139
Lecture 8: Integrate-and- Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction to Theoretical Neurobiology, v. 2 (Cambridge U Press) Ch 9 S Redner, A Guide to First-Passage Processes (Cambridge U Press) sects 3.2, 4.2

Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Embed Size (px)

DESCRIPTION

The standard I&F neuron Assume that membrane is passive (RC circuit) in subthreshold range

Citation preview

Page 1: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Lecture 8: Integrate-and-Fire Neurons

References:

Dayan and Abbott, sect 5.4Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1H Tuckwell, Introduction to Theoretical Neurobiology, v. 2

(Cambridge U Press) Ch 9S Redner, A Guide to First-Passage Processes

(Cambridge U Press) sects 3.2, 4.2

Page 2: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

The standard I&F neuronAssume that membrane is passive (RC circuit) in subthreshold range

Page 3: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

The standard I&F neuron

VIVVgdtdVC ,)( 0

Assume that membrane is passive (RC circuit) in subthreshold range

Page 4: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

The standard I&F neuron

VIVVgdtdVC ,)( 0

Assume that membrane is passive (RC circuit) in subthreshold range

When V reaches threshold, spike and reset at V = Vr

Page 5: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

The standard I&F neuron

VIVVgdtdVC ,)( 0

Assume that membrane is passive (RC circuit) in subthreshold range

When V reaches threshold, spike and reset at V = Vr

Page 6: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Constant input)0,/1,(ˆ

000 VgRRCIRIVdtdV

Page 7: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Constant input)0,/1,(ˆ

000 VgRRCIRIVdtdV initial condition: V = 0

Page 8: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Constant input)0,/1,(ˆ

000 VgRRCIRIVdtdV

Equilibrium level: (if RI0

initial condition: V = 0

V=RI0

Page 9: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Constant input)0,/1,(ˆ

000 VgRRCIRIVdtdV

)]/exp(1[ˆ)/exp()ˆ)0((ˆ000 tItIVIV

Equilibrium level: (if RI0

initial condition: V = 0

V=RI0

Solution:

Page 10: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Constant input)0,/1,(ˆ

000 VgRRCIRIVdtdV

)]/exp(1[ˆ)/exp()ˆ)0((ˆ000 tItIVIV

Equilibrium level: (if RI0

initial condition: V = 0

V=RI0

Solution:

if RI0 reset to Vr when V

Page 11: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Constant input)0,/1,(ˆ

000 VgRRCIRIVdtdV

)]/exp(1[ˆ)/exp()ˆ)0((ˆ000 tItIVIV

Equilibrium level: (if RI0

initial condition: V = 0

V=RI0

Solution:

if RI0 reset to Vr when V )/exp(1

tI

(here Vr = 0)

Page 12: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Constant input)0,/1,(ˆ

000 VgRRCIRIVdtdV

)]/exp(1[ˆ)/exp()ˆ)0((ˆ000 tItIVIV

Equilibrium level: (if RI0

initial condition: V = 0

V=RI0

Solution:

if RI0 reset to Vr when V )/exp(1

tI

0

0

ˆˆ

logI

It

(here Vr = 0)

Page 13: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Constant input)0,/1,(ˆ

000 VgRRCIRIVdtdV

)]/exp(1[ˆ)/exp()ˆ)0((ˆ000 tItIVIV

Equilibrium level: (if RI0

initial condition: V = 0

V=RI0

Solution:

if RI0 reset to Vr when V )/exp(1

tI

0

0

ˆˆ

logI

It

(here Vr = 0)

Page 14: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Input-output function

0

0

ˆˆ

log

11

IIt

rRate:

Page 15: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Input-output function

0

0

ˆˆ

log

11

IIt

r

rtt

Rate:

With refractory time:

Page 16: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Input-output function

0

0

ˆˆ

log

11

IIt

r

rtt

Rate:

With refractory time:

0

0

ˆˆ

log

1

II

r

r

Page 17: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Input-output function

0

0

ˆˆ

log

11

IIt

r

rtt

Rate:

With refractory time:

0

0

ˆˆ

log

1

II

r

r

r

rms

Page 18: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

General time-dependent input

)(exp1)/exp()0()( tRItttdtVtVt

Page 19: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

General time-dependent input

)(exp1)/exp()0()( tRItttdtVtVt

(below threshold)

Page 20: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

General time-dependent input

)(exp1)/exp()0()( tRItttdtVtVt

(below threshold)

Page 21: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Synaptic input0)( ss VVggV

dtdVC

Leaky membrane + synaptic current:

Page 22: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Synaptic input0)( ss VVggV

dtdVC

pres rg

Leaky membrane + synaptic current:

Synaptic conductance ~ presynaptic rate

Page 23: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Synaptic input0)( ss VVggV

dtdVC

pres rg

Leaky membrane + synaptic current:

Synaptic conductance ~ presynaptic rate

Reduced effective membrane time constant:

Page 24: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Synaptic input0)( ss VVggV

dtdVC

pres rg

seff gg

C

Leaky membrane + synaptic current:

Synaptic conductance ~ presynaptic rate

Reduced effective membrane time constant:

Page 25: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Synaptic input0)( ss VVggV

dtdVC

pres rg

seff gg

C

ssVgI

Leaky membrane + synaptic current:

Synaptic conductance ~ presynaptic rate

Reduced effective membrane time constant:

and effective current input

Page 26: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response model (1):rewriting the I&F neuron

Page 27: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response model (1):rewriting the I&F neuron

Separate recovery from reset fromresponse to input current

)()()( 10 tVtVtV

Page 28: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response model (1):rewriting the I&F neuron

Separate recovery from reset fromresponse to input current

V0 describes recovery:

)()()( 10 tVtVtV

Page 29: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response model (1):rewriting the I&F neuron

rsp VtVVdt

dV )(0

0

Separate recovery from reset fromresponse to input current

V0 describes recovery:

)()()( 10 tVtVtV

Page 30: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response model (1):rewriting the I&F neuron

rsp VtVVdt

dV )(0

0

Separate recovery from reset fromresponse to input current

V0 describes recovery:

V1 describes response to input:

)()()( 10 tVtVtV

Page 31: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response model (1):rewriting the I&F neuron

)(11 tRIV

dtdV

rsp VtVVdt

dV )(0

0

Separate recovery from reset fromresponse to input current

V0 describes recovery:

V1 describes response to input:

)()()( 10 tVtVtV

Page 32: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response model (1):rewriting the I&F neuron

)(11 tRIV

dtdV

rsp VtVVdt

dV )(0

0

Separate recovery from reset fromresponse to input current

V0 describes recovery:

V1 describes response to input:

independent of spiking

)()()( 10 tVtVtV

Page 33: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response model (1):rewriting the I&F neuron

)(11 tRIV

dtdV

rsp VtVVdt

dV )(0

0

Separate recovery from reset fromresponse to input current

V0 describes recovery:

V1 describes response to input:

independent of spiking

)()()( 10 tVtVtV

)(exp1)(1 tRItttdtVt

Integrated version:

Page 34: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response Model (2): extension to general kernels

Page 35: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response Model (2): extension to general kernels

)(0 spttV (including spike itself)

Page 36: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response Model (2): extension to general kernels

)(0 spttV (including spike itself)

Get shape of from, e.g. HH solution

Page 37: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response Model (2): extension to general kernels

)(0 spttV

),(exp1sptttttt

(including spike itself)

Get shape of from, e.g. HH solution

Page 38: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response Model (2): extension to general kernels

)(0 spttV

),(exp1sptttttt

(including spike itself)

can depend on t-tsp

Get shape of from, e.g. HH solution

Page 39: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response Model (2): extension to general kernels

)(0 spttV

),(exp1sptttttt

(including spike itself)

can depend on t-tsp

t

prespprespsp tttttItttttdtttV ),()(ˆ),()()(

Get shape of from, e.g. HH solution

with synaptic input:

Page 40: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response Model (2): extension to general kernels

)(0 spttV

),(exp1sptttttt

(including spike itself)

can depend on t-tsp

t

prespprespsp tttttItttttdtttV ),()(ˆ),()()(

Get shape of from, e.g. HH solution

with synaptic input:

tpre: spike times for presynaptic neuron

Page 41: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Spike-response Model (2): extension to general kernels

)(0 spttV

),(exp1sptttttt

(including spike itself)

can depend on t-tsp

t

prespprespsp tttttItttttdtttV ),()(ˆ),()()(

Get shape of from, e.g. HH solution

with synaptic input:

tpre: spike times for presynaptic neuron

(phenomenlogical: dependence on V is replaced by dependenceon t - tsp)

Page 42: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Approximating HHFirst find the threshold

Page 43: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Approximating HH

Then solve HH equation with V initially at rest and )()( 0 tqtI

First find the threshold

(q0 big enough to cause a spike)

Page 44: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Approximating HH

Then solve HH equation with V initially at rest and )()( 0 tqtI

Identify )(])([)( 0 tVttVt rest where )( 0tV

First find the threshold

(q0 big enough to cause a spike)

Page 45: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Approximating HH

Then solve HH equation with V initially at rest and )()( 0 tqtI

Identify )(])([)( 0 tVttVt rest

Then solve HH equation with V initially at rest and )()()( 10 tttqtI

where )( 0tV

First find the threshold

(q0 big enough to cause a spike)

( very small)

Page 46: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Approximating HH

Then solve HH equation with V initially at rest and )()( 0 tqtI

Identify )(])([)( 0 tVttVt rest

Then solve HH equation with V initially at rest and )()()( 10 tttqtI

where )( 0tV

First find the threshold

Identify )()]()([),( 0111 ttttttVtt

(q0 big enough to cause a spike)

( very small)

Page 47: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Approximating HH

Then solve HH equation with V initially at rest and )()( 0 tqtI

Identify )(])([)( 0 tVttVt rest

Then solve HH equation with V initially at rest and )()()( 10 tttqtI

where )( 0tV

First find the threshold

Identify )()]()([),( 0111 ttttttVtt

(q0 big enough to cause a spike)

( very small)

Page 48: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Comparison with full HH

Solid: HH dashed: SRM

Page 49: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Comparison with full HH

Solid: HH dashed: SRM

Solid: HHDotted: from const currentDashed: optimized for time-dependent current

Rate as function of current:

Page 50: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Noisy input

Page 51: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Noisy input

)()( 0 tIItI

Page 52: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Noisy input

)()( 0 tIItI

White noise:

Page 53: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Noisy input

)()( 0 tIItI

White noise:

0)( tI

Page 54: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Noisy input

)()( 0 tIItI

)()()( 2 tttItI

White noise:

0)( tI

Page 55: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Noisy input

)()( 0 tIItI

)()()( 2 tttItI

White noise:

0)( tI

: “noise power”

Page 56: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Leakless I&F neuron)()( 0 tIItI

dtdVC

Page 57: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Leakless I&F neuron)()( 0 tIItI

dtdVC Langevin equation

Page 58: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Leakless I&F neuron)()( 0 tIItI

dtdVC

I0 case: random walk

)()1( tIdtdVC

Langevin equation

Page 59: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Leakless I&F neuron)()( 0 tIItI

dtdVC

I0 case: random walk

)()1( tIdtdVC

ttItdtV

0)()( =>

Langevin equation

Page 60: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Leakless I&F neuron)()( 0 tIItI

dtdVC

I0 case: random walk

)()1( tIdtdVC

ttItdtV

0)()(

0)()(0

t

tItdtV

=>

averages: mean

Langevin equation

Page 61: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Leakless I&F neuron)()( 0 tIItI

dtdVC

I0 case: random walk

)()1( tIdtdVC

ttItdtV

0)()(

0)()(0

t

tItdtV

t

tttdtdtItItdtdtVttt t

2

2

000 0

2 )()()()(

=>

averages: mean mean square displacement

Langevin equation

Page 62: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Leakless I&F neuron)()( 0 tIItI

dtdVC

I0 case: random walk

)()1( tIdtdVC

ttItdtV

0)()(

0)()(0

t

tItdtV

t

tttdtdtItItdtdtVttt t

2

2

000 0

2 )()()()(

=>

averages: mean mean square displacement

distribution:

Langevin equation

Page 63: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Leakless I&F neuron)()( 0 tIItI

dtdVC

I0 case: random walk

)()1( tIdtdVC

ttItdtV

0)()(

0)()(0

t

tItdtV

t

tttdtdtItItdtdtVttt t

2

2

000 0

2 )()()()(

=>

averages: mean mean square displacement

tV

ttVP 2

2

2 2exp

21)|(

distribution:

Langevin equation

Page 64: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion Fick’s law:

xPDJ

Page 65: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion Fick’s law: cf Ohm’s law

xPDJ

xVgI

Page 66: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion Fick’s law: cf Ohm’s law

xPDJ

xVgI

conservation:xJ

tP

Page 67: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion Fick’s law: cf Ohm’s law

xPDJ

xVgI

conservation:xJ

tP

2

2

xPD

tP

=>

Page 68: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion Fick’s law: cf Ohm’s law

xPDJ

xVgI

conservation:xJ

tP

2

2

xPD

tP

=> diffusion equation

Page 69: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion Fick’s law: cf Ohm’s law

xPDJ

xVgI

conservation:xJ

tP

2

2

xPD

tP

=> diffusion equation

initial condition )()0|( xxP

Page 70: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion Fick’s law: cf Ohm’s law

xPDJ

xVgI

conservation:xJ

tP

2

2

xPD

tP

=> diffusion equation

initial condition )()0|( xxP

Solution:

Dtx

DttxP

4exp

41)|(

2

Page 71: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Comparison:

From Langevin equation:

tV

ttVP 2

2

2 2exp

21)|(

Page 72: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Comparison:

From Langevin equation:

From diffusion equation (with x -> V)

tV

ttVP 2

2

2 2exp

21)|(

DtV

DttVP

4exp

41)|(

2

Page 73: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Comparison:

From Langevin equation:

From diffusion equation (with x -> V)

tV

ttVP 2

2

2 2exp

21)|(

DtV

DttVP

4exp

41)|(

2

identify 2 = 2D

Page 74: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion with threshold: method of images

Absorbing boundary at x = : P() = 0

Page 75: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion with threshold: method of images

Absorbing boundary at x = : P() = 0

Add a negative source at x = 2

Page 76: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion with threshold: method of images

Absorbing boundary at x = : P() = 0

Add a negative source at x = 2

Dtx

DtDtx

DttxP

4)2(exp

41

4exp

41)|(

22

Page 77: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion with threshold: method of images

Absorbing boundary at x = : P() = 0

Add a negative source at x = 2

Dtx

DtDtx

DttxP

4)2(exp

41

4exp

41)|(

22

Probability of having been absorbed by time t:

Dtx

DtdxtxPdxtA

4exp

42)|()(

2

Page 78: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion with threshold: method of images

Absorbing boundary at x = : P() = 0

Add a negative source at x = 2

Dtx

DtDtx

DttxP

4)2(exp

41

4exp

41)|(

22

Probability of having been absorbed by time t:

Dtx

DtdxtxPdxtA

4exp

42)|()(

2

Change of variables:

2exp

22)(

2

2/

ydytADt

Page 79: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Interspike interval density

(first passage time density)

Page 80: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Interspike interval density

(first passage time density)

DttDydy

dtd

dttdAtP

Dt 4exp

42exp

22)()(

2

2/3

2

2/

Page 81: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Interspike interval density

(first passage time density)

DttDydy

dtd

dttdAtP

Dt 4exp

42exp

22)()(

2

2/3

2

2/

Alternatively, from

xxPDJtP )()(

Page 82: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Interspike interval density

(first passage time density)

DttDydy

dtd

dttdAtP

Dt 4exp

42exp

22)()(

2

2/3

2

2/

Alternatively, from

xxPDJtP )()(

DttDDtx

dxd

Dt

Dtx

DtDtx

DtdxdtP

x

x

4exp

44exp

42

4)2(exp

41

4exp

41)(

2

2/3

2

22

Page 83: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

A problem: firing rate = 0

Rate = 1/(mean interspike interval)

Page 84: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

A problem: firing rate = 0

Rate = 1/(mean interspike interval)

2/30~)(

ttdtdtttPt

Page 85: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion + drift

No absorbing boundary:

Dtvtx

DttxP

4)(exp

41)|(

2

Page 86: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion + drift

No absorbing boundary:

Dtvtx

DttxP

4)(exp

41)|(

2

Need a moving image

Dt

vtxDt

C4

)2(exp41 2

Page 87: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion + drift

No absorbing boundary:

Dtvtx

DttxP

4)(exp

41)|(

2

Need a moving image

Dt

vtxDt

C4

)2(exp41 2

To make P vanish at x , need

Page 88: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion + drift

No absorbing boundary:

Dtvtx

DttxP

4)(exp

41)|(

2

Need a moving image

Dt

vtxDt

C4

)2(exp41 2

To make P vanish at x , need

DtvtC

Dtvt

4)(exp

4)(exp

22

Page 89: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion + drift

No absorbing boundary:

Dtvtx

DttxP

4)(exp

41)|(

2

Need a moving image

Dt

vtxDt

C4

)2(exp41 2

To make P vanish at x , need

DtvtC

Dtvt

4)(exp

4)(exp

22 =>

DvC exp

Page 90: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Diffusion + drift

No absorbing boundary:

Dtvtx

DttxP

4)(exp

41)|(

2

Need a moving image

Dt

vtxDt

C4

)2(exp41 2

To make P vanish at x , need

DtvtC

Dtvt

4)(exp

4)(exp

22 =>

DvC exp

Dt

vtxDv

Dtvtx

DttxP

4)2(expexp

4)(exp

41)|(

22

Solution:

Page 91: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

ISI distributionFrom

xxPDJtP )()(

Page 92: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

ISI distributionFrom

xxPDJtP )()(

Dtvt

tD

DtvtxC

Dtvtx

dxd

DtDtP

x

4)(exp

4

4)2(exp

4)(exp

4)(

2

2/3

22

Page 93: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

ISI distributionFrom

xxPDJtP )()(

Dtvt

tD

DtvtxC

Dtvtx

dxd

DtDtP

x

4)(exp

4

4)2(exp

4)(exp

4)(

2

2/3

22

Now all moments of P(t) are finite.

Page 94: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

ISI distributionFrom

xxPDJtP )()(

Dtvt

tD

DtvtxC

Dtvtx

dxd

DtDtP

x

4)(exp

4

4)2(exp

4)(exp

4)(

2

2/3

22

Now all moments of P(t) are finite.

Page 95: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx

Page 96: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

Page 97: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

0)( tI

Page 98: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

0)( tI )()()( 2 tttItI

Page 99: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

0)( tI )()()( 2 tttItI

Brownian motion in a potential 202

1 )()( IxxU

Page 100: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

0)( tI )()()( 2 tttItI

Brownian motion in a potential 202

1 )()( IxxU

Combining drift and diffusion:

Page 101: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

0)( tI )()()( 2 tttItI

Brownian motion in a potential 202

1 )()( IxxU

Combining drift and diffusion: Fokker-Planck equation

Page 102: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

0)( tI )()()( 2 tttItI

Brownian motion in a potential 202

1 )()( IxxU

Combining drift and diffusion: Fokker-Planck equation

Diffusive current:

Page 103: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

0)( tI )()()( 2 tttItI

Brownian motion in a potential 202

1 )()( IxxU

Combining drift and diffusion: Fokker-Planck equation

Diffusive current:x

txPDtxJdiff )|(),(

Page 104: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

0)( tI )()()( 2 tttItI

Brownian motion in a potential 202

1 )()( IxxU

Combining drift and diffusion: Fokker-Planck equation

Diffusive current:x

txPDtxJdiff )|(),(

Drift (convective) current:

Page 105: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Back to the (noise-driven) leaky I&F neuron

)(0 tIIxdtdx (V -> x, t in units of , I means RI)

0)( tI )()()( 2 tttItI

Brownian motion in a potential 202

1 )()( IxxU

Combining drift and diffusion: Fokker-Planck equation

Diffusive current:x

txPDtxJdiff )|(),(

Drift (convective) current: )|()()|()(),( 0 txPxItxPxvtxJ drift

Page 106: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Fokker-Planck equationNow use conservation/continuity equation:

Page 107: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Fokker-Planck equationNow use conservation/continuity equation: diffdrift JJ

xtP

Page 108: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Fokker-Planck equationNow use conservation/continuity equation: diffdrift JJ

xtP

xtxPDtxPxI

xttxP )|()|()|(

0

________________________________

Page 109: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Fokker-Planck equationNow use conservation/continuity equation: diffdrift JJ

xtP

xtxPDtxPxI

xttxP )|()|()|(

0

________________________________

First term alone describes a probability cloud with its centerdecaying exponentially toward I0

Page 110: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Fokker-Planck equationNow use conservation/continuity equation: diffdrift JJ

xtP

xtxPDtxPxI

xttxP )|()|()|(

0

________________________________

First term alone describes a probability cloud with its centerdecaying exponentially toward I0

Second term alone describes diffusively spreading probability cloud

Page 111: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP

Page 112: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP 0)()(0

xxPDxPxI

dxd

dxdJi.e.

Page 113: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP 0)()(0

xxPDxPxI

dxd

dxdJ

const)()()( 0

xxPDxPxIxJ

i.e.

=>

Page 114: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP 0)()(0

xxPDxPxI

dxd

dxdJ

const)()()( 0

xxPDxPxIxJ

Boundary conditions: sink at firing threshold x source at x = Vr (= 0 here)

i.e.

=>

Page 115: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP 0)()(0

xxPDxPxI

dxd

dxdJ

const)()()( 0

xxPDxPxIxJ

Boundary conditions: sink at firing threshold x source at x = Vr (= 0 here)

xxP ,0)(

i.e.

=>

Page 116: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP 0)()(0

xxPDxPxI

dxd

dxdJ

const)()()( 0

xxPDxPxIxJ

Boundary conditions: sink at firing threshold x source at x = Vr (= 0 here)

xxP ,0)( 0and,0)( xxxJ

i.e.

=>

Page 117: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP 0)()(0

xxPDxPxI

dxd

dxdJ

const)()()( 0

xxPDxPxIxJ

Boundary conditions: sink at firing threshold x source at x = Vr (= 0 here)

xxP ,0)( 0and,0)( xxxJ

i.e.

=>

Firing rate: current out at threshold:

Page 118: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP 0)()(0

xxPDxPxI

dxd

dxdJ

const)()()( 0

xxPDxPxIxJ

Boundary conditions: sink at firing threshold x source at x = Vr (= 0 here)

xxP ,0)( 0and,0)( xxxJ

xdxdPDJr )(

i.e.

=>

Firing rate: current out at threshold:

Page 119: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP 0)()(0

xxPDxPxI

dxd

dxdJ

const)()()( 0

xxPDxPxIxJ

Boundary conditions: sink at firing threshold x source at x = Vr (= 0 here)

xxP ,0)( 0and,0)( xxxJ

xdxdPDJr )(

i.e.

=>

Firing rate: current out at threshold: = reinjection rate at reset:

Page 120: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Looking for stationary solution0

tP 0)()(0

xxPDxPxI

dxd

dxdJ

const)()()( 0

xxPDxPxIxJ

Boundary conditions: sink at firing threshold x source at x = Vr (= 0 here)

xxP ,0)( 0and,0)( xxxJ

xdxdPDJr )(

00 )0()0(

xdxdPDPIJr

i.e.

=>

Firing rate: current out at threshold: = reinjection rate at reset:

Page 121: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (2)

Also need normalization:

Page 122: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (2)

Also need normalization:

1)(xPdx

Page 123: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (2)

Also need normalization:

1)(xPdx

Below reset level, J :

Page 124: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (2)

Also need normalization:

1)(xPdx

Below reset level, J : 0)()(0

xxPDxPxI

Page 125: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (2)

Also need normalization:

1)(xPdx

Below reset level, J : 0)()(0

xxPDxPxI

has solution

DIxcxP

2)(exp)(

20

1

Page 126: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (2)

Also need normalization:

1)(xPdx

Below reset level, J : 0)()(0

xxPDxPxI

has solution

DIxcxP

2)(exp)(

20

1

x DIydy

DIxcxP

2)(exp

2)(exp)(

20

20

2Between rest and threshold:

Page 127: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (2)

Also need normalization:

1)(xPdx

Below reset level, J : 0)()(0

xxPDxPxI

has solution

DIxcxP

2)(exp)(

20

1

x DIydy

DIxcxP

2)(exp

2)(exp)(

20

20

2Between rest and threshold:

B.C. at x :

Page 128: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (2)

Also need normalization:

1)(xPdx

Below reset level, J : 0)()(0

xxPDxPxI

has solution

DIxcxP

2)(exp)(

20

1

x DIydy

DIxcxP

2)(exp

2)(exp)(

20

20

2Between rest and threshold:

B.C. at x : 2

20

20

2 2)(exp

2)(exp Dc

DI

DIDc

dxdPDr

x

Page 129: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (2)

Also need normalization:

1)(xPdx

Below reset level, J : 0)()(0

xxPDxPxI

has solution

DIxcxP

2)(exp)(

20

1

x DIydy

DIxcxP

2)(exp

2)(exp)(

20

20

2Between rest and threshold:

B.C. at x : 2

20

20

2 2)(exp

2)(exp Dc

DI

DIDc

dxdPDr

x

=>Drc 2

Page 130: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (3)Continuity at x = =>

Page 131: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (3)Continuity at x = =>

0

20

20

2

20

1 2)(exp

2exp

2exp

DIydy

DIc

DIc

Page 132: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (3)Continuity at x = =>

0

20

20

2

20

1 2)(exp

2exp

2exp

DIydy

DIc

DIc

i.e.,

0

20

21 2)(exp

DIydycc

Page 133: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (3)Continuity at x = =>

0

20

20

2

20

1 2)(exp

2exp

2exp

DIydy

DIc

DIc

i.e.,

0

20

21 2)(exp

DIydycc

algebra … =>

Page 134: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (3)Continuity at x = =>

0

20

20

2

20

1 2)(exp

2exp

2exp

DIydy

DIc

DIc

i.e.,

0

20

21 2)(exp

DIydycc

algebra … =>

)erf1)(exp(

1

)erf1)(exp(

12/)(

/22/)(

2/

0

0

0

0

xxdxxxdxr I

I

DI

DI

Page 135: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (3)Continuity at x = =>

0

20

20

2

20

1 2)(exp

2exp

2exp

DIydy

DIc

DIc

i.e.,

0

20

21 2)(exp

DIydycc

algebra … =>

)erf1)(exp(

1

)erf1)(exp(

12/)(

/22/)(

2/

0

0

0

0

xxdxxxdxr I

I

DI

DI

with refractory timer

Page 136: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

Stationary solution (3)Continuity at x = =>

0

20

20

2

20

1 2)(exp

2exp

2exp

DIydy

DIc

DIc

i.e.,

0

20

21 2)(exp

DIydycc

algebra … =>

)erf1)(exp(

1

)erf1)(exp(

12/)(

/22/)(

2/

0

0

0

0

xxdxxxdxr I

I

DI

DI

with refractory timer)erf1)(exp(

12/)(

/

0

0

xxdxr I

Ir

Page 137: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

membrane potential histories, distributions; rate vs input

Histories of V

Page 138: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

membrane potential histories, distributions; rate vs input

Histories of V Distributions of V

(for several noise power levels)

Page 139: Lecture 8: Integrate-and-Fire Neurons References: Dayan and Abbott, sect 5.4 Gerstner and Kistler, sects 4.1-4.3, 5.5, 5.6, 6.2.1 H Tuckwell, Introduction

membrane potential histories, distributions; rate vs input

Histories of V Distributions of V Rate vs mean input current

(for several noise power levels)