8
1 ECE 303 – Fall 2007 – Farhan Rana – Cornell University Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna arrays • Gain and radiation pattern for antenna arrays • Antenna beam steering with phase array antennas ECE 303 – Fall 2007 – Farhan Rana – Cornell University Two Hertzian Dipoles – A Two Element Array y z () ( ) 0 3 0 0 ˆ h r d I z r J r r r r = δ x 0 h r 1 h r 0 J r 1 J r () ( ) 1 3 1 1 ˆ h r d I z r J r r r r = δ () () [ ] () ( ) ( ) φ θ φ θ θ π η θ θ π η θ , , , sin 4 ˆ sin 4 ˆ 1 0 1 0 . ˆ 0 1 . ˆ 0 0 0 . ˆ 1 . ˆ 0 F r e I I e I I e r d I k j e I e I e r kd j r E h r k j h r k j r k j o h r k j h r k j r k j o ff Ε = + = + = r r r r r r r One can write the E-field in the far-field as a superposition of the E-fields produced by all the elements in the array: Consider first an array of just two Hertzian dipoles: Element Factor Array Factor Each antenna in the array is an “element” of the array • The “element factor” is just the E-field produced by the first element if it were sitting at the origin • The “array factor” captures all the interference effects

Lecture 33 Antenna Arrays and Phase Arrays · 4 ECE 303 – Fall 2007 – Farhan Rana – Cornell University An N-Element Hertzian Dipole Phase Array: Maxima Lets look at radiation

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    Lecture 33

    Antenna Arrays and Phase Arrays

    In this lecture you will learn:

    • Antenna arrays

    • Gain and radiation pattern for antenna arrays

    • Antenna beam steering with phase array antennas

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    Two Hertzian Dipoles – A Two Element Array

    y

    z

    ( ) ( )0300 ˆ hrdIzrJrrrr

    −= δ

    x

    0hr

    1hr0J

    r1Jr

    ( ) ( )1311 ˆ hrdIzrJrrrr

    −= δ

    ( ) ( ) [ ]( )

    ( ) ( )φθφθ

    θπ

    ηθ

    θπ

    ηθ

    ,,,

    sin4

    ˆ

    sin4

    ˆ

    10

    10

    0

    1.ˆ

    0

    00

    .ˆ1

    .ˆ0

    Fr

    eIIe

    IIe

    rdIkj

    eIeIerkdjrE

    hrkjhrkjrkjo

    hrkjhrkjrkjoff

    Ε=

    ⎥⎦

    ⎤⎢⎣

    ⎡+=

    +=

    r

    rr

    rr

    rr

    One can write the E-field in the far-field as a superposition of the E-fields produced by all the elements in the array:

    Consider first an array of just two Hertzian dipoles:

    Element Factor Array Factor

    Each antenna in the array is an “element” of the array

    • The “element factor” is just the E-field produced by the first element if it were sitting at the origin

    • The “array factor” captures all the interference effects

  • 2

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    An N-Element Antenna Array - IConsider an N-element antenna array where the elements are:

    - all identical (all loops, or all Hertzian dipoles, or all Half-wave dipoles, etc) - all oriented in the same way- but with possibly different current phasors

    Let the current phasor of the m-th antenna be Im

    Let the position vector of the m-th antenna be mhr

    y

    x

    mhr

    z

    mI

    0I1I

    1−NIzOne can write the E-field in the far-field as a superposition of the E-fields produced by all the elements in the array:

    ( ) ( )

    ( ) ( )φθφθ

    φθ

    ,,,

    ,, 1

    0

    0

    Fr

    eIIrrE

    N

    m

    hrkjmff m

    Ε=

    ∑Ε=−

    =r

    rrr r

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    An N-Element Antenna Array - II

    ( ) ( )

    ( ) ( )φθφθ ,,,

    1

    0

    0

    Fr

    eIIrrE

    N

    m

    hrkjmff m

    Ε=

    ∑Ε=−

    =r

    rrrr r

    ( )( )

    ( ) ( )222 ,, ofpart angular4ˆ.,

    , φθφθπ

    φθ Fr,rP

    rtrSG ⎥⎦

    ⎤⎢⎣⎡ Ε∝=

    rrr

    ( ) ( )( )max,,,

    φθφθφθ

    GGp =

    Gain:

    Pattern:

    y

    x

    mhr

    z

    mI

    0I1I

    1−NIz

  • 3

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    An N-Element Hertzian Dipole Phase Array

    x

    z

    y

    N-element Hertzian dipole array

    a

    αjeα2je( )α1−Nje

    • Current magnitude is the same for all the dipoles

    • Current phase difference between successive dipoles is α

    1

    αj

    m

    m eI

    I=+1

    ( ) ( ) ( )

    ( ) ( ) ( )( )21

    0

    cossin2

    1

    0

    cossin.ˆ1

    0

    0

    ,

    , 0

    ∑=⇒

    ∑=∑=

    =

    +

    =

    =

    N

    m

    makj

    N

    m

    makjmjhrkjN

    m

    hrkjm

    eF

    eeeeIIF m

    αφθ

    φθα

    φθ

    φθrr

    ( ) ( )( )

    ( ) ( )( )⎥⎦⎤

    ⎢⎣⎡ +

    ⎥⎦⎤

    ⎢⎣⎡ +

    =φθα

    φθα

    cossin21sin

    cossin2

    sin

    2

    2

    ka

    kaN

    Array Factor:

    Element Factor:

    ( ) ( ) rkjo er

    dIkjr −=Ε θπ

    ηθφθ sin4

    ˆ ,, 0r

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    x

    z

    y

    N-element Hertzian dipole phase array antennaa

    αjeα2je( )α1−Nje

    1

    ( ) ( )( ) ( )( )

    ( ) ( )( )⎥⎦⎤

    ⎢⎣⎡ +

    ⎥⎦⎤

    ⎢⎣⎡ +

    =φθα

    φθαθφθ

    cossin21sin

    cossin2

    sinsin1,

    2

    22

    2ka

    kaN

    Np

    Pattern:

    Coming from the element factor

    array factor

    ( ) ( ) ( )222 ,sin1, φθθφθ F

    Np =

    An N-Element Hertzian Dipole Phase Array

    NdIkP o 2012πη

    =

    ( )( )

    ( ) ( )222 ,sin23

    4

    ˆ.,, φθθ

    πφθ F

    NrP

    rtrSG ==

    rr

    Coming from the element factor

    array factor

  • 4

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    An N-Element Hertzian Dipole Phase Array: Maxima

    Lets look at radiation in the x-y plane:

    φ

    a

    ( )φcosa

    y

    x

    Radiation going in the φ direction from adjacent elements will add in-phase, and one will have a big maximum in the radiation pattern, provided:

    ( ){ KK,3,2,1,0

    2cos=

    ±=+n

    nak παφ

    ( )φπθ ,2=p

    φ

    2

    4

    20

    π

    πα

    =

    −=

    =

    ka

    N

    ( )2,2 φπθ =F

    2

    4

    20

    π

    πα

    =

    −=

    =

    ka

    N

    (degrees) φ

    nulls

    smallmaxima(side lobes)

    bigmaxima(main lobes)

    main lobes

    side lobes

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    An N-Element Hertzian Dipole Phase Array: Maxima

    φ

    a

    ( )φcosa

    y

    x

    Condition for a big maximum in the x-yplane:

    ( ){ KK,3,2,1,0

    2cos=

    ±=+n

    nak παφ

    At a big maximum the value of the array factor is:

    ( )( )( )

    ( )( )

    2

    2

    22max

    cos21sin

    cos2

    sin,2

    N

    ka

    kaN

    F

    =

    ⎥⎦⎤

    ⎢⎣⎡ +

    ⎥⎦⎤

    ⎢⎣⎡ +

    ==φα

    φαφπθ

    And the value of the antenna gain is:

    ( )2,2 φπθ =F

    2

    4

    20

    π

    πα

    =

    −=

    =

    ka

    N

    (degrees) φ

    nulls

    smallmaxima(side lobes)

    bigmaxima(main lobes)

    ( ) ( ) ( )

    NG

    FN

    G

    23,

    2

    ,sin23,

    max

    22

    =⎟⎠⎞

    ⎜⎝⎛ =⇒

    =

    φπθ

    φθθφθ

  • 5

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    An N-Element Hertzian Dipole Phase Array: Nulls

    φ

    a

    y

    x

    Radiation in the x-y plane:

    ( )( )( )

    ( )( )⎥⎦⎤

    ⎢⎣⎡ +

    ⎥⎦⎤

    ⎢⎣⎡ +

    ==φα

    φαφπθ

    cos21sin

    cos2

    sin,2

    2

    22

    ka

    kaN

    F

    The array factor will give a null in the radiation pattern provided:

    ( )φcosa

    ( )

    { KK,3,2,,0

    2cos

    NNNnN

    nak

    ±=+παφ

    ( )2,2 φπθ =F

    2

    4

    20

    π

    πα

    =

    −=

    =

    ka

    N

    (degrees) φ

    nulls

    smallmaxima(side lobes)

    bigmaxima(main lobes)

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    An N-Element Hertzian Dipole Phase Array: Width of Big Maxima

    ( )2,2 φπθ =F

    2

    4

    20

    π

    πα

    =

    −=

    =

    ka

    N

    φ

    φ

    a

    y

    x

    φ∆Angular width of a lobe associated with a big maxima:

    For a big maxima: ( ) {

    ,3,2,1,022cos KK±±±===+ nN

    nNnak ππαφ

    At the nulls nearest to the above maxima we must have:

    122

    cosN

    nNak ±=+⎟⎠⎞

    ⎜⎝⎛ ∆+ παφφ

    Which can be solved for ∆φ – and for N large (N >> 1) one gets approximately: ( )

    sin14

    φπφ

    kaN≈∆

  • 6

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    x

    z

    y

    aka = π

    αjeα2je( )α1−Nje

    Phase difference between successive elements is α

    N = 2 N = 10

    ( )φθ ,p ( )φθ ,p

    1

    N-element Hertzian dipole array

    An N-Element Hertzian Dipole Phase Array: Examples

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    x

    z

    y

    aka = π / 2

    αjeα2je( )α1−Nje

    Phase difference between successive elements is α

    N = 2 N = 10

    ( )φθ ,p ( )φθ ,p

    1

    N-element Hertzian dipole array

    An N-Element Hertzian Dipole Phase Array: Examples

  • 7

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    An (N+1)-Element Hertzian Dipole Binomial Array

    x

    z

    y

    (N+1)-element Hertzian dipole array

    a • Current phase is the same for all the dipoles

    • Currents magnitudes in the dipoles follow a binomial distribution

    ( )!!!

    0 mNmN

    IIm

    −=

    ( ) ( )( ) ( )

    ( ) ( ) ( ) ( ) ( )⎥⎦⎤

    ⎢⎣⎡=+=⇒

    ∑−

    =∑===

    φθφθ

    φθ

    φθ

    φθ

    cossin2

    cos21,

    !!!,

    222cossin2

    0

    cossin.ˆ

    0

    00

    akeF

    emNm

    NeeIIF

    NNNakj

    N

    m

    makjhrkjN

    m

    hrkjm mrr

    Array Factor:

    Element Factor:

    ( ) ( ) rkjo er

    dIkjr −=Ε θπ

    ηθφθ sin4

    ˆ ,, 0r

    π

    λ

    =⇒

    =

    ka

    a2

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    Lets look at radiation in the x-y plane:

    φ

    a

    ( )φcosay

    x

    Radiation going in the φ direction from adjacent elements will add in-phase, and one will have a big maximum in the radiation pattern, provided:

    ( ){

    ( ) n

    nnak

    πφπ

    πφ

    ±=⇒

    =±=

    cos2

    ,3,2,1,0 2cos

    KK

    An (N+1)-Element Hertzian Dipole Binomial Array: Maxima and Nulls

    ( ) ( )⎥⎦⎤

    ⎢⎣⎡== φπφπθ cos2

    cos2,2 222 NNF

    ( ) ( )⎥⎦⎤

    ⎢⎣⎡== φπφπθ cos2

    cos,2 2Np

    N+1=2

    N+1=40

    N+1=2N+1=40

    ( )φπθ ,2=p ( )φπθ ,2=p

    Note:

    • No side lobes• Two nulls at φ = 0,π

    (degrees) φ

    (degrees) φ

  • 8

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    Phased Array TRack to Intercept Of Target

    Alaska

    Applications of Antenna Arrays - I

    ECE 303 – Fall 2007 – Farhan Rana – Cornell University

    Communication satellite with two phase array antenna panels MRI system with phase array RF receivers

    Applications of Antenna Arrays - II

    Jicamarca facility (Peru) with an array of half-wave dipoles

    SETI

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice