THE ‘ALBERGO DEI POVERI’ OF GENOA, ITALY .................................................. - 45 -

FRANCO, G.; GUERRINI, M.; CARTESEGNA, M.

IMPROVING ENERGY EFFICIENCY IN HISTORIC CORNISH BUILDINGS – GRANT FUNDING, MONITORING AND GUIDANCE ........................................................................ - 61 -

RICHARDS, A.

ENERGY EFFICIENCY AND BUILDINGS WITH HERITAGE VALUES: REFLECTION, CONFLICTS AND SOLUTIONS ............................................................................................ - 75 -

GIANCOLA, E.; HERAS, M. R.

PROPUESTA METODOLÓGICA PARA LA REHABILITACIÓN SOSTENIBLE DEL PATRIMONIO CONTEXTUAL EDIFICADO. EL CASO DEL CENTRO HISTÓRICO DE LA CIUDAD DE MÉRIDA, YUCATÁN / Methodological proposal for the sustainable rehabilitation of context heritage building. The case of the historic downtown of Merida, Yucatan ............................................................................................................. - 82 -

MEDINA, K.; RODRÍGUEZ, A.; CERÓN, I.

Page 5: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on http://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 6 -

Traditional and technological knowledge: concepts, techniques, practices, uses,

materials, methodologies ........................................................................................- 99 -

SUSTAINABLE REFURBISHMENT OF HISTORIC BUILDINGS: RISKS, SOLUTIONS AND BEST PRACTICE .............................................................................................................. - 100 -

HEATH, N.

EFICIENCIA ENERGÉTICA Y VALORES PATRIMONIALES. LECCIONES DE UNA INVESTIGACIÓN Y UN SEMINARIO / Energy efficiency and heritage values. Lessons of a Research and a Seminar ............................................................................................. - 110 -

GONZÁLEZ MORENO-NAVARRO, J. L.

ARCHITECTURAL INTEGRATION OF PHOTOVOLTAIC SYSTEMS IN HISTORIC DISTRICTS. THE CASE STUDY OF SANTIAGO DE COMPOSTELA .......................................................... - 118 -

LUCCHI, E.; GAREGNANI, G.; MATURI, L.; MOSER, D.

HISTORIC BUILDING ENERGY ASSESSMENT BY MEANS OF SIMULATION TECHNIQUES ..... - 135 - SOUTULLO, S.; ENRIQUEZ, R.; FERRER, J. A.; HERAS, M. R.

DESIGN OF A CONTROL SYSTEM FOR THE ENERGY CONSUMPTION IN A WALL-HEATED CHURCH: SANTA MARIA ODIGITRIA IN ROME ................................................................. - 145 -

MANFREDI, C.; FRATERNALI, D.; ALBERICI, A.

EXEMPLARY ENERGETICAL REFURBISHMENT OF THE GERMAN ACADEMY IN ROME "VILLA MASSIMO" ........................................................................................................ - 160 -

ENDRES, E.; SANTUCCI, D.

SISTEMA MÓVIL INTEGRADO PARA LA REHABILITACIÓN ENERGÉTICA DE EDIFICIOS: LÁSER 3D, TERMOGRAFÍA, FOTOGRAFÍA, SENSORES AMBIENTALES Y BIM / Integrated mobile system for building energy rehabilitation: 3D laser, termography, fotography, environmental sensors and BIM .................................................................................... - 169 -

SÁNCHEZ VILLANUEVA, C.; FILGUEIRA LAGO, A.; ROCA BERNÁRDEZ, D.; ARMESTO GONZÁLEZ, J.; DÍAZ VILARIÑO, L.; LAGÜELA LÓPEZ, S.; RODRÍGUEZ VIJANDA, M.; NÚÑEZ SUÁREZ, J.; MARTÍNEZ GÓMEZ, R.

CONSECUENCIAS CONSTRUCTIVAS Y ENERGÉTICAS DE UNA MALA PRÁCTICA. ARQUITECTURAS DESOLLADAS / Energy and constructive consequences of a bad practice. Skinned architectures ..................................................................................... - 186 -

DE LUXÁN GARCÍA DE DIEGO, M.; GÓMEZ MUÑOZ, G.; BARBERO BARRERA, M.; ROMÁN LÓPEZ, E.

EL BIENESTAR TÉRMICO MÁS ALLÁ DE LAS EXIGENCIAS NORMATIVAS. DOS CASOS. DOS ENFOQUES / Thermal comfort beyond legislation. Two examples. Two approaches ................................................................................................................... - 201 -

DOTOR, A.; ONECHA, B.; GONZÁLEZ, J. L.

LA MONITORIZACIÓN Y SIMULACIÓN HIGROTÉRMICA COMO HERRAMIENTA PARA LA MEJORA DEL CONFORT, PRESERVACIÓN Y AHORRO ENERGÉTICO DE ESPACIOS PATRIMONIALES. EL CASO DE LA IGLESIA DE SAN FRANCISCO DE ASIS, MORÓN DE LA FRONTERA / Measurement and hygrothermal simulation model, a tool to enhance thermal comfort, preservation and saving energy of heritage site. Case study: the church of San Francisco of Asís in Morón de la Frontera ................................................. - 210 -

MUÑOZ, C.; LEÓN, A.; NAVARRO, J.

Page 6: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on http://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 7 -

TERESE3: HERRAMIENTA INFORMÁTICA PARA LA EFICIENCIA ENERGÉTICA MEDIANTE LA SIMULACIÓN CALIBRADA DE EDIFICIOS / TERESE3: informatic tool for the energetic efficiency through the calibrated simulation of buildings ............................................... - 226 -

GRANADA, E.; EGUÍA, P.; MARTÍNEZ, R.; NÚÑEZ, J.; RODRÍGUEZ, M.

EFICIENCIA ENERGÉTICA Y ANÁLISIS TÉRMICO PARA SISTEMAS DE AIRE CENTRALIZADO: UN CASO DE ESTUDIO / Energy Efficiency and thermal analysis for centralized air heating systems: a case study ................................................................. - 238 -

MARTÍNEZ-GARRIDO, M. I.; GOMEZ-HERAS, M.; FORT, R.; VARAS-MURIEL, M. J.

ANALISIS ENERGETICO DEL MUSEO DE HISTORIA DE VALENCIA MEDIANTE DISTINTAS HERRAMIENTAS DE SIMULACIÓN / Energy assessment of the History Museum of Valencia using various simulation tools ......................................................................... - 249 -

TORT-AUSINA, I.; VIVANCOS, J.L.; MARTÍNEZ-MOLINA, A.; MENDOZA, C. M.

APROVECHAMIENTO SOLAR PASIVO EN LA RETÍCULA URBANA DE LA CIUDAD HISTÓRICA. EL CASO DE CÁDIZ / Passive solar gains in the urban grid of the historic city. The case study of Cadiz .......................................................................................... - 257 -

SÁNCHEZ-MONTAÑÉS, B.; RUBIO-BELLIDO, C.; PULIDO-ARCAS, J. A.

TECHNICAL SYSTEM HISTORY AND HERITAGE: A CASE STUDY OF A THERMAL POWER STATION IN ITALY ......................................................................................................... - 275 -

PRETELLI, M.; FABBRI, K.

ANALISIS ENERGÉTICO Y PROPUESTAS DE MEJORA DE UNA CASA EN REQUENA MEDIANTE PROGRAMAS DE SIMULACIÓN / Energy analysis and improvement proposal of a house in Requena (Spain) using simulation software ................................. - 281 -

TORT-AUSINA, I.; VIVANCOS, J.L.; MARTÍNEZ-MOLINA, A.; MENDOZA, C. M.

UNA REVISIÓN DE PUBLICACIONES EN EDIFICIOS DESDE EL ASPECTO ENERGÉTICO / A review of papers in buildings from the energetic perspective ......................................... - 292 -

TORT-AUSINA, I.; MARTÍNEZ-MOLINA, A.; VIVANCOS, J.L.

MORTEROS MIXTOS DE CAL Y CEMENTO CON CARACTERÍSTICAS TÉRMICAS Y ACÚSTICAS MEJORADAS PARA REHABILITACIÓN / Lime-cement mixture with improved thermal and acoustic characteristics for rehabilitation ................................... - 303 -

PALOMAR, I.; BARLUENGA, G.; PUENTES, J.

NEAR ZERO ENERGY HISTORIC BUILDING. TOOLS AND CRITERIA FOR ECOCOMPATIBLE AND ECOEFFICIENT CONSERVATION .............................................................................. - 318 -

BAIANI, S.

INTEGRANDO RENOVABLES EN LA CIUDAD HEREDADA: GEOTERMIA URBANA / Integrating renewable in the inherited city: urban geothermal ....................................... - 329 -

SACRISTÁN DE MIGUEL, M. J.

ANÁLISIS Y PROPUESTAS DE MEJORA DE LA EFICIENCIA ENERGÉTICA DE UN EDIFICIO HISTÓRICO DE CARTAGENA: ANTIGUO PALACIO DEL MARQUÉS DE CASA-TILLY / Analysis and proposals for improving the energy efficiency of a historical building in Cartagena: the former Palace of the Marquis of Casa-Tilly ............................................. - 344 -

COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C.

REHABILITACIÓN ENERGÉTICA DE EDIFICIOS DE VIVIENDAS BAJO EL PLAN ESPECIAL DE PROTECCIÓN DEL PATRIMONIO URBANÍSTICO CONSTRUIDO EN DONOSTIA-SAN SEBASTIÁN / Building energy retrofit of dwellings under the special plan of urban built heritage protection in Donostia-San Sebastian ....................................................... - 357 -

Page 7: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on http://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 8 -

MARTÍN, A.; MILLÁN, J. A.; HIDALGO, J. M.; IRIBAR, E.

IS TEMPERIERUNG ENERGY EFFICIENT? THE APPLICATION OF AN OLD-NEW HEATING SYSTEM TO HERITAGE BUILDINGS ................................................................................. - 366 -

DEL CURTO, D.; LUCIANI, A.; MANFREDI, C.; VALISI, L.

TERMOGRAFÍA INFRARROJA Y EDIFICIOS HISTÓRICOS .................................................... - 380 - MELGOSA, S.

SIMULATION MODEL CALIBRATION IN THE CONTEXT OF REAL USE HISTORIC BUILDINGS .................................................................................................................... - 388 -

ENRÍQUEZ, R.; JIMÉNEZ, M.J.; HERAS, M.R.

THE THERMOPHYSICAL CHARACTERIZATION OF TECHNICAL ELEMENTS IN THE HISTORIC ARCHITECTURE: EXPERIENCES IN PALERMO .................................................... - 397 -

GENOVA, E.; FATTA, G.

ENERGY EVALUATION OF THE HVAC SYSTEM BASED ON SOLAR ENERGY AND BIOMASS OF THE CEDER RENOVATED BUILDING ............................................................ - 407 -

DÍAZ ANGULO, J. A.; FERRER, J. A.; HERAS, M. H.

Legal and technical regulation and historic buildings ............................................. - 419 -

OLD BUILDING, NEW BOILERS: THE FUTURE OF HERITAGE IN AN ERA OF ENERGY EFFICIENCY ................................................................................................................... - 420 -

JANS, E.; ICOMOS, M.; KOPIEVSKY, S.; AIRHA, M.

HISTORIC WINDOWS: CONSERVATION OR REPLACEMENT. WHAT'S THE MOST SUSTAINABLE INTERVENTION? LEGISLATIVE SITUATION, CASE STUDIES AND CURRENT RESEARCHES ................................................................................................................. - 432 -

PRACCHI, V.; RAT, N.; VERZEROLI, A.

ENERGY RETROFIT OF A HISTORIC BUILDING IN A UNESCO WORLD HERITAGE SITE: AN INTEGRATED COST OPTIMALITY AND ENVIRONMENTAL ASSESSMENT............................ - 450 -

TADEU, S.; RODRIGUES, C.; TADEU, A.; FREIRE, F.; SIMÕES, N.

PARQUE EDIFICADO O PATRIMONIO EDIFICADO: LA PROTECCIÓN FRENTE A LA INTERVENCIÓN ENERGÉTICA. EL CASO DEL BARRIO DE GROS DE SAN SEBASTIÁN / Built Park or Built Heritage: Protection against energy intervention. The case of Gros district of San Sebastian ................................................................................................ - 464 -

URANGA, E. J.; ETXEPARE, L.

SIMULTANEOUS HERITAGE COMFORT INDEX (SHCI): QUICK SCAN AIMED AT THE SIMULTANEOUS INDOOR ENVIRONMENTAL COMFORT EVALUATION FOR PEOPLE AND ARTWORKS IN HERITAGE BUILDINGS ............................................................................. - 478 -

LITTI, G.; FABBRI, K.; AUDENAERT, A.; BRAET, J.

PROBLEMÁTICA DE LA POSIBLE CERTIFICACIÓN ENERGÉTICA CON CE3X DEL PATRIMONIO ARQUITECTÓNICO: EL CASO DEL ALMUDÍN DE VALENCIA / Difficulties found in the possible energy certification of heritage by using the CE3X software: the case of El Almudín of Valencia ....................................................................................... - 495 -

CUARTERO-CASAS, E.; TORT-AUSINA, I.; MONFORT-I-SIGNES, J.; OLIVER-FAUBEL, E. I.

PROTOCOL FOR CHARACTERIZING AND OPTIMIZING THE ENERGY CONSUMPTION IN PUBLIC BUILDINGS: CASE STUDY OF POZUELO DE ALARCÓN MUNICIPALITY ................... - 506 -

RUBIO, A.; MACÍAS, M.; LUMBRERAS, J.

Page 8: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on http://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 9 -

Promotion, training, education .............................................................................. - 513 -

THE WORK OF THE SUSTAINABLE TRADITIONAL BUILDINGS ALLIANCE AND AN INTRODUCTION TO THE GUIDANCE WHEEL FOR RETROFIT ............................................. - 514 -

MAY, N.; RYE, C.; GRIFFITHS, N.

TRAINING OF EXPERTS FOR ENERGY RETROFIT AT THE FRAUNHOFER CENTRE FOR THE ENERGY-SAVING RENOVATION OF OLD BUILDINGS AND THE PRESERVATION OF MONUMENTS AT BENEDIKTBEUERN .............................................................................. - 528 -

KILIAN, R.; KRUS, M.

SPECIALIZED ENERGY CONSULTANTS FOR ARCHITECTURAL HERITAGE ............................ - 535 - DE BOUW, M.; DUBOIS, S.; HERINCKX, S.; VANHELLEMONT, Y.

RENERPATH: METODOLOGÍA DE REHABILITACIÓN ENERGÉTICA DE EDIFICIOS PATRIMONIALES / RENERPATH: Methodology for Energy Rehabilitation of Heritage Buildings ....................................................................................................................... - 543 -

PERÁN, J. R. ; MARTÍN LERONES, P.; BUJEDO, L. A.; OLMEDO, D.; SAMANIEGO, J.; GAUBO, F.; FRECHOSO, F.; ZALAMA, E.; GÓMEZ-GARCÍA BERMEJO, J.; MARTÍN, D.; FRANCISCO, V.; CUNHA, F.; BAIO, A.; XAVIER, G.; DOMÍNGUEZ, P.; GETINO, R.; SÁNCHEZ, J. C.; PASTOR, E.

LEVANTAMIENTOS ARQUITECTÓNICOS EN EL MEDIO RURAL / Architectural surveys in rural areas .................................................................................................................... - 553 -

HIDALGO, J.M.; MILLÁN, J. A.; MARTÍN, A.; IRIBAR, E.; FLORES, I.; ZUBILLAGA, I.

AUTHORS INDEX .................................................................................................... - 567 -

Page 9: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 160 -

EEXXEEMMPPLLAARRYY EENNEERRGGEETTIICCAALL RREEFFUURRBBIISSHHMMEENNTT OOFF TTHHEE

GGEERRMMAANN AACCAADDEEMMYY IINN RROOMMEE ""VVIILLLLAA MMAASSSSIIMMOO""

ENDRES, E.; SANTUCCI, D.

ENDRES, E.: Ingenieurbüro Hausladen GmbH/Technische Universität München. München – Deutschland. [email protected]

SANTUCCI, D.: Ingenieurbüro Hausladen GmbH/Technische Universität München. München – Deutschland. [email protected]

ABSTRACT

The German Academy in Rome "Villa Massimo" is a property of the “Federal Republic of Germany” and

the most important institution for promoting German artists abroad. The complex, which consists of

different buildings included in a park, was built in first decade of the 20th century inspired by the renaissance

villas and by the contemporary architectural tendencies, both with a high cultural value. In cooperation and

with the support of governmental funding the Villa Massimo should become an exemplary refurbishment, to

fulfil the targets of the energy transition of the Federal Republic of Germany. The main energetical issue is

the development of active and passive measures and components which can ensure a year-round energy

supply from renewables and achieve a zero-energy standard. The methodology, which was developed to

provide solutions for the energetical optimization of the building stock, includes three elements of a holistic

approach: Building, technical- and energy supply. Based on the current research in the field of energy-

efficient building design the project identifies methodological aspects and technologies combined with the

building to achieve the goal of a zero energy property in Rome´s climate. It is not considering only the

aspects of the energy performance: besides the necessary refurbishment interventions, the focus is pointed

on the optimization of consumption and the conversion to renewable energy sources by simultaneous

increasing the indoor comfort. All measures that shall lead to the target of a zero energy complex have to be

considered in terms of appropriateness of the intervention and compatibility with building culture. As

renewable energy support is set to be the fundamental element of this sustainable approach in dialogue

with the building culture, the energetical concept was developed to explore the synergetic effects between

the different functions and systems composing the property and its relation to the public grid. The entire

property will be equipped with surface cooling and heating on a low-exergy level, which aims to keep the

building on a continuous indoor climate. This solution is compatible with the use of environmental energy

and guarantees a basic conditioning of all buildings. Beyond that, additional systems have to cover in an

efficient way fluctuating peaks determined by temporary functions and usage. The integration of all new

systems in the existing architecture and its compatibility with the building culture is set to be the most

relevant aspect of the intervention.

Keywords: building culture, comfort, resources, grids, relations, systems, synergies.

1. INTRODUCTION

Monumental and historic buildings are rarely included in energy optimization programs, since the preservation of their original architectural quality is prior. Nevertheless those buildings cause an important amount of energy consumption without reaching their original goal: to guarantee good climatic conditions inside without active conditioning systems. In addition, the requirements for indoor comfort have increased. Following this premise, it seems indispensable to develop strategies and concepts to approach them without affecting their historic building quality. Interventions and improvements have to consider both the existing building and its technology and the requirements of our present days: involve the users to save energy and take advantage of renewable energy.

Page 10: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 161 -

The strategy for the energetical refurbishment of the German Academy in Rome “Villa Massimo” bases on the intention to create a zero-energy balance of the whole property by applying technological solutions excluding invasive interventions on the fabric. The project procedure started in 2010 with an initiative funded by the “German Federal Environmental Foundation” (Deutsche Bundesstiftung Umwelt). This first phase had its core on the definition of optimization the performance of the existing technical supply systems integrating renewables in the complex. To the first feasibility study a second phase of investigation succeeded, supported by joint funding from the Ministry of Economics and Technology (Bundesministerium für Wirtschaft und Technologie (BMWi)), the Ministry of Transportation and Development (Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS)) as well as through a grant from the Government of the Federal Republic of Germany through the “Beauftragten der Bundesregierung für Kultur und Medien (BKM)”. The German Academy in Rome is the first property which is selected to demonstrate technical innovation combined with the research and development on integrated design applied to an existing extraterritorial property of the Federal Republic of Germany. In the second phase, a further reduction of the energy demand is planned by futher investigations on the buildings and by the replacement of technical supply to achieve the goal of a zero-energy balance.

Through the development of the design and through the implementation of interventions on the building stock of Villa Massimo, general knowledge should emerge and consequently, the complex should become a positive example of the use of innovative technologies and its integration in a complex of great historical value.

The goal of the project is to develop a process that can be applied to different typologies of historic buildings. Most of those buildings have a high consumption associated to a low level of indoor comfort conditions, often as a result of selective interventions on the building envelope, on the technical supply systems as well as due to modifications of their original functions. The first step of this process is the assignment of the energy consumption to the different buildings and systemps, divided into electricity and gas supply. Through the analysis of those assumptions combines with user profiles and user behaviour, measures have to be to propose to reduce energy consumption and to improve comfort conditions. In general it is more a holistic and integrated strategy to be defined than a list of selective investigations. All the indicated measures have to be verified considering effects on the comfort, energy consumption, costs and lifecycle as well as compatibility with the architectural quality of the buildings.

As Renewable energy supply is set to be the fundamental element of sustainable approach, the feasibility study was developed and evolved to explore the synergetic effects between the different functions and systems composing the complex and its relation to the city, its grids and energy potential.

The overall mission of the initiative is the formulation of a strategy to reduce the energy consumption, to implement renewables and to evaluate synergetic effects in a listed historic building complex without interfering with the quality of architecture. The choice to examine the property of the German Academy in Rome, was originated on the one hand by the request to act on a building of particular historical value, on the other to interact with the warm climate also in relation to the use of solar energy. The property has the potential to explore the combination of load curves from different usage increasing comfort by reducing the current consumption and costs. Almost ten years ago, from 2000 to 2003, the institution was closed due to an overall refurbishment. This intervention has radically changed the performances of the buildings due to the new installed technical systems. As a result of these measures, the energy demand has increased significantly but did not ensure the achievement of the desired comfort conditions.In

Page 11: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 162 -

addition to this, the discussion about sustainability and requirements has radically changed since that time. Refurbishments of historic and heritage buildings are generally driven by the aspects of conservation and reconstruction of the architectural significance, without enough attention to energetical aspects. Historical and monumental buildings present a series of architectural characteristics which define the urban identity. For the transformation of those buildings to reach the standards and requirements of our present days, it is necessary to add the issue of energy optimization to the priority of conservation and protection of the architectural quality.

The proposed strategy for the “German Academy in Rome, Villa Massimo”, started from this point as a model project to find solutions for reducing the primary energy demand of the property with technologies that avoid invasive interventions on the built environment.

2. THE PROPERTY

Figure 1: Site plan. Source: Daniele Santucci

The “Villa Massimo” complex built in the early twentieth century, following in parts an architectural language inspired by the Roman summer residence of the sixteenth and seventeenth century as well as contemporary architecture of the first modernism. It consists of 6 buildings placed in a park and located between the Via Nomentana and Viale XXI Aprile. The buildings are typologically very different and have different functions. The villa, the most representative building, is used for administrative and representing functions, a library and a multipurpose hall for concerts and events. The artists' studios and director’s apartment are located in different buildings on the opposite of the villa. The other buildings included in the park are the entrance building with apartment for the concierge and a small exhibition space. Eduard Arnold, a wealthy German industrialist, funded the property and donated money for the foundation. Ten of Germany’s highly gifted artists from the areas of art, music, architecture and literature have the possibility to live and work one year in Rome, eventually together with their families. The Villa Massimo is the best known German cultural institution and has given a high impact to Germany’s cultural development since its foundation in 1913. These reasons, coupled with the potential of

Page 12: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 163 -

Rome´s climate, provide the Villa Massimo to represent an optimal object to demonstrate innovative technologies and integrated strategies.

Figure 2: Villa - south façade. Source: Daniele Santucci

Villa Massimo´s architecture is an example to show how the Roman building tradition was inspiring not only for the symbolic character, but also to ensure an optimized solution in terms of building climatology. In this sense, the thermal insulation of the thick solid brick walls, the south oriented façade that uses the wind situation of Rome to cool in late summer afternoons, and the water storage in the park which contributes in hot Roman summer to cool the outside air by evaporation, all typological features which have got proven to have benefits on the climatic conditions. Ancient buildings were designed bto guarantee high comfort levels with the lowest use of resources: materials, typologies and technologies correspond to the opportunities and the proximity of locally available resources.

Due to the interventions which occurred in the past years, some of the pre-existing passive measures have changed due to the modifications in the intended use of some parts of the buildings. As a result of these uneffective interventions, the energy demand has increased significantly but did not ensure the aimed comfort conditions.

Page 13: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 164 -

Figure 3 + 4: Inside impressions Villa. Source: Daniele Santucci

Page 14: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 165 -

Figure 5: Studio`s north façade outside / inside. Source: Daniele Santucci

3. METHODOLOGY

To reach the proposed target of zero-energy building the strategy considers and applies technology and knowledge resulting from scientific research in the field of sustainable design. The proposed strategy analyses the potential of both passive and active components and is divided into phases which involves the three components: building, technical- and renewable energy supply. This strategy allows the development of integral design approaches to achieve a reduction of the current energy consumption by increasing comfort conditions and by a parallel transfer the energy supply toward renewable energy sources. The identified measures are adapted to the constraints imposed by the protection and are discusses to be in accordance with the property. In fact, the project started from the discussion on components, giving priority on the conservation of the original complex and avoiding any interference on the buildings. This integral design approach in historical buildings is not a difficult principle for itself, the point is to evaluate all aspects and to identify the potentials of the building as well as of local renewable sources and to connect the result of this analyze with suitable technical systems

In the first phase of the study the building was evaluated in terms of consumption, finding a combination between the present technical supply and conditioning systems with the profiles of the different functional areas. Critical issues related to the conditions of comfort both in summer and winter were later identified. The assignment of consumption was particularly complex because, as in most similar cases, there are no values related to the different consumers but only those of the total consumption of the whole property. Therefore it was necessary to classify the type of consumption and attribute it to the buildings and systems estimating qualitatively the different needs. Thermal simulations were used both to express statements in relation to the comfort conditions as well as to dimension the load curves of the different systems. Calculations were made to quantify the heat and hot water demand. Simulations also have proven to be an indispensable tool for quantifying the needs for comfort and to verify the proposed measures. Through thermal simulations it was possible to verify the optimization measures assumed or replacement of technical supply systems quantifying the costs, the actual reduction in terms of demand, the effects on comfort conditions and the compatibility with the architectural quality of the building. In addition, the potential obtainable from renewable energy sources was calculated, in particular the amount of solar energy that can be captured by photovoltaic systems integrated without creating visual interference with the historical complex. The particular south oriented double-pitched roofs of the studios formed the basic condition for considering this possibility. In this sense the integration of photovoltaic systems is the prior element to support the

Page 15: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 166 -

intervention. Basing on the available amount of solar radiation, variants have been formulated that combine different technical supply- and conditioning systems.

4. STRATEGY

Energy and technical Supply

Roof integrated photovoltaics will gain solar radiation and produce electricity. To cover the base load of electricity, combined-heat-and-power-production will be used by a fuel cell and a micro CHP plant. The heat from this process will be used for the domestic water supply all over the year. Solar gained electricity with peaks on sunny days will cover parallel the cooling peak loads of the administrative building by compressive chillers. This combination shows an efficient way of solar cooling and provides benefits for the urban grid. In Rome, as well as in other cities with high requests on cooling, the grid often breaks down on highest point of demand in summer.The studios will be supplied by ground water, due to less internal heat loads.The ground water temperatures in summer are sufficient to achieve comfort indoor climate, in winter the temperature level of ground water will be raised by a heat pump.

Passive and active building strategy – Studios and director´s apartment

Passive building components to reduce the heat demand are necessary for the studios and the director’s apartment due to the low internal gains in the apartments. The external walls of the studios will be covered with a high performance plaster as well as an insulation will be applied inside the roof of both buildings. The north oriented glass façade of the artist working space in the studios will be replaced by a new one. Openings in the roofs will provide better ventilation conditions, especially for night cooling in the summer. In the studios, clay plaster on the internal walls of all rooms will regulate the humidity. Floor cooling and heating, supplied by ground water, combined during wintertime with a heat pump, will regulate indoor temperature. Due to the natural ventilation strategy with night cooling effects in combination with the clay plaster and artificial thermal mass provided by PCM, there is no need for a mechanical ventilation system.

Passive building strategy – Villa

The functions and the resulting requirements in the Villa determine another strategy, based on efficient active systems. The complexity of the façade of the Villa and the low heat consumption are not compatible with a thermal insulation on the external walls. Insulation will be installed under the roof to reduce partially the heat demand. Where ever possible and necessary, shading systems will be installed to reduce the solar gains in summer especially in south oriented offices and meeting rooms. Base loads will be covered by surface cooling and heating, integrated in the walls or as a free standing element in the room. For peak loads the current fan coils will be used. The recooling process of the compression chiller will be covered by ground water temperature.

Page 16: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 167 -

Figure 6: Strategy winter + summer conditioning systems and energy supply. Source: IB Hausladen / Elisabeth Endres / Daniele Santucci

5. VISION

The use of renewable energy determines the need to constantly define the criteria and the way of interaction with the building. The design of increasingly sophisticated systems to produce clean energy must have as its primary objective the maximum integration with the architecture.

In this sense, the key aspect for the definition of the energy supply system is the determination of potentials deriving from renewable resources and their availability, considering the context and the existing infrastructure. Another aspect to be taken into consideration is the temporal availability of production and therefore the simultaneity of production and consumption. In the design phase needs and the load profiles should be therefore identified and classified, comparing them to the available potential out of fluctuating renewable sources. In an optimized system the production and consumption must match and have to be put in effective relation.

Following this premise, the Villa Massimo project evaluated the possibility to achieve a substantial reduction in energy requirements by exploiting the network and the relationship with the city as a condition to prefigure new scenarios. The project's goal is to achieve an annual zero primary energy balance by experimenting innovative systems and technologies and redefining the role of the historic buildings in the context of existing structures and the local energy grid.

In the case of the complex of the German Academy in Rome the interactions and the synergetic effects between buildings are considered since there are several functions and load curves, and, consequently different technical systems. The villa, with the administrative functions has different comfort and energy requirements as the residential buildings that are used continuously. While the villa has a peak demand due to overheating in summer and significant

Page 17: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 168 -

internal loads during exhibitions and events, other buildings, which account for 75% of the total area, have a relatively low demand for cooling but have a high consumption of hot water. In this sense, the two structures are put in relation to integrate each other´s curves and demands. The project for the Villa Massimo is an example for an integral planning methodology dealing with passive and active components as it is needed in future, to deal with the historical building stock and with the transformation of built structures in the post fossil decade, without losing architectural building culture.

Page 18: LÓPEZ, M.; YÁÑEZ, A.; GOMES DA COSTA, S.; AVELLÀ, L., (Coord.). · 2014. 12. 16. · COLLADO ESPEJO, P. E.; MAESTRE DE SAN JUAN ESCOLAR, C. REHABILITACIÓN ENERGÉTICA DE EDIFICIOS

MADRID 29-30 | 09 | 2014

More contents on https://energyheritage.wordpress.com/

International Conference ENERGY EFFICIENCY IN HISTORIC BUILDINGS

- 573 -