15
11/30/2015 1

Lesson 21: Methods of System Analysis - Engineering | SIU · 2015. 11. 30. · LESSON 21: METHODS OF SYSTEM ANALYSIS ET 438a Automatic Control Systems Technology 1 lesson21et438a.pptx

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 11/30/2015

    1

    LESSON 21: METHODS OF SYSTEM

    ANALYSIS

    ET 438a Automatic Control Systems Technology

    1

    lesson21et438a.pptx

    LEARNING OBJECTIVES

    After this presentation you will be able to:

    Compute the value of transfer function for given

    frequencies.

    Compute the open loop response of a control system.

    Compute and interpret the closed loop response of a

    control system.

    Compute and interpret the error ratio of a control system.

    2

    lesson21et438a.pptx

  • 11/30/2015

    2

    FREQUENCY RESPONSE OF CONTROL SYSTEMS

    Control limits determined by comparing the open loop response of

    system to closed loop response.

    Open loop response of control system: )s(H)s(G)s(SP

    )s(Cm

    G(s) SP

    + -

    H(s)

    Cm(s)

    C(s)

    Where:

    Cm(s) = measurement feedback

    SP(s) = setpoint signal value

    G(s) = forward path gain

    H(s) = feedback path gain

    Measurement

    disconnected from

    feedback

    Error = SP Controller

    Manipulating element

    Process

    Measurement

    System 3

    lesson21et438a.pptx

    FREQUENCY RESPONSE OF CONTROL SYSTEMS

    lesson21et438a.pptx

    4

    Closed loop response of control system:

    G(s) SP

    + -

    H(s)

    Cm(s)

    C(s)

    )s(H)s(G1

    )s(H)s(G

    )s(SP

    )s(Cm

    Output

    Input

    Note: this is not the I/O relationship that

    was used earlier. (C(s)/SP(s))

  • 11/30/2015

    3

    FREQUENCY RESPONSE OF CONTROL SYSTEMS

    lesson21et438a.pptx

    5

    Frequency response of system divided into three ranges:

    Zone 1- controller decreases error

    Zone 2 - controller increases error

    Zone 3 - controller has no effect on error

    SP change frequency determines what zone is activated. Overall system

    frequency determines values of zone transition frequencies

    Error Ratio (ER) plot determines where zones occur

    )s(H)s(G1)s(H)s(G11

    ER

    |MagnitudeError loop-Open|

    |MagnitudeError loopClosed|ER

    Replace s with

    jw and compute

    magnitude of

    complex number

    FREQUENCY RESPONSE OF CONTROL SYSTEMS

    lesson21et438a.pptx

    6

    Typical Error Ratio plot showing operating zones and controller action

    Error reduced

    Error increased

    No Effect

  • 11/30/2015

    4

    COMPUTING TRANSFER FUNCTION VALUES

    lesson21et438a.pptx

    7

    Example 21-1: Given the forward gain, G(s), and the feedback system

    gain, H(s) shown below, find 1) open loop transfer function, 2) closed

    loop transfer function, 3) error ratio.

    s478.01

    356.0)s(H

    s0063.0s379.01

    8.21)s(G

    2

    4) compute the values of the open/closed loop transfer functions when

    w=0.1, 1, 10 and 100 rad/sec. 5) compute the value of the error ratio

    when w=0.1, 1, 10 and 100 rad/sec. 6) Use MatLAB to plot the open

    and closed loop transfer function responses on the same axis.

    EXAMPLE 21-1 SOLUTION (1)

    lesson21et438a.pptx

    8

    1) Open Loop Transfer Function

    Expand the denominator

    Ans

  • 11/30/2015

    5

    EXAMPLE 21-1 SOLUTION (2)

    lesson21et438a.pptx

    9

    2) Find closed loop transfer function

    Multiply numerator and denominator by 1+0.857s+0.18746s2+0.00301s3

    and simplify

    Ans

    EXAMPLE 21-1 SOLUTION (3)

    lesson21et438a.pptx

    10

    3) Find the error ratio

    Magnitude only

    Expand denominator and

    simplify

    Substitute in G(s)H(s) from part 1 into above

  • 11/30/2015

    6

    EXAMPLE 21-1 SOLUTION (4)

    lesson21et438a.pptx

    11

    Error ratio calculations

    Ans

    EXAMPLE 21-1 SOLUTION (5)

    lesson21et438a.pptx

    12

    4) Compute the values of the open and closed loop transfer functions for

    w=0.1 1 10 100 rad/s Substitute jw for s

    Open loop

  • 11/30/2015

    7

    EXAMPLE 21-1 SOLUTION (6)

    lesson21et438a.pptx

    13

    Now for w=1 rad/sec

    EXAMPLE 21-1 SOLUTION (7)

    lesson21et438a.pptx

    14

    Now for w=10 rad/sec

  • 11/30/2015

    8

    EXAMPLE 21-1 SOLUTION (8)

    lesson21et438a.pptx

    15

    For w=100 rad/sec

    EXAMPLE 21-1 SOLUTION (9)

    lesson21et438a.pptx

    16

  • 11/30/2015

    9

    EXAMPLE 21-1 SOLUTION (10)

    lesson21et438a.pptx

    17

    Convert all gain values into dB

    4) Compute the close loop response using the previously calculated values of

    G(s)H(s)

    EXAMPLE 21-1 SOLUTION (11)

    lesson21et438a.pptx

    18

  • 11/30/2015

    10

    EXAMPLE 21-1 SOLUTION (12)

    lesson21et438a.pptx

    19

    EXAMPLE 21-1 SOLUTION (13)

    lesson21et438a.pptx

    20

    Convert all gain values into dB

    5) Compute the values of the error ratio

    Use open loop values to compute

    values of ER at given frequencies

  • 11/30/2015

    11

    EXAMPLE 21-1 SOLUTION (14)

    lesson21et438a.pptx

    21

    Now for w=1 rad/sec

    EXAMPLE 21-1 SOLUTION (15)

    lesson21et438a.pptx

    22

    For w=10 rad/sec

  • 11/30/2015

    12

    EXAMPLE 21-1 SOLUTION (16)

    lesson21et438a.pptx

    23

    Convert all gain values into dB

    System becomes

    uncontrollable between

    these two frequencies

    Error ratio magnitude increases as frequency increases. It peak and becomes a

    constant value of 1 (0 dB)

    INTERPRETING ERROR RATIO PLOTS

    lesson21et438a.pptx

    24

    Define control zones

    Zone 1: ER< 0 dB good

    control. Controller

    decreases error

    Zone 2: ER> 0 dB poor

    control. Controller

    increases error

    Zone 3: ER-=0 dB no

    control. Controller does

    not change error

  • 11/30/2015

    13

    GENERATING PLOTS USING MATLAB

    lesson21et438a.pptx

    25

    Use MatLAB script to create open and closed loop Bode plots of example

    system

    % Example bode calculations

    clear all;

    close all;

    % define the forward gain numerator and denominator coefficients

    numg=[21.8];

    demg=[0.0063 0.379 1];

    % define the feedback path gain numerator and denominators

    numh=[0.356];

    demh=[0.478 1];

    % construct the transfer functions

    G=tf(numg,demg);

    H=tf(numh,demh);

    % find GH(s)

    GH=G*H

    % find the closed loop transfer function

    GHc=GH/(1+GH)

    % The value in curly brackets are freq. limits

    bode(GH,'go-',GHc,'r-‘,{0.1,100})

    BODE PLOTS OF EXAMPLE 21-1

    lesson21et438a.pptx

    26

    -60

    -40

    -20

    0

    20

    Magnitude (

    dB

    )

    10-1

    100

    101

    102

    -270

    -225

    -180

    -135

    -90

    -45

    0

    Phase (

    deg)

    Bode Diagram

    Frequency (rad/s)

    Open Loop

    Closed Loop

    1s857.0s1875.0s00301.0

    761.7)s(H)s(G

    23

    761.8s365.8s564.2s351.0s1013.1s1007.9

    761.7s651.6s455.1s0234.0

    )s(H)s(G1

    )s(H)s(G235366

    23

  • 11/30/2015

    14

    MATLAB CODE FOR ERROR PLOT EXAMPLE 21-1

    lesson21et438a.pptx

    27

    % Example Error Ratio calculations

    clear all;

    close all;

    % define the forward gain numerator and denominator coefficients

    numg=[21.8];

    demg=[0.0063 0.379 1];

    % define the feedback path gain numerator and denominators

    numh=[0.356];

    demh=[0.478 1];

    % construct the transfer functions

    G=tf(numg,demg);

    H=tf(numh,demh);

    % find GH(s)

    GH=G*H;

    % find the error ratio

    ER=1/((1+GH)*(1-GH));

    [mag,phase,W]=bode(ER,{0.1,100}); %Use bode plot with output sent to arrays

    N=length(mag); %Find the length of the array

    gain=mag(1,1:N); %Extract the magnitude from the mag array

    db=20.*log10(gain); % compute the gain in dB and plot on a semilog plot

    semilogx(W,db);

    grid on; %Turn on the plot grid and label the axis

    xlabel('Frequency (rad/s)');

    ylabel('Error Ratio (dB)');

    ERROR RATIO PLOT

    lesson21et438a.pptx

    28

    10-1

    100

    101

    102

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    Frequency (rad/s)

    Err

    or

    Ratio (

    dB

    ) Zone 1

    Stable to 6.5 rad/s

    Zone 2

    Error

    increases

  • 11/30/2015

    15

    ET 438a Automatic Control Systems Technology

    lesson21et438a.pptx

    29

    END LESSON 21: METHODS OF SYSTEM

    ANALYSIS