94
Lecture 3 2017/2018

Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Lecture 32017/2018

Page 2: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

2C/1L, MDCR Attendance at minimum 7 sessions (course + laboratory) Lectures- assistant professor Radu Damian Monday 16-18, P2 E – 50% final grade problems + (? 1 topic teory) + (2p atten. lect.) + (3 tests) +

(bonus activity)▪ 3p=+0.5p

all materials/equipments authorized Laboratory – assistant professor Radu Damian Monday 18-20 II.12 even weeks Thursday 8-14 odd weeks II.12 ? L – 25% final grade P – 25% final grade

Page 3: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

RF-OPTO

http://rf-opto.etti.tuiasi.ro

David Pozar, “Microwave Engineering”, Wiley; 4th edition , 2011

1 exam problem Pozar

Photos

sent by email: [email protected]

used at lectures/laboratory

Page 4: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 5: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Not customized

Page 6: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

ADS 2016 EmPro 2015 based on IP from outside

university or campus

Page 7: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 8: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

“Engineering” Sinapses

Page 9: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

> 2010 < 1950

Page 10: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Complex numbers arithmetic!!!! z = a + j · b ; j2 = -1

Page 11: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

standard unit for angles – radians microwaves traditional unit for angles –

degrees in decimal form (55.89°)

rad 180

180

rad

0,2

,2

0,0,arctan

0,0,arctan

0,arctan

arg

anedefinit

baa

b

baa

b

aa

b

z

Page 12: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Attention to angle numerical values!! math software – work in standard unit: radians

▪ a conversion is necessary before and after using a trigonometric function (sin, cos, tan, atan, tanh)

scientific calculators have the built-in option of choosing the angle unit▪ always double check current working unit

rad 180

180

rad

Page 13: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

0 dBm = 1 mW

3 dBm = 2 mW5 dBm = 3 mW10 dBm = 10 mW20 dBm = 100 mW

-3 dBm = 0.5 mW-10 dBm = 100 W-30 dBm = 1 W-60 dBm = 1 nW

0 dB = 1

+ 0.1 dB = 1.023 (+2.3%)+ 3 dB = 2+ 5 dB = 3+ 10 dB = 10

-3 dB = 0.5-10 dB = 0.1-20 dB = 0.01-30 dB = 0.001

dB = 10 • log10 (P2 / P1) dBm = 10 • log10 (P / 1 mW)

[dBm] + [dB] = [dBm]

[dBm/Hz] + [dB] = [dBm/Hz]

[x] + [dB] = [x]

Page 14: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Behavior (and description) of any circuit depends on his electrical length at the particular frequency of interest E≈0 Kirchhoff

E>0 wave propagation

lllE 2

2

Page 15: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Source matched to load ?

Ei

Zi

ZL

I

V

impedance values ? existence of

reflections ?

Page 16: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

*iL ZZ

*iL

Page 17: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

The source has the ability to sent to the load a certain maximum power (available power) Pa

For a particular load the power sent to the load is less than the maximum (mismatch) PL < Pa

The phenomenon is “as if” (model) some of the power is reflected Pr = Pa – PL

The power is a scalar !

Ei

ZiPa

aL

iL

PP

ZZ

*

Ei

Zi ZL

PL

Ei

Zi

ZL

Pa PL

Pr

+

Page 18: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 19: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

TEM wave propagation, at least two conductorsI(z,t)

V(z,t)

z

Page 20: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

I(z,t)

V(z,t)

Δz

I(z+Δz,t)

V(z+Δz,t)

L·ΔzR·Δz

G·Δz C·Δz

TEM wave propagation, at least two conductors

Page 21: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

time domain

harmonic signals

t

tziLtziR

z

tzv

,,

,

t

tzvCtzvG

z

tzi

,,

,

zILjR

dz

zdV

zVCjG

dz

zdI

Page 22: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

02

2

2

zVdz

zVd

02

2

2

zIdz

zId

CjGLjRj

022 EE

022 HH

j 22

zz

y eEeEE

Page 23: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Characteristic impedance of the line

zz eVeVzV 00

zz eIeIzI 00

zILjR

dz

zdV

zz eVeVzV 00

zz eVeVLjR

zI

00

CjG

LjRLjRZ

0

CjGLjRj

2 fv f

0

00

0

0

I

VZ

I

V

Page 24: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

R=G=0

CLjCjGLjRj

CL ;0

C

L

CjG

LjRZ

0 Z0 is real

zjzj eVeVzV 00

zjzj eZ

Ve

Z

VzI

0

0

0

0LC

2

LCv f

1

Page 25: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

voltage reflection coefficient

ΓL

Z0 ZL

0

0

0

0

ZZ

ZZ

V

V

L

L

l

0

0

0

I

VZL 0

00

00 ZVV

VVZL

zjzj eVeVzV 00

zjzj eZ

Ve

Z

VzI

0

0

0

0

Z0 real

Page 26: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

voltage reflection coefficient seen at the input of the line

ΓL

Z0 ZL

-l 0

Zin

ΓIN

zjzj eVeVzV 00

ljlj eVeVlV 00

0

00V

VL 000 VVV

zV

zVz

0

0

lj

lj

lj

IN eeV

eVl

2

0

0 0

00 2 ljel

ljel 20

Page 27: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

time-average Power flow along the line

zjzj eeVzV 0 zjzj ee

Z

VzI

0

0

Total power delivered to the load = Incidentpower – “Reflected” power

Return “Loss” [dB]

Page 28: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

the input impedance seen looking toward the load

ΓL

Z0 ZL

-l0

lI

lVZin

lj

lj

ine

eZZ

2

2

01

1

ljlj eVeVlV 00

ljlj eZ

Ve

Z

VlI

0

0

0

0

Zin

lj

Llj

L

ljL

ljL

ineZZeZZ

eZZeZZZZ

00

000

lZjZ

lZjZZZ

L

Lin

tan

tan

0

00

Page 29: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

lZjZ

lZjZZZ

L

Lin

tan

tan

0

00

Page 30: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

input impedance of a length l of transmission line with characteristic impedance Z0 , loaded with an arbitrary impedance ZL

lZjZ

lZjZZZ

L

Lin

tan

tan

0

00

ΓL

Z0 ZL

-l 0

Zin

Page 31: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

input impedance is frequency dependent through

lZjZ

lZjZZZ

L

Lin

tan

tan

0

00

ΓL

Z0 ZL

-l 0

Zin

2fv f

l

fv

ll

v

fll

ff

222

frequency dependence is periodical, imposed by the tan trigonometric function

Page 32: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

l = k·λ/2 l = λ/4 + k·λ/2

lZjZ

lZjZZZ

L

Lin

tan

tan

0

00

ΓL

Z0 ZL

-l 0

Zin

kll

20ZZin 0tan l

ltan

L

inZ

ZZ

2

0

quarter-wave transformer

Page 33: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

purely imaginary for any length l

+/- depending on l value

lZjZin tan0

lZjZ

lZjZZZ

L

Lin

tan

tan

0

00

Page 34: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

purely imaginary for any length l

+/- depending on l value

lZjZ

lZjZZZ

L

Lin

tan

tan

0

00

lZjZin cot0

Page 35: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

SWR is defined as the ratio between maximum and minimum (Voltage) Standing Wave Ratio

real number 1 ≤ VSWR < a measure of the mismatch (SWR = 1 means a matched line)

zjzj eeVzV 0

zjzj eeVzV 20 1

je

zjeVzV 20 1

12 zje maximum magnitude value for 10max VV

12 zje 10min VV

1

1

min

max

V

VVSWR

minimum magnitude value for

Page 36: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

lZjZ

lZjZZZ

L

Lin

tan

tan

0

00

ΓL

Z0 ZL

-l 0

Zin

zz eVeVzV 00

zz eIeIzI 00

ljel 20

Page 37: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Impedance Matching with Impedance Transformers (Lab 1)

Page 38: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Feed line – input line with characteristic impedance Z0

Real load impedance RL

We desire matching the load to the fider with a second line with the length λ/4 and characteristic impedance Z1

)tan(

)tan(

1

11

ljRZ

ljZRZZ

L

Lin

lj

lj

ine

eZZ

2

2

11

1

1

1

0

0

ZR

ZR

V

V

L

LO

Page 39: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

In the feed line (Z0) we have only progressive wave

In the quarter-wave line (Z1) we have standing waves

24

2

l

0

0

ZZ

ZZ

in

inin

L

inR

ZZ

2

1

0in LRZZ 01 L

Lin

RZZ

RZZ

0

2

1

0

2

1

Page 40: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

1T

The Multiple-Reflection Viewpoint

Page 41: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

The Multiple-Reflection Viewpoint

00 0

2

1 LRZZ

Page 42: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

(only) at f0

24

2 0

0

0

l

4

0l

)tan(

)tan(

1

11

lZjZ

lZjZZZ

L

Lin

)tan( lt

not

tZjZ

tZjZZZ

L

Lin

1

11

LZZZ 01

lnot

Page 43: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

matching quality power reflection coefficient

222 1tan1sec

cos

1sec

t

Page 44: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

we assume that the operating frequency is near the design frequency (narrow bandwidth)

0ff 1tan1sec 22 4

0l2

cos2 0

0

L

L

ZZ

ZZ

Page 45: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

we set a maximum value Гm for an acceptable reflection coefficient magnitude then the bandwidth of the matching transformer, θm

for TEM lines

00

0

24

12

4 f

f

f

v

v

fl

f

f

02 ff m

m

0

0

2

1

0

0

0

2

1cos

42

42

2

ZZ

ZZ

f

ff

f

f

L

L

m

mmm

Page 46: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

When non-TEM lines (such as waveguides) are used, the propagation constant is no longer a linear function of frequency, and the wave impedance will be frequency dependent, but in practice the bandwidth of the transformer is often small enough that these complications do not substantially affect the result

We ignored also the effect of reactancesassociated with discontinuities when there is a step change in the dimensions of a transmission line (Z0 -> Z1). This can often be compensated by making a small adjustment in the length of the matching section

Page 47: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Bandwidth depends on the initial mismatch

increased bandwidth for smaller load mismatches

Page 48: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

A quarter-wave matching transformer to match a 10Ω load to a 50 Ω transmission line at f0=3GHz

Determine the percent bandwidth for SWR<1.5

Page 49: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

ADS Simulation

GHzf 88.0

51033 GHz

2933.03

88.0

0

f

f

Page 50: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 51: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

The quarter-wave transformer can match any real load to any feed line impedance

If a greater bandwidth for the match is required we must use multiple sections of transmission lines transformers:

binomial

Chebyshev

Page 52: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 53: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

jjj eTTeTTeTT 622

332112

42

232112

2321121

12

121

ZZ

ZZ

12

2

23

ZZ

ZZ

L

L

21

2121

21

ZZ

ZT

21

1212

21

ZZ

ZT

0

223

2321121

n

jnnnj eeTT

Page 54: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

If the discontinuities between the impedances Z1 Z2 and Z2 ZL are small we can approximate

0

223

2321121

n

jnnnj eeTT

11

1

0

xx

xn

n

j

j

e

e2

31

231

1

je 231

Page 55: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

We also assume that all impedances increase or decrease monotonically across the transformer

This implies that all reflection coefficients will be real and of the same sign

Previously, 1 section

01

011

ZZ

ZZ

nn

nnn

ZZ

ZZ

1

1

NL

NLN

ZZ

ZZ

1,1 Nn

je 231

jNN

jj eee 242

210

Page 56: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

assume that the transformer can be made symmetrical

Note that this does not imply that the impedances are symmetrical

22110 ,, NNN

jNN

jj eee 242

210

442

2210

NjNjNjNjjNjNjN eeeeeee

nNNNe njN 2cos2coscos2 10

last item: even2

12/ NN

oddcos2/1 NN

Page 57: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Input reflection coefficient

we can choose the coefficients so we obtain a desired behavior (of the polynomial)

jNN

jj eee 242

210

xe j 2

NN xaxaxaaxf 2

210

Page 58: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

The response is as flat as possible near the design frequency, also known as maximally flat

For N sections the first N-1 derivatives of the |Γ(θ)| functions are annuled

0;02 2

n

n

d

d

NxAxf 1

NjeA 21

NNN

jjN

j AeeeA cos2

1,1 Nn24

ll

Page 59: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

A, θ 0 , 0 length sections, the sections disappear

Binomial expansion

Reflection coefficient:

NNN

nnNNN

NxCxCxCCxxf 101

!!

!

nnN

NC n

N

0

0

0

0 220ZZ

ZZA

ZZ

ZZA

L

LN

L

LN

jNN

jj eee 242

210

nNn CA

NjeA 21

Page 60: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

nNn CA

n

n

nn

nnn

Z

Z

ZZ

ZZ 1

1

1 ln2

1

1

1

12ln

xx

xx

00

01 ln22222lnZ

ZC

ZZ

ZZCA

Z

Z LnN

N

L

LNnNn

n

n

0

1 ln2lnlnZ

ZCZZ Ln

NN

nn

Manual design procedure

0

02ZZ

ZZA

L

LN

Page 61: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Bandwidth, Γm maximum acceptable value

N

mN

mm A cos2

Nm

mA

1

1

2

1cos

N

mmm

Af

ff

f

f

1

1

0

0

0 2

1cos

42

42

2

Page 62: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 63: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 64: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Design a three-section binomial transformer to match a 30Ω load to a 100 Ω line at f0=3GHz, Γm=0.1

N = 3

30LZ 1000Z

0.07525ln2

12

01

0

0

Z

Z

ZZ

ZZA L

NL

LN

1!0!3

!30

3

C 3!1!2

!31

3

C 3!2!1

!32

3

C

Page 65: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

0n

4.455100

30ln12100lnln2lnln 3

0

0301

Z

ZCZZ LN

03.861Z

1n

77.542Z

2n

552.3100

30ln3277.54lnln2lnln 3

0

2323

Z

ZCZZ LN

87.343Z

4.003100

30ln3203.86lnln2lnln 3

0

1312

Z

ZCZZ LN

Page 66: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

74.00.07525

1.0

2

1arccos

42

2

1arccos

42

311

0

N

m

Af

f

GHzf 22.2

Page 67: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Similarly Lab. 1

GHzf 169.2

6105.33 GHz

Page 68: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

The response of this multisection impedance transformer is equal-ripple in passband

optimizes (increases) bandwidth at the expense of passband ripple

We match the Γ(θ) function with an desired Chebyshev polynomial

Page 69: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

equal-ripple

xxT 1

12 2

2 xxT

xxxT 34 3

3

188 24

4 xxxT

xTxxTxT nnn 212

111 xTx n

Page 70: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

We can show that:

nNNNe njN 2cos2coscos2 10

jNN

jj eee 242

210

xe j 2

NN xaxaxaaxf 2

210

cosx

xnxTn arccoscos )(coshcosh)( 1 xnxTn1x 1x

nTn coscos

1x

last item:even

2

12/ NN

oddcos2/1 NN

Page 71: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

variable change so we map:

cos

1sec

1 xm

1 xm

m

x

cos

cos

cossec mx

Page 72: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

We search coefficients of Γ(θ) function to obtain a Chebyshevpolynomial

cosseccossec1 mmT

12cos1seccossec 2

2 mmT

cossec3cos33cosseccossec 3

3 mmmT

112cossec432cos44cosseccossec 24

4 mmmT

nNNNe njN 2cos2coscos2 10

cossec mNjN TeA

last item:even

2

12/ NN

oddcos2/1 NN

Page 73: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

A, θ 0 , 0 length sections, the sections disappear

mN

L

L TAZZ

ZZsec0

0

0

mNL

L

TZZ

ZZA

sec

1

0

0

00

0 ln2

11sec

Z

Z

ZZ

ZZT L

mL

L

m

mN

)(coshcosh)( 1 xnxTn

m

L

L

L

m

m

ZZ

NZZ

ZZ

N 2

lncosh

1cosh

1cosh

1coshsec 01

0

01

mm

f

ff

f

f 42

2

0

0

0

Am

Page 74: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 75: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 76: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Design a three-section Chebyshevtransformer to match a 30Ω load to a 100 Ωline at f0=3GHz, Γm=0.1

N = 3 30LZ 1000Z

cosseccos3cos2 33

103

mjj TAee

1.0 mA

362.1

1.02

10030lncosh

3

1cosh

2

lncosh

1coshsec 101

m

Lm

ZZ

N

76.42746.0

sec

1arccos rad

m

m

mNL

L

TZZ

ZZA

sec

1

0

0

00 AZZL 1.0A

Page 77: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

cossec3cos33cosseccos3cos2 310 mm AA

mA 30 sec2 1263.00

cos mmA secsec32 31 1747.01

3cos

simetrie: 1203 ;

Page 78: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

0n

4.3531263.02100ln2lnln 001 ZZ

68.771Z

1n

77.542Z

2n

62.383Z

1263.00

1747.01

4.0031747.0268.77ln2lnln 112 ZZ

654.31747.0277.54ln2lnln 223 ZZ

Page 79: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

GHzf 15.3

045.1

180

76.4242

42

2

0

0

0

mm

f

ff

f

f

Page 80: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Similarly Lab. 1

GHzf 096.3

51017.43 GHz

09925.0282.2 GHz

Page 81: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks,and Coupling Structures, ArtechHouse Books, Dedham, Mass. 1980

Page 82: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Impedance Matching

Page 83: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Feed line – input line with characteristic impedance Z0

Real load impedance RL

We desire matching the load to the fider with a second line with the length λ/4 and characteristic impedance Z1

)tan(

)tan(

1

11

ljRZ

ljZRZZ

L

Lin

lj

lj

ine

eZZ

2

2

11

1

1

1

0

0

ZR

ZR

V

V

L

LO

Page 84: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

In the feed line (Z0) we have only progressive wave

In the quarter-wave line (Z1) we have standing waves

24

2

l

0

0

ZZ

ZZ

in

inin

L

inR

ZZ

2

1

0in LRZZ 01 L

Lin

RZZ

RZZ

0

2

1

0

2

1

Page 85: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Bandwidth depends on the initial mismatch

increased bandwidth for smaller load mismatches

Page 86: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

ADS Simulation

GHzf 88.0

51033 GHz

2933.03

88.0

0

f

f

Page 87: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 88: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

The quarter-wave transformer can match any real load to any feed line impedance

If a greater bandwidth for the match is required we must use multiple sections of transmission lines transformers:

binomial

Chebyshev

Page 89: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

We also assume that all impedances increase or decrease monotonically across the transformer

This implies that all reflection coefficients will be real and of the same sign

Previously, 1 section

01

011

ZZ

ZZ

nn

nnn

ZZ

ZZ

1

1

NL

NLN

ZZ

ZZ

1,1 Nn

je 231

jNN

jj eee 242

210

Page 90: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 91: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Similarly Lab. 1

GHzf 169.2

6105.33 GHz

Page 92: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5
Page 93: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Similarly Lab. 1

GHzf 096.3

51017.43 GHz

09925.0282.2 GHz

Page 94: Lecture 3 2017/2018rf-opto.etti.tuiasi.ro/docs/files/MDCR Lecture 3.pdf · Lecture 3 2017/2018 ... 0 dBm = 1 mW 3 dBm = 2 mW 5 dBm = 3 mW 10 dBm = 10 mW 20 dBm = 100 mW-3 dBm = 0.5

Microwave and Optoelectronics Laboratory http://rf-opto.etti.tuiasi.ro [email protected]