19
xford hysics LHCb status and charm physics program Patrick Spradlin University of Oxford Particle Physics On behalf of the LHCb collaboration Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 1/1

LHCb status and charm physics program - Cornell UniversityLHCb status Detector construction nearing completion Detector commissioning is in progress The full LHCb detector will be

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • xford

    hysics

    LHCb status and charm physicsprogram

    Patrick Spradlin

    University of Oxford Particle Physics

    On behalf of the LHCb collaboration

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 1/18

  • xford

    hysics

    Outline

    LHCb status

    LHCb’s trigger

    CP violation searches in D decays at LHCb

    Charm mixing measurements at LHCb

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 2/18

  • xford

    hysics

    Large Hadron Collider

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 3/18

  • xford

    hysics

    LHCb detector

    250mrad

    100mrad

    M1

    M3M2

    M4 M5

    RICH2HCAL

    ECALSPD/PS

    Magnet

    T1T2T3

    z5m

    y

    5m

    − 5m

    10m 15m 20m

    TTVertexLocator

    RICH1

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 4/18

  • xford

    hysics

    LHCb status

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 5/18

  • xford

    hysics

    LHCb status

    Detector construction nearing completion

    Detector commissioning is in progress

    The full LHCb detector will be ready tocollect data by the projected LHC startup in May 2008

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 5/18

  • xford

    hysics

    LHCb features

    The features that make LHCbexcellent for B physics also make it agood charm physics experiment

    High event rate

    Excellent vertexing and proper timeresolution: ∼ 45 fs for secondary D0

    Good tracking and momentumresolution: ∼ 6 MeV D0 mass

    Excellent K-π discrimination

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 6/18

  • xford

    hysics

    LHCb trigger

    L0 hardware trigger — high pt particlesIncluding Calorimeter hadrons Et >∼ 3.6GeV; Muon pt >∼ 1.5GeVInput 40 MHz → 1 MHz outputEfficiently favors bb events over prompt charm

    HLT software triggerParallel trigger paths: ‘alleys’

    Partial reconstruction of limited detector informationQuickly identify general B event features- High pt particles (hadrons, muons, electrons, and photons)- Charged tracks with sizable impact parameter

    Followed by channels for specific interesting decaysFast final state candidate reconstructionComposite decay chain reconstruction, e.g., D∗+ → π+s D0(h−h+)

    2 kHz total output rate300 Hz D∗+ → π+s D0(h−h+)600 Hz Di-muon events

    200 Hz Exclusive physics channels900 Hz Single muon inclusive

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 7/18

  • xford

    hysics

    Uses of LHCb D∗+ trigger

    RICH calibration

    (MeV)πK - mπ Ksπm = m∆140 145 150 155 160

    frac

    tio

    n /

    0.5

    MeV

    bin

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3RS signal

    WS double mis-ID background

    backgroundsπWS random

    WS combinatoric background

    effEntries 20

    Mean 51.03

    RMS 27.47

    Kaon P(GeV)10 20 30 40 50 60 70 80 90 100

    rati

    o0

    0.2

    0.4

    0.6

    0.8

    1

    effEntries 20

    Mean 51.03

    RMS 27.47

    purityEntries 20

    Mean 67.94

    RMS 27.02

    purityEntries 20

    Mean 67.94

    RMS 27.02

    effEntries 20

    Mean 50.66

    RMS 27.62

    effEntries 20

    Mean 50.66

    RMS 27.62

    purityEntries 20

    Mean 67.68

    RMS 27.33

    purityEntries 20

    Mean 67.68

    RMS 27.33

    MC truth L0, L1, HLT trig. ev

    Using L0, L1,HLT loose cut calibr. sample

    eff

    K → K, p

    π → K, p

    Charm physics

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 8/18

  • xford

    hysics

    Two sources of charm

    B decays (B → D(∗)X)+ Strongly favored by LHCb triggers

    + Potentially less background

    - New techniques need to be developed—no published measurements

    Prompt production in primary interaction0 Triggered less efficiently—compensated by prolific production

    - Potentially larger backgrounds—especially random πs background for D∗+

    + CDF has proven that measurements are possible in hadronic environment

    Estimated reconstructible yieldsin 2 fb−1 from B → D∗+X

    (Similar yields expected from prompt production)

    D0 → K−π+ 50 × 106

    D0 → K−K+ 5 × 106

    D0 → π−π+ 2 × 106

    D0 → π−K+ 0.2 × 106

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 9/18

  • xford

    hysics

    CP violation searches

    Looking for unambiguous signs of New Physics inas many channels as possible(A vital part of any charm physics program)

    Both time integrated and time dependent CPV searches

    Two body Kπ, K−K+, and π−π+ modes

    Three body charged and neutral decaysAmplitude analyses

    D0 → KSπ+π−, KSK+K−, KSKπ; D+ → K+K−π+, Kππ

    Four body decaysQuantities odd under T

    Amplitude analyses (analysis code already exists in LHCb)

    D0 → K+K−π+π−, Kπππ

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 10/18

  • xford

    hysics

    CPV in D0 → K−K+

    Data set N(K−K+) ACP(K−K+)(%) ACP(π−π+)(%)

    CDF 123 pb−1 16220 2.0 ± 1.2 ± 0.6 1.0 ± 1.3 ± 0.6Bellea 540 fb−1 109000 0.15 ± 0.35 ± 0.15 −0.28 ± 0.52 ± 0.15BaBara 91 fb−1 26084 −1.3 ± 0.8 ± 0.2 0.3 ± 1.1 ± 0.2LHCb 10 fb−1 8 × 106 Lower limit yield from D∗+ from B, not

    optimized for time-independent K−K+

    a Asymmetries of τ(K−K+) rather than Γ(K−K+)

    CDF direct CPV search in K−K+

    ]2

    KK Mass [GeV/c1.75 1.8 1.85 1.9 1.95

    2E

    ntr

    ies/

    3 M

    eV/c

    0

    1000

    2000

    3000

    4000

    5000

    +π]+K-[K→+π0D→*+D+ charge conjugate

    CDF II

    ]2 Mass [GeV/cππ1.78 1.8 1.82 1.84 1.86 1.88 1.9

    2E

    ntr

    ies/

    4 M

    eV/c

    0

    1000

    2000

    3000

    4000

    5000

    +π]+π-π[→+π0 D→*+D+ charge conjugate

    CDF II

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 11/18

    http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0504006http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0703036http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0306003http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0504006

  • xford

    hysics

    Mixing measurements at LHCb

    Precise mixing measurementsMeasure CP violation in mixingDetermine relative values of x and y—dominant mixing processes

    WS D0 → π−K+ mixing analysisSensitive to x′2 and y′

    BaBar 3.9σ evidence Phys.Rev.Lett.98:211802,2007 (hep-ex/0703020)Require measurement of strong phase δ by CLEO / BES-III to relate x′, y′ to x, y

    Two body lifetime ratio measurement of yCPSCS D0 → K−K+ and π−π+

    Belle 3.2 σ evidence Phys.Rev.Lett.98:211803,2007 (hep-ex/0703036)

    Amplitude analysis of D0 → KSπ+π−

    Sensitive to x and y Powerful technique demonstrated by CLEO and Belle

    Mixing measurements in D0 → 4hTechnology for 4-body amplitude analysis already exists at LHCbPreliminary selection: up to 25 × 106 RS D0(4h) events per 2 fb−1 written to tape

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 12/18

    http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0703020http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0703036http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0503045http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0704.1000

  • xford

    hysics

    D∗ vertex resolution

    D∗ resolution in z

    m)µ (MC - zrecz-40000 -20000 0 20000 40000

    m b

    inµ

    can

    d /

    800

    0

    200

    400

    600

    800

    1000

    1200

    Decay vertex resolutions

    D0 D∗+

    x 21.6 µm 187. µm

    y 16.9 µm 144. µm

    z 257. µm 4232. µm

    τ 0.465 ps

    Signal MC lab frame angles

    1,2θcos0.98 0.985 0.99 0.995 1

    bin

    -4 1

    can

    d /

    2

    0

    200

    400

    600

    800

    1000

    1200

    daughter angle0Lab Frame D

    angle+sπ-0Lab Frame D

    D0 and π+s almost collinear

    Add tracks at birth vertex

    D0 lifetime τ :(0.4101 ± 0.0015) ps

    D0 flight distance at 60 GeV:βγcτ ≈ 4 mm

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 13/18

  • xford

    hysics

    Birth vertex improvement

    Use additional tracks at production vertex

    76% of D∗+ from B’s have at least onecharged sister

    63% have reconstructed sister tracks thatpass some basic criteria

    Use one additional track partiallyreconstruct parent Bpart

    Decay vertex resolutions

    D0 D∗+ Bpart

    x 21.6 µm 187. µm 18.1 µm

    y 16.9 µm 144. µm 18.4 µm

    z 257. µm 4232. µm 237. µm

    Improved proper time resolution = 0.045 ps

    1.07 < B/S = 2.56 < 5.28 at 90% CL

    / ndf 2χ 34.65 / 45Normalization 0.37± 12.83 Core fraction 0.0778± 0.5255 Mean 0.002034± -0.001338 Core sigma 0.00397± 0.04498 Second sigma 0.0101± 0.1114

    (ps),gen0D

    τ - ,rec0D

    τ-0.2 -0.1 0 0.1 0.2

    can

    d /

    0.01

    ps

    bin

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90 / ndf 2χ 34.65 / 45

    Normalization 0.37± 12.83 Core fraction 0.0778± 0.5255 Mean 0.002034± -0.001338 Core sigma 0.00397± 0.04498 Second sigma 0.0101± 0.1114

    lifetime (ps)0D-1 0 1 2

    can

    d /

    0.06

    ps

    bin

    0

    20

    40

    60

    80

    100

    120

    140

    160 lifetime, reconstructed0D

    lifetime, generated0D

    Process detailed in CERN-LHCb-2007-049Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 14/18

    http://cdsweb.cern.ch/record/1045412

  • xford

    hysics

    Toy MC study of WS mixing

    Investigate sensitivity to x′2 and y′ 1-D fit to proper time

    Γ(t; D0 → π−K+) ∝ e−Γtˆ

    RD +√

    RDy′Γt + 1

    4(y′2 + x′2)(Γt)2

    ˜

    10 fb−1 of simulated signal ev/toy

    Exponential background exp (−t/τD0 )

    Acceptance and resolution effects includes

    Fit to x′2 and y′Proper Time (ps)

    0 1 2

    Lo

    g E

    ven

    ts /

    0.03

    ps

    bin

    1

    10

    210

    310

    410

    510

    Proper Time (ps)0 1 2

    Lo

    g E

    ven

    ts /

    0.03

    ps

    bin

    1

    10

    210

    310

    410

    510DataSignal + Background

    DCS SignalBackground

    InterferenceMixing

    Data set NWS x′2(×10−3) y′(×10−3)BaBar 384 fb−1 4030 −0.22 ± 0.30 ± 0.21 9.7 ± 4.4 ± 3.1Belle 400 fb−1 4024 < 0.72 −9.9 < y′ < 6.8

    HFAG average −0.01+0.20−0.20 5.5

    +2.8−3.7

    B factories 2 ab−1 x′2 ± 0.15 y′ ± 3.0LHCb 10 fb−1 232500 x′2 ± 0.064 (stat) y′ ± 0.87 (stat)

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 15/18

    http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0703020http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0601029http://www.slac.stanford.edu/xorg/hfag/charm/index.html

  • xford

    hysics

    Toy MC of lifetime ratio

    Compare lifetimes of the non-eigenstate RS decayD0 → K−π+ and CP even decays D0 → K−K+(π−π+)

    yCP ≡τ(D0→K−π+)

    τ(D0→(K+K−,π+π−) − 1 = y cos φ − x sin φ[

    R2m−12

    ]

    2 fb−1 of simulated signal ev/toy

    Exponential background exp (−t/τD0

    )

    Acceptance and resolution effects includes

    Data set N(K−K+) yCP(%)

    Belle 540 fb−1 109000 1.31 ± 0.32 ± 0.25BaBar 91 fb−1 26084 1.5 ± 0.8 ± 0.5

    HFAG average 1.12 ± 0.32B factories 2 ab−1 yCP ± 0.3LHCb 10 fb−1 8 × 106 yCP ± 0.05 (stat)

    Acc

    epta

    nce

    / ndf 2χ 6.48 / 9Asymptote, A 6.47± 67.35

    i

    Intercept, r 0.1048± 0.6779 accΓ 2.710± 2.481

    proper time (ps)0D0 0.5 1 1.5 2

    can

    d /

    bin

    0

    10

    20

    30

    40

    50

    60

    70

    / ndf 2χ 6.48 / 9Asymptote, A 6.47± 67.35

    i

    Intercept, r 0.1048± 0.6779 accΓ 2.710± 2.481

    Res

    olut

    ion

    / ndf 2χ 34.65 / 45Normalization 0.37± 12.83 Core fraction 0.0778± 0.5255 Mean 0.002034± -0.001338 Core sigma 0.00397± 0.04498 Second sigma 0.0101± 0.1114

    (ps),gen0D

    τ - ,rec0D

    τ-0.2 -0.1 0 0.1 0.2

    can

    d /

    0.01

    ps

    bin

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90 / ndf 2χ 34.65 / 45

    Normalization 0.37± 12.83 Core fraction 0.0778± 0.5255 Mean 0.002034± -0.001338 Core sigma 0.00397± 0.04498 Second sigma 0.0101± 0.1114

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 16/18

    http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0703036http://www.slac.stanford.edu/spires/find/hep/www?eprint=hep-ex/0306003http://www.slac.stanford.edu/xorg/hfag/charm/index.html

  • xford

    hysics

    Summary of LHCb at 10 fb−1

    2x-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3

    -310×

    y

    0.004

    0.0045

    0.005

    0.0055

    0.006

    0.0065

    0.007

    0.0075

    0.008

    0.0085

    2x-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3

    -310×

    y

    0.004

    0.0045

    0.005

    0.0055

    0.006

    0.0065

    0.007

    0.0075

    0.008

    0.0085

    WS 1-signaWS 2-sigmaWS 3-sigmaYcp 1-sigmaYcp 2-sigmaYcp 3-sigma

    Combined Mixing Results

    Values for x′2 and y′ from David Asner’s March 2007 report toFlavour in the era of the LHC

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 17/18

    http://indico.cern.ch/materialDisplay.py?contribId=18&sessionId=0&materialId=slides&confId=12011http://mlm.home.cern.ch/mlm/FlavLHC.html

  • xford

    hysics

    Summary

    We have only begunto tap LHCb’s potentialfor charm physics

    LHCb will be complete and ready to takedata at LHC start-up in May 2008

    The LHCb experiment has an excitingpotential for charm physics studies

    A dedicated D∗ trigger will provide 108 flavortagged D0 → hh per 2 fb−1

    Unprecedented sensitivity in searches for:D0 mixing

    CP violation

    Charm 2007: International Workshop on Charm Physics — 08 August 2007 – p. 18/18

    Outline Large Hadron Collider LHCb detector LHCb status LHCb status

    LHCb features LHCb trigger Uses of LHCb $D^{ast +}$ trigger Two sources of charm CP violation searches CPV in $D^{0} ightarrow K^{-}K^{+}$ Mixing measurements at LHCb $D^{*}$ vertex resolution Birth vertex improvement Toy MC study of WS mixing Toy MC of lifetime ratio Summary of LHCb at $10,mathrm {fb}^{-1}$ Summary