14
LNA design in CMOS for 10 GHz bandwidth Mats Risopatron Knutsen, Master student Nanoelectronics group Dept. of Informatics University of Oslo University of Oslo

LNA design for 10 GHz bandwidth - UiO

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz gbandwidth

Mats Risopatron Knutsen,Master student Nanoelectronics group g p

Dept. of InformaticsUniversity of OsloUniversity of Oslo

Page 2: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Challenges in the design of LNAs with bandwidth towards 10 GHz

• Implemented circuit• Implemented circuit

• Measurements 

Page 3: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Challenges in the design of LNAs with bandwidth towards 10 GHz 

– Lower supply voltage Fewer topologies– Lower supply voltage  Fewer topologies 

M t hi d b d idth h t ith– Matching and bandwidth enhancement with as few inductors as possible

– Lower dynamic range  Lower SNR

Page 4: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Challenges in the design of LNAs with bandwidth towards 10 GHz 

• Implemented circuit• Implemented circuit– PLS performance– Matching properties

• Measurements 

Page 5: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

I l t d i it• Implemented circuit

– InverterbasedInverterbased

– Splitting ‐loadpeaking stagepeaking stage

– Implementedwithoutbondwiremodel

Page 6: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Implemented circuit

– S21 15.1 dB

– Bandwidth 0 4 8 6 GHz0.4‐8.6 GHz

NF 5 8 dB– NF < 5.8 dB

Page 7: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Implemented circuit– Matching approachesg pp

2011.03.09 7

Page 8: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Challenges in the design of LNAs with bandwidth towards 10 GHz 

• Implemented circuit• Implemented circuit

• Measurements – ResultsResults– Reasons for degradation

Page 9: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Measurements

– Gain 9.5±2dBbetween 0.3 andbetween 0.3 and3.6 GHzReverse gain 30– Reverse gain 30 dB higher than PLSPLS

– “Spiky” responses9

Page 10: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Measurements

– S11 and S22

– Total reflectionin large parts ofin large parts ofthe sweep

10

Page 11: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Measurements

– Open and shortedshortedbond wiretest benchestest benchesincludedResonates at– Resonates at above 9 GHz

11

Page 12: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Measurement,reasons for degradation from PLS to gmeasurements

– Reactive nature of bond wire and pad degrades matching propertiesmatching properties

– S12 results indicate cross talk on PCB– Noisy measurement environment

12

Page 13: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Summary:

– LNA design in CMOS for 10 GHz is a challenge• Reducing the number of inductors still achieve theReducing the number of inductors, still achieve the bandwidth and matching properties

• Maintaining the simulated performance from PLS toMaintaining the simulated performance from PLS to measurements

– Good models of bond wire and pad are essentialGood models of bond wire and pad are essential to implement in the design phase for a good resultsresults

Page 14: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• References:• S‐F. Chao, J‐J Kuo, C‐L. Lin, M‐D‐ Tsai and H. Wang, “A DC‐11.5 GHz Low‐

d b d l f l d d kPower, Wideband Amplifier Using Splitting‐Load Inductive Peaking Technique,” in IEEE Microwave and Wireless Components Letters, Vol 18, NO 7, July 2008

• P. Heydari, “Design and Analysis of a Performance‐Optimized CMOS UWB Distributed LNA,” in IEEE Journal of Solid‐State Circuits, Vol 42, No 9, September 2007September 2007

• S.B‐T. Wang, Design of Ultra‐Wideband RF Front‐End, Berkeley: PhD dissertation, University Of California, Berkeley, 2005

• W. Sansen, Analog Design Essentials,  Springer, 2006