34
CHE 3262: Thermodynamics Class 22: March 22 nd , 2013 Chapter 13: Chemical Reaction Euilibria

Lecture 23

Embed Size (px)

DESCRIPTION

lecture notes

Citation preview

CHE 3262: Thermodynamics

Class 22: March 22nd, 2013

•Chapter 13: Chemical Reaction Euilibria

15 3/11,M Analysis of VLE Data #7) 12.1, 12.3, 12.6, 12.12,

12.13, 12.16, 12.18, 12.26,

12.27, 12.29, 12.44, 12.48,

12.54 and 12.59 due 4/1

17 3/11,M Exam I, 17:30-19:30, Computer

Lab TBD

18 3/13,W Go over Exam 1

19 3/15,F Liquid Phase Properties from

Thermodynamic Data

20 3/18,M Thermodynamic Consistency

Models for Excess Gibbs Free

Energy

21 3/20,W Property Changes of Mixing,

Heat Effects of Mixing Processes

21 3/22,F Enthalpy Concentration

Diagrams

Chemical Reaction Equilibria

Ch. 13

22 4/1,M Reaction Coordinate,

Reaction Stoichiometry

Multi Reaction Stoichiometry

#8) 13.1, 13.2, 13.3,13. 4, and

13.5, due 4/8

23 4/3,W Reaction Equilibrium Criteria

G0, Equilibrium Constant

24 4/5,F Temperature Effects on

Equilibrium Constant

25 4/8,M Equilbrium Composition and

Conversion: Gas Phase

Reactions

#9) 13.6, 13.11, 13.12, due

4/15

26 4/10,W Equilbrium Composition and

Conversion: Gas, Liquid,

Heterogeneous Reactions

27 4/12,F Reactions in Heterogeneous

Systems

28 4/15,M Multireaction Equilibria, Fuel

Cells

#10) 13.21, 13.28, 13.31,

13.33, 13.34, 13.36, 13.40,

13.41, 13.45 due 4/22

29 4/17,W Vapor/Liquid Equilibrium:

Gamma/Phi Formulation

BUBL P Calculations

30 4/19,F DEW P, DEW T, BUBL T Ch. 14

31 4/22,M Azeotropes, Flash Calculations #11) 14.1, 14.8, 14.15, 14.16,

and 14.24, due 5/3

32 4/24,W VLE from cubic equations of

state

33 4/26,F Equilibrium and Stability

Quiz 23 A: The endothermic reaction A B reaches

an equilibrium conversion of 25% in an adiabatic

steady-state flow reactor. Which of the following will

likely increase conversion?

A. Add a catalyst

B. Raise the inlet temperature

C. Use a bigger reactor

D. Remove inert from the feed

E. All of the above

G = H + TS

Quiz 23 B: The exothermic reaction A B reaches

an equilibrium conversion of 25% in an adiabatic

steady-state flow reactor. Which of the following will

likely increase conversion?

A. Add a catalyst

B. Raise the inlet temperature

C. Use a bigger reactor

D. Add an inert to the feed

E. All of the above

G = H + TS

A key concept in chemical engineering is the

difference between a thermodynamically limited

process and a kinetically limited process.

Reaction rates ARE NOT susceptible to

thermodynamic treatment.

Equilibrium conversions ARE susceptible to

thermodynamic treatment.

The purpose of Chapter 13 is to determine the

effects of TEMPERATURE, PRESSURE and

INITIAL COMPOSITION on the EQUILIBIRIUM

CONVERSION of chemical reactions.

Ag+ + Cl- AgCl

System: AgCl system

Stress Applied: added NH3

Observations: The addition of NH3 solution caused the

white precipitate of AgCl to disappear.

Chemical Explanation: The addition of NH3 decreased

the concentration of free silver ions in solution. This

decreased the rate of the forward reaction. As a result

the equilibrium shifted to the left. In doing so more

AgCl precipitate dissolved.

Le Chatlier's Principle:

States that a system at

equilibrum will oppose

any change in the

equilibrium conditions.

Ag+ + Cl- AgCl

System: AgCl system

Stress Applied: added NH3

Observations: The addition of NH3 solution caused the white

precipitate of AgCl to disappear.

Chemical Explanation: The addition of NH3 decreased the

concentration of free silver ions in solution. This decreased the rate

of the forward reaction. As a result the equilibrium shifted to the

left. In doing so more AgCl precipitate dissolved.

Le Chatlier's Principle:

States that a system at

equilibrum will oppose any

change in the equilibrium

conditions.

L V

System: single component, two-phase, liquid in equilibrium with its vapor

at given temperature

Stress Applied: Vapor is injected

Observations: Liquid will condense

Chemical Explanation: Saturation vapor pressure (and overall pressure)

of the system does not change since T does not change.

What would happen if we injected liquid? What about a two-component,

two-phase system?

Le Chatlier's Principle:

States that a system at

equilibrum will oppose any

change in the equilibrium

conditions.

The Reaction Coordinate

Reaction Coordinate = 0 at initial state

n1 = -1 n2 = -1 n3 = 1 n4 = 3

13.4

13.5

See Examples 13.1 and 13.2

nu1 = -1 n10 = 2

nu2 = -1 n20 = 1

nu3 = 1 n30 = 1

nu4 = 3 n40 = 4

nu = 2 n0 = 8

e (mols) yCH4 yH2O yCO yH2 Syi

0 0.25 0.13 0.13 0.50 1

0.05 0.24 0.12 0.13 0.51 1

0.1 0.23 0.11 0.13 0.52 1

0.15 0.22 0.10 0.14 0.54 1

0.2 0.21 0.10 0.14 0.55 1

0.25 0.21 0.09 0.15 0.56 1

0.3 0.20 0.08 0.15 0.57 1

0.35 0.19 0.07 0.16 0.58 1

0.4 0.18 0.07 0.16 0.59 1

0.45 0.17 0.06 0.16 0.60 1

0.5 0.17 0.06 0.17 0.61 1

0.55 0.16 0.05 0.17 0.62 1

0.6 0.15 0.04 0.17 0.63 1

0.65 0.15 0.04 0.18 0.64 1

0.7 0.14 0.03 0.18 0.65 1

0.75 0.13 0.03 0.18 0.66 1

0.8 0.13 0.02 0.19 0.67 1

0.85 0.12 0.02 0.19 0.68 1

0.9 0.11 0.01 0.19 0.68 1

0.95 0.11 0.01 0.20 0.69 1

1 0.10 0.00 0.20 0.70 1

Mole Fractions vs Reaction Coordinate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1

e

yi

yCH4

yH2O

yCO

yH2

Syi

│nu1│A1 + │nu2│A2 --> │nu3│A3 + │nu4│A4

G

i

v

e

n

Example 13.1

Example 13.2

nu1 = -1 n10 = 2

nu2 = 1 n20 = 1

nu3 = 0.5 n30 = 1

nu = 0.5 n0 = 4

e (mols) n1 n2 n3 yH2O yH2 yO2

0.00 2.00 1.00 1.00 0.50 0.25 0.25

0.05 1.95 1.05 1.03 0.48 0.26 0.25

0.10 1.90 1.10 1.05 0.47 0.27 0.26

0.15 1.85 1.15 1.08 0.45 0.28 0.26

0.20 1.80 1.20 1.10 0.44 0.29 0.27

0.25 1.75 1.25 1.13 0.42 0.30 0.27

0.30 1.70 1.30 1.15 0.41 0.31 0.28

0.35 1.65 1.35 1.18 0.40 0.32 0.28

0.40 1.60 1.40 1.20 0.38 0.33 0.29

0.45 1.55 1.45 1.23 0.37 0.34 0.29

0.50 1.50 1.50 1.25 0.35 0.35 0.29

0.55 1.45 1.55 1.28 0.34 0.36 0.30

0.60 1.40 1.60 1.30 0.33 0.37 0.30

0.65 1.35 1.65 1.33 0.31 0.38 0.31

0.70 1.30 1.70 1.35 0.30 0.39 0.31

0.75 1.25 1.75 1.38 0.29 0.40 0.31

0.80 1.20 1.80 1.40 0.27 0.41 0.32

0.85 1.15 1.85 1.43 0.26 0.42 0.32

0.90 1.10 1.90 1.45 0.25 0.43 0.33

0.95 1.05 1.95 1.48 0.23 0.44 0.33

1.00 1.00 2.00 1.50 0.22 0.44 0.33

Moles vs Reaction Coordinate

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0

e

ni

n1

n2

n3

│n1│A1 --> │n2│A2+ │nu3│A3

calculate number of moles of each species as a function of reaction coordinate.

Pr 13.1a

nu1 = -4 n10 = 2

nu2 = -5 n20 = 5

nu3 = 4 n30 = 0

nu4 = 6 n40 = 0

nu = 1 n0 = 7

e (mols) y1 y2 y3 y4 Syi

0 0.29 0.71 0.00 0.00 1

0.05 0.26 0.67 0.03 0.04 1

0.1 0.23 0.63 0.06 0.08 1

0.15 0.20 0.59 0.08 0.13 1

0.2 0.17 0.56 0.11 0.17 1

0.25 0.14 0.52 0.14 0.21 1

0.3 0.11 0.48 0.16 0.25 1

0.35 0.08 0.44 0.19 0.29 1

0.4 0.05 0.41 0.22 0.32 1

0.45 0.03 0.37 0.24 0.36 1

0.5 0.00 0.33 0.27 0.40 1

Mole Fractions vs Reaction Coordinate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5

e

yi

y1

y2

y3

y4

│nu1│A1 + │nu2│A2 --> │nu3│A3 + │nu4│A4

Epsilon has units of moles (see

Eq 13.3). This leads to the

concept of moles of reaction.

A change in epsilon of one

mole means the reaction

proceeds to the extent that the

change in mole number of

each reactant and procuct is

equal to its stoichiometric

number. If n10=2, we need

two moles of reaction, etc.

Ex 13.2

Ex 13.3

Species ni0 nui1 nui2

1 CH4 3 -1 -1

2 H2O 3 -1 -2

3 CO 1 1 0

4 H2 1 3 4

5 CO2 1 0 1

Total 9 2 2

e1 (mols) e2 (mols) yCH4 yH2O yCO yH2 yCO2 Syi n1 n2 n3 n4 n5 Sn n

0.00 0.00 0.33 0.33 0.11 0.11 0.11 1 3 3 1 1 1 9 0

0.05 0.05 0.32 0.31 0.11 0.15 0.11 1 2.9 2.85 1.05 1.35 1.05 9.2 0.2

0.10 0.10 0.30 0.29 0.12 0.18 0.12 1 2.8 2.7 1.1 1.7 1.1 9.4 0.4

0.15 0.15 0.28 0.27 0.12 0.21 0.12 1 2.7 2.55 1.15 2.05 1.15 9.6 0.6

0.20 0.20 0.27 0.24 0.12 0.24 0.12 1 2.6 2.4 1.2 2.4 1.2 9.8 0.8

0.25 0.25 0.25 0.23 0.13 0.28 0.13 1 2.5 2.25 1.25 2.75 1.25 10 1

0.30 0.30 0.24 0.21 0.13 0.30 0.13 1 2.4 2.1 1.3 3.1 1.3 10.2 1.2

0.35 0.35 0.22 0.19 0.13 0.33 0.13 1 2.3 1.95 1.35 3.45 1.35 10.4 1.4

0.40 0.40 0.21 0.17 0.13 0.36 0.13 1 2.2 1.8 1.4 3.8 1.4 10.6 1.6

0.45 0.45 0.19 0.15 0.13 0.38 0.13 1 2.1 1.65 1.45 4.15 1.45 10.8 1.8

0.50 0.50 0.18 0.14 0.14 0.41 0.14 1 2 1.5 1.5 4.5 1.5 11 2

0.55 0.55 0.17 0.12 0.14 0.43 0.14 1 1.9 1.35 1.55 4.85 1.55 11.2 2.2

0.60 0.60 0.16 0.11 0.14 0.46 0.14 1 1.8 1.2 1.6 5.2 1.6 11.4 2.4

0.65 0.65 0.15 0.09 0.14 0.48 0.14 1 1.7 1.05 1.65 5.55 1.65 11.6 2.6

0.70 0.70 0.14 0.08 0.14 0.50 0.14 1 1.6 0.9 1.7 5.9 1.7 11.8 2.8

0.75 0.75 0.13 0.06 0.15 0.52 0.15 1 1.5 0.75 1.75 6.25 1.75 12 3

0.80 0.80 0.11 0.05 0.15 0.54 0.15 1 1.4 0.6 1.8 6.6 1.8 12.2 3.2

0.85 0.85 0.10 0.04 0.15 0.56 0.15 1 1.3 0.45 1.85 6.95 1.85 12.4 3.4

0.90 0.90 0.10 0.02 0.15 0.58 0.15 1 1.2 0.3 1.9 7.3 1.9 12.6 3.6

0.95 0.95 0.09 0.01 0.15 0.60 0.15 1 1.1 0.15 1.95 7.65 1.95 12.8 3.8

1.00 1.00 0.08 0.00 0.15 0.62 0.15 1 1 0 2 8 2 13 4

Species ni0 nui1 nui2

1 CH4 3 -1 -1

2 H2O 3 -1 -2

3 CO 1 1 0

4 H2 1 3 4

5 CO2 1 0 1

Total 9 2 2

e1/e2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.00 0.33 0.32 0.32 0.31 0.30 0.29 0.28 0.27 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18

0.05 0.32 0.32 0.31 0.30 0.29 0.28 0.27 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18

0.10 0.32 0.31 0.30 0.29 0.28 0.27 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17

0.15 0.31 0.30 0.29 0.28 0.27 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16

0.20 0.30 0.29 0.28 0.27 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16

0.25 0.29 0.28 0.27 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15

0.30 0.28 0.27 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15

0.35 0.27 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14

0.40 0.27 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14

0.45 0.26 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13

0.50 0.25 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13

0.55 0.24 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12

0.60 0.24 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.11

0.65 0.23 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.11

0.70 0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.11 0.10

0.75 0.21 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.11 0.10 0.10

0.80 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.11 0.10 0.10 0.10

0.85 0.20 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.11 0.10 0.10 0.10 0.09

0.90 0.19 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.11 0.10 0.10 0.10 0.09 0.09

0.95 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.08

1.00 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.08 0.08

Methane

Only

0.0

0

0.1

0

0.2

0

0.3

0

0.4

0

0.5

0

0.6

0

0.7

0

0.8

0

0.9

0

1.0

00.0

0

0.1

0

0.2

0

0.3

0

0.4

0

0.5

0

0.6

0

0.7

0

0.8

0

0.9

0

1.0

00.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

yCH4

eps1

eps2

Mole Fraction CH4 vs eps1 and eps2

Pr 13.2

Species ni0 nui1 nui2

1 C2H4 2 -1 -1

2 O2 3 -0.5 -3

3 ((CH2)2)O 0 1 0

4 CO2 0 0 2

5 H2O 0 0 2

Total 5 -0.5 0

e1 (mols) e2 (mols) yCH4 yH2O yCO yH2 yCO2 Syi n1 n2 n3 n4 n5 Sn n

0.00 0.00 0.40 0.60 0.00 0.00 0.00 1 2 3 0 0 0 5 0

0.05 0.05 0.38 0.57 0.01 0.02 0.02 1 1.9 2.825 0.05 0.1 0.1 4.975 -0.03

0.10 0.10 0.36 0.54 0.02 0.04 0.04 1 1.8 2.65 0.1 0.2 0.2 4.95 -0.05

0.15 0.15 0.35 0.50 0.03 0.06 0.06 1 1.7 2.475 0.15 0.3 0.3 4.925 -0.08

0.20 0.20 0.33 0.47 0.04 0.08 0.08 1 1.6 2.3 0.2 0.4 0.4 4.9 -0.1

0.25 0.25 0.31 0.44 0.05 0.10 0.10 1 1.5 2.125 0.25 0.5 0.5 4.875 -0.13

0.30 0.30 0.29 0.40 0.06 0.12 0.12 1 1.4 1.95 0.3 0.6 0.6 4.85 -0.15

0.35 0.35 0.27 0.37 0.07 0.15 0.15 1 1.3 1.775 0.35 0.7 0.7 4.825 -0.18

0.40 0.40 0.25 0.33 0.08 0.17 0.17 1 1.2 1.6 0.4 0.8 0.8 4.8 -0.2

0.45 0.45 0.23 0.30 0.09 0.19 0.19 1 1.1 1.425 0.45 0.9 0.9 4.775 -0.23

0.50 0.50 0.21 0.26 0.11 0.21 0.21 1 1 1.25 0.5 1 1 4.75 -0.25

0.55 0.55 0.19 0.23 0.12 0.23 0.23 1 0.9 1.075 0.55 1.1 1.1 4.725 -0.28

0.60 0.60 0.17 0.19 0.13 0.26 0.26 1 0.8 0.9 0.6 1.2 1.2 4.7 -0.3

0.65 0.65 0.15 0.16 0.14 0.28 0.28 1 0.7 0.725 0.65 1.3 1.3 4.675 -0.33

0.70 0.70 0.13 0.12 0.15 0.30 0.30 1 0.6 0.55 0.7 1.4 1.4 4.65 -0.35

0.75 0.75 0.11 0.08 0.16 0.32 0.32 1 0.5 0.375 0.75 1.5 1.5 4.625 -0.38

0.80 0.80 0.09 0.04 0.17 0.35 0.35 1 0.4 0.2 0.8 1.6 1.6 4.6 -0.4

0.85 0.85 0.07 0.01 0.19 0.37 0.37 1 0.3 0.025 0.85 1.7 1.7 4.575 -0.43

0.86 0.86 0.06 0.00 0.19 0.38 0.38 1 0.28 -0.01 0.86 1.72 1.72 4.57 -0.43

Species ni0 nui1 nui2

1 CO2 2 -1 -1

2 H2O 5 -3 -1

3 CH3OH 0 1 0

4 H2O 0 1 1

5 CO 1 0 1

Total 8 -2 0

e1 (mols) e2 (mols) yCH4 yH2O yCO yH2 yCO2 Syi n1 n2 n3 n4 n5 Sn n

0.00 0.00 0.25 0.63 0.00 0.00 0.13 1 2 5 0 0 1 8 0

0.05 0.05 0.24 0.61 0.01 0.01 0.13 1 1.9 4.8 0.05 0.1 1.05 7.9 -0.1

0.10 0.10 0.23 0.59 0.01 0.03 0.14 1 1.8 4.6 0.1 0.2 1.1 7.8 -0.2

0.15 0.15 0.22 0.57 0.02 0.04 0.15 1 1.7 4.4 0.15 0.3 1.15 7.7 -0.3

0.20 0.20 0.21 0.55 0.03 0.05 0.16 1 1.6 4.2 0.2 0.4 1.2 7.6 -0.4

0.25 0.25 0.20 0.53 0.03 0.07 0.17 1 1.5 4 0.25 0.5 1.25 7.5 -0.5

0.30 0.30 0.19 0.51 0.04 0.08 0.18 1 1.4 3.8 0.3 0.6 1.3 7.4 -0.6

0.35 0.35 0.18 0.49 0.05 0.10 0.18 1 1.3 3.6 0.35 0.7 1.35 7.3 -0.7

0.40 0.40 0.17 0.47 0.06 0.11 0.19 1 1.2 3.4 0.4 0.8 1.4 7.2 -0.8

0.45 0.45 0.15 0.45 0.06 0.13 0.20 1 1.1 3.2 0.45 0.9 1.45 7.1 -0.9

0.50 0.50 0.14 0.43 0.07 0.14 0.21 1 1 3 0.5 1 1.5 7 -1

0.55 0.55 0.13 0.41 0.08 0.16 0.22 1 0.9 2.8 0.55 1.1 1.55 6.9 -1.1

0.60 0.60 0.12 0.38 0.09 0.18 0.24 1 0.8 2.6 0.6 1.2 1.6 6.8 -1.2

0.65 0.65 0.10 0.36 0.10 0.19 0.25 1 0.7 2.4 0.65 1.3 1.65 6.7 -1.3

0.70 0.70 0.09 0.33 0.11 0.21 0.26 1 0.6 2.2 0.7 1.4 1.7 6.6 -1.4

0.75 0.75 0.08 0.31 0.12 0.23 0.27 1 0.5 2 0.75 1.5 1.75 6.5 -1.5

0.80 0.80 0.06 0.28 0.13 0.25 0.28 1 0.4 1.8 0.8 1.6 1.8 6.4 -1.6

0.85 0.85 0.05 0.25 0.13 0.27 0.29 1 0.3 1.6 0.85 1.7 1.85 6.3 -1.7

0.90 0.90 0.03 0.23 0.15 0.29 0.31 1 0.2 1.4 0.9 1.8 1.9 6.2 -1.8

0.95 0.95 0.02 0.20 0.16 0.31 0.32 1 0.1 1.2 0.95 1.9 1.95 6.1 -1.9

1.00 1.00 0.00 0.17 0.17 0.33 0.33 1 0 1 1 2 2 6 -2Pr 13.3

Criteria for

Equilibrium:

Gt = min

dGt/de = 0

Pr 13.4

i Species nui ni0 yi G0

f (J/mol)

1 H2 -1 1 0.2875 0

2 CO2 -1 1 0.2875 -395790

3 H2O 1 0 0.2125 -192420

4 CO 1 0 0.2125 -200240

Totals 0 2 1

eps = 0.425

T = 1000 K

G = -208661.6

R = 8.314 J/mol-K

eps G

0.35 -208492.9

0.4 -208627

0.425 -208662

0.45309 -208675

0.5 -208638

0.55 -208518

0.6 -208314

G vs eps at 1000 K

-208700

-208650

-208600

-208550

-208500

-208450

-208400

-208350

-208300

-208250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

eps

G

Pr 13.4

For non-ideal gases, we defined the Gibbs free energy by introducing

the concept of fugacity.

For pure species i in its standard state at the same temperature:

Criterion for Chemical

Equilibrium (13.8)

Combine to eliminate mi

for the equilibrium state

of a chemical reaction.

Eqs 13.10 – 13.12

The fugacity ratios connect the equilibrium state

of interest and the standard states of the

individual species (see section 13.5).

(13.14)

T

More rigorous approach:

= -ln K

-ln K =

(see eq, 5.15)

Same as ICPS

-ln K =

Index Species nui Ai Bi Ci Di

H0

f298

(J/mol)

G0

f298

(J/mol)

1 C2H4 -1 1.424 1.44E-02 -4.39E-06 0 52510 68460

2 H2O -1 3.47 1.45E-03 0 1.21E+04 -241818 -2.29E+05

3 C2H5OH 1 3.518 2.00E-02 -6.00E-06 0 -235100 -168490

T = 145

T = 418.15 K IDCPH = -23.12095 eq 13.19

T0 = 298.15 K IDCPS = -0.069235 eq 5.15

tau = 1.402481972 eq 13.18

R = 8.314 J/mol-K G0

T = 1.935548

ln K = -1.935548

K = 0.144345

A = -1.376E+00

B = 4.157E-03

C = -1.610E-06 K0 = 29.36593 eq 13.21

D = -1.210E+04 K1 = 0.004984 eq 13.22

H0

298 = -4.579E+04 J/mol K2 = 0.986155 eq 13.23

G0

298 = -8.378E+03 J/mol K = 0.144345 eq 13.20

T/K 1/T tau K0 K1 K2 K ln K

298.15 0.003354016 1 29.36593 1 1 29.36593 3.379835

418.15 0.002391486 1.40248 29.36593 0.004984 0.986155 0.144345 -1.935548

523.15 0.001911498 1.754637 29.36593 0.000354 0.977841 0.010176 -4.587704

593.15 0.001685914 1.989435 29.36593 0.000102 0.979368 0.002942 -5.828616

1273.15 0.000785453 4.270166 29.36593 7.18E-07 1.213823 2.56E-05 -10.57357

Example 13.4

Temperature Dependence of K

-12

-10

-8

-6

-4

-2

0

2

4

6

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

1/T (K-1

)

lnK