17
Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-1 CMOS Analog Circuit Design © P.E. Allen - 2010 LECTURE 300 – LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline • Introduction • Low voltage input stages • Low voltage gain stages • Low voltage bias circuits • Low voltage op amps • Summary CMOS Analog Circuit Design, 2 nd Edition Reference Pages 415-432 Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-2 CMOS Analog Circuit Design © P.E. Allen - 2010 INTRODUCTION Implications of Low-Voltage, Strong-Inversion Operation Reduced power supply means decreased dynamic range Nonlinearity will increase because the transistor is working close to V DS (sat) Large values of because the transistor is working close to V DS (sat) Increased drain-bulk and source-bulk capacitances because they are less reverse biased. Large values of currents and W/L ratios to get high transconductance Small values of currents and large values of W/L will give small V DS (sat) Severely reduced input common mode range • Switches will require charge pumps

Lect2 up300 (100328)

Embed Size (px)

Citation preview

Page 1: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-1

CMOS Analog Circuit Design © P.E. Allen - 2010

LECTURE 300 – LOW VOLTAGE OP AMPSLECTURE ORGANIZATION

Outline• Introduction• Low voltage input stages• Low voltage gain stages• Low voltage bias circuits• Low voltage op amps• SummaryCMOS Analog Circuit Design, 2nd Edition ReferencePages 415-432

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-2

CMOS Analog Circuit Design © P.E. Allen - 2010

INTRODUCTIONImplications of Low-Voltage, Strong-Inversion Operation• Reduced power supply means decreased dynamic range• Nonlinearity will increase because the transistor is working close to VDS(sat)

• Large values of because the transistor is working close to VDS(sat)

• Increased drain-bulk and source-bulk capacitances because they are less reversebiased.

• Large values of currents and W/L ratios to get high transconductance• Small values of currents and large values of W/L will give smallVDS(sat)

• Severely reduced input common mode range• Switches will require charge pumps

Page 2: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-3

CMOS Analog Circuit Design © P.E. Allen - 2010

What are the Limits of Power Supply?The limit comes when there is no signal range left when the dc drops are subtracted fromVDD.

Minimum power supply (no signal swing range):

VDD(min.) = VT + 2VON

For differential amplifiers, the minimum powersupply is:

VDD(min.) = 3VON

However, to have any input common mode range, theeffective minimum power supply is,

VDD(min.) = VT + 2VON

060802-01

VDD

VPB1

VNB1

M1

M2 M3

M4

+

VON

VT+VON

+

+

−VT+VON

VON+

060802-02

VPB1

VDD

VNB1

+

−VON

+

−VON

+

VON +

−VT+VON

+

−VT+VON

M1 M2

M3 M4

M5

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-4

CMOS Analog Circuit Design © P.E. Allen - 2010

Minimum Power Supply Limit – ContinuedThe previous consideration of the differential amplifier did not consider getting the signalout of the amplifier. This will add another VON.

060802-03

VPB1

VDD

VNB1

+

−VON

+

−VON

+

VON +

−VT+VON

+

−VT+VON

M1 M2

M3 M4

M5

VPB1

VPB2M6

M7 M8

M9

+

−VON

VT+VON+

VT

Therefore,VDD(min.) = VT + 3VON

This could be reduced to 3VON with the floating battery but its implementation probablyrequires more than 3VON of power supply.

Note the output signal swing is VT + VON while the input common range is VON.

Page 3: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-5

CMOS Analog Circuit Design © P.E. Allen - 2010

LOW VOLTAGE INPUT STAGESInput Common Mode Voltage RangeMinimum power supply (ICMR = 0):

VDD(min) = VSD3(sat)-VT1+VGS1+VDS5(sat) = VSD3(sat)+VDS1(sat)+VDS5(sat)

Input common-mode range:Vicm(upper) = VDD - VSD3(sat) + VT1

Vicm(lower) = VDS5(sat) + VGS1

If the threshold magnitudes are 0.7V, VDD =1.5V and the saturation voltages are 0.3V, then

Vicm(upper) = 1.5 - 0.3 + 0.7 = 1.9V

and Vicm(lower) = 0.3 + 1.0 = 1.3V

giving an ICMR of 0.6V.

vicm M1 M2

M3 M4

M5

VDD

VDS5(sat)VBias

+

-

VBias+

-

VGS1

-VT1

VSD3(sat)

Fig. 7.6-3

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-6

CMOS Analog Circuit Design © P.E. Allen - 2010

Increasing ICMR using Parallel Input StagesTurn-on voltage for the n-channel input:

Vonn = VDSN5(sat) + VGSN1Turn-on voltage for the p-channel input:

Vonp = VDD - VSDP5(sat) - VSGP1The sum of Vonn and Vonp equals the minimumpower supply.

Regions of operation:VDD > Vicm > Vonp: (n-channel on and p-channel off) gm(eq) = gmN

Vonp Vicm Vonn: (n-channel on and p-channel on) gm(eq) = gmN + gmP

Vonn > Vicm > 0 : (n-channel off and p-channel on) gm(eq) = gmP

where gm(eq) is the equivalent input transconductance of the above input stage, gmN isthe input transconductance for the n-channel input and gmP is the input trans-conductance for the p-channel input.

VDD

MN1 MN2MP1 MP2

MP3MP4

MP5MN3MN4

MN5

IBias

M6

M7

Fig. 7.6-4

Vicm Vicm

0 VSDP5(sat)+VGSN1 VDD-VSDP5(sat)+VGSN1 VDD

gmN+gmP

gmNgmP

gm(eff)

Vicm

n-channel onn-channel off n-channel onp-channel onp-channel on p-channel off

Fig. 7.6-5

Vonn Vonp

Page 4: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-7

CMOS Analog Circuit Design © P.E. Allen - 2010

Removing the Nonlinearity in Transconductances as a Function of ICMRIncrease the bias current in the differentialamplifier that is on when the otherdifferential amplifier is off.

Three regions of operation depending on thevalue of Vicm:

1.) Vicm < Vonn: n-channel diff. amp. offand p-channel on with Ip = 4Ib:

gm(eff) = KP’W P

LP 2 Ib

2.) Vonn < Vicm < Vonp: both on with

In = Ip = Ib:

gm(eff) = KN’W N

LN Ib +

KP’W PLP

Ib

3.) Vicm > Vonp: p-channel diff. amp. off and n-channel on with In = 4Ib:

gm(eff) = KN’W N

LN 2 Ib

VDD

Ib

Ib1:3

3:1

MN1

MP1 MP2

MN2MB2 MB1

VB2 VB1

Inn

Ipp

Ip

In

VicmVicm

Fig. 7.6-6

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-8

CMOS Analog Circuit Design © P.E. Allen - 2010

How Does the Current Compensation Work?Set VB1 = Vonn and VB2 = Vonp.

VonnMN1 MN2

MB1vicmvicm

IppIn

IbIf vicm >Vonn then In = Ib and Ipp=0

If vicm <Vonn then In = 0 and Ipp=Ib

VDD

Vonp

MP1 MP2

MB2vicmvicm

Inn Ip

IbIf vicm <Vonp then Ip = Ib and Inn=0

If vicm >Vonp then Ip = 0 and Inn=Ib

Fig. 7.6-6A

Result:gm(eff)

Vonn Vonp VDD

Vicm00

gmN=gmP

Fig. 7.6-7

The above techniques and many similar ones are good for power supply values down toabout 1.5V. Below that, different techniques must be used or the technology must bemodified (natural devices).

Page 5: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-9

CMOS Analog Circuit Design © P.E. Allen - 2010

Natural TransistorsNatural or native NMOS transistors normally have a threshold voltage around 0.1Vbefore the threshold is increased by increasing the p concentration in the channel.If these transistors are characterized, then they provide a means of achieving low voltageoperation.Minimum power supply (ICMR = 0):

VDD(min) = 3VON

Input common mode range:Vicm(upper) = VDD – VON + VT(natural)

Vicm(lower) = 2VON + VT(natural)

If VT(natural) VON = 0.1V, then

Vicm(upper) = VDD

Vicm(lower) = 3VON = 0.3V

Therefore,

ICMR = VDD - 3VON = VDD – 0.3V VDD(min) 1V

Matching tends to be better (less doping and magnitude is smaller).

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-10

CMOS Analog Circuit Design © P.E. Allen - 2010

Bulk-Driven MOSFETA depletion device would permit large ICMR even with very small power supply voltagesbecause VGS is zero or negative.When a MOSFET is driven from the bulk with the gate held constant, it acts like adepletion transistor.Cross-section of an n-channelbulk-driven MOSFET:

Large signal equation:

iD = KN’W

2L VGS - VT0 - 2| F| - vBS + 2| F| 2

Small-signal transconductance:

gmbs = (2KN’W/L)ID

2 2| F| - VBS

����

p-well

n+

����n+

����n+

����p+ Channel

����������������

QP

QV

Bulk Drain Gate Source Substrate

VDDVGSVDSvBS

DepletionRegion

n substrateFig. 7.6-8

Page 6: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-11

CMOS Analog Circuit Design © P.E. Allen - 2010

Bulk-Driven MOSFET - ContinuedTransconductance characteristics:

Saturation: VDS > VBS – VP gives,

VBS = VP + VON

iD = IDSS 1 -VBSVP

2

Comments:• gm (bulk) > gm(gate) if VBS > 0

(forward biased )• Noise of both configurations are the same (any differences comes from the gate versus

bulk noise)• Bulk-driven MOSFET tends to be more linear at lower currents than the gate-driven

MOSFET• Very useful for generation of IDSS floating current sources.

0

500

1000

1500

2000

-3 -2 -1 0 1 2 3

Dra

in C

urre

nt (μ

A)

Gate-Source or Bulk-Source Voltage (Volts)

IDSS

Bulk-source driven

Gate-sourcedriven

Fig. 7.6-9

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-12

CMOS Analog Circuit Design © P.E. Allen - 2010

Bulk-Driven, n-channel Differential AmplifierWhat is the ICMR?

Vicm(min) = VSS + VDS5(sat) + VBS1 = VSS + VDS5(sat) - |VP1| + VDS1(sat)

Note that Vicm can be less than VSS if |VP1| > VDS5(sat) + VDS1(sat)

Vicm(max) = ?

As Vicm increases, the current throughM1 and M2 is constant so the sourceincreases. However, the gate voltage staysconstant so that VGS1 decreases. Since thecurrent must remain constant through M1and M2 because of M5, the bulk-sourcevoltage becomes less negative causing VTN1to decrease and maintain the currentsthrough M1 and M2 constant. If Vicm isincreased sufficiently, the bulk-sourcevoltage will become positive. However,current does not start to flow until VBS isgreater than 0.3 volts so the effectiveVicm(max) is

Vicm(max) VDD - VSD3(sat) - VDS1(sat) + VBS1.

VDD

VSS

M1 M2

M3 M4

M5M6

M7

IBiasvi1 vi2

Fig. 7.6-10

+ VBS1-

+ VBS2-

+ VGS-

Page 7: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-13

CMOS Analog Circuit Design © P.E. Allen - 2010

Illustration of the ICMR of the Bulk-Driven, Differential Amplifier

-50nA

0

50nA

100nA

150nA

Bul

k-So

urce

Cur

rent

Input Common-Mode Voltage-0.50V -0.25V 0.00V 0.25V 0.50V

200nA

250nA

Fig. 7.6-10A

Comments:• Effective ICMR is from VSS to VDD -0.3V

• The transconductance of the input stage can vary as much as 100% over the ICMRwhich makes it very difficult to compensate

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-14

CMOS Analog Circuit Design © P.E. Allen - 2010

Reduction of VT through Forward Biasing the Bulk-Source

The bulk can be used to reduce the threshold sufficiently to permit low voltageapplications. The key is to control the amount of forward bias of the bulk-source.Current-Driven Bulk Technique†:

IBB

S

G

D

B

IBB

S

G

D

BIE

ICD ICS

Reduced Threshold MOSFET Parasitic BJT

n-well

p+ p+

n+

����

Source Drain

Gate

p- substrateLayout Fig. 7.6-19

Problem:Want to limit the BJT current to some value called, Imax.Therefore,

IBB = Imax

CS + CD + 1

† T. Lehmann and M. Cassia, “1V Power Supply CMOS Cascode Amplifier,” IEEE J. of Solid-State Circuits, Vol. 36, No. 7, 2001.

Page 8: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-15

CMOS Analog Circuit Design © P.E. Allen - 2010

Current-Driven Bulk TechniqueBias circuit for keeping the Imax definedindependent of BJT betas.

Note:ID,C = ICD + IDIS,E = ID + IE + IR

The circuit feedback causes a bulk biascurrent IBB and hence a bias voltage VBIASsuch that

IS,E = ID + IBB(1+ CS + CD) + IRUse VBias1 and VBias2 to set ID,C 1.1ID,IS,E 1.3ID and IR 0.1ID which sets IBB at 0.1ID assuming we can neglect ICS withrespect to ICD.

For this circuit to work, the following conditions must be satisfied:VBE < VTN + IRR and |VTP| + VDS(sat) < VTN + IRR

If |VTP| > VTN, then the level shifter IRR can be eliminated.

M1 M2

M3

M4M5

M6

M7

VDD

VSS

VBias1

M8

VBias2VBias

IBB

IS,E

ID,C

Fig. 7.6-20

R

IR

+

-

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-16

CMOS Analog Circuit Design © P.E. Allen - 2010

LOW VOLTAGE GAIN STAGESCascade StagesSimple cascade of inverters:

060803-01

VDD

VPB1

VNB1

M1

M2 M3

M4

VPB1

M6

M5

VNB1

M7

M8

-gm1

R1

-gm2

R2

-gm3

R3

-gm4

R4

The problem with this approach is the number of poles that occur (one per stage) if theamplifier is to be used in a closed loop application.

Page 9: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-17

CMOS Analog Circuit Design © P.E. Allen - 2010

Nested Miller CompensationPrinciple: Use Miller compensationto split the poles within a feedbackloop.Compensating Results:1) Cm1 pushes p4 to higherfrequencies and p3 down to lowerfrequencies2) Cm2 pushes p2 to higherfrequencies and p1 down to lower frequencies

3) Cm3 pushes p3 to higher frequencies (feedback path) & pulls p1 further to lowerfrequenciesEquations:

GB gm1/C m3 p2 gm2/Cm3 p3 gm3Cm3/(Cm1Cm2) p4 gm4/CL

The objective is to get all poles larger than GB:GB < p2, p3, p4

060812-01

vinvout-gm3-gm2-gm1 -gm4

Cm3

Cm1Cm2

p1 p2 p3 p4

R2R1 R3 RL CL

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-18

CMOS Analog Circuit Design © P.E. Allen - 2010

Illustration of the Nested Miller Compensation Technique

σp4 p3 p2 p1

σp4 p3 p2 p1

σp4 p3p2 p1

σp4 p3 p2 p1

Cm1

Cm2

Cm3

070508-01-GB

This approach is complicated by the feedforward paths which create RHP zeros.

Page 10: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-19

CMOS Analog Circuit Design © P.E. Allen - 2010

Elimination of the RHP ZerosThe following are least three ways in which the RHP zeros can be eliminated.

1.) Nulling resistor.

060803-02

VDD

VPB1

Rz1

Cc1M2

M1

z1 = 1

Cc1(1/gm1 Rz1)

2.) Feedback only – buffer.

060803-03

VDD

VPB1

Cc1

M2

M1VPN1

VDD

M3

Increases the minimum powersupply by VON.

3.) Feedback only – gain.

060803-04

VDD

VPB1

Cc1M2

M1

VDD

VPB2

VNB1

M3

M4

M5

Increases the pole andincreases the minimumpower supply by VON.

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-20

CMOS Analog Circuit Design © P.E. Allen - 2010

Use of LHP Zeros to Compensate Cascaded AmplifiersPrinciple: Feedforward around a noninverting stage creates a LHP zero or invertingfeedforward around an inverting stage also creates a LHP zero.Example of Multipath, Nested Miller Compensation†:

060803-05

R3

+gm4

VoutVin

C3

+gm2+gm1

R1

-gm3

R2,4

M1 M2M3 M4

CM1

CM2

M8

VNB1

M7

VDD

VPB1M5 M6

VRef1M12

M11

VRef2

M14

Vout

C3Vin

M9 M10

M13

CM1CM2

Unfortunately, the analysis becomes quite complex - for the details refer to the referencebelow.

† R. Hogervorst and J. H. Huijsing, Design of Low-Voltage, Low-Power Operational Amplifier Cells, Kluwer Academic Publishers, 1996, pp. 127-131.

Page 11: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-21

CMOS Analog Circuit Design © P.E. Allen - 2010

CascodingPossibilities that trade off output resistance and headroom:

051205-01

VGG

ID

+

−vout

Rout

No Cascoding

VGG

ID

+

vout

Rout

Normal Cascoding

M1

M2Sat.

Sat.

VT+2Von

VGG

ID

+

vout

Rout

Reduced Headroom Cascoding

M1

M2Sat.

Act.

VT+2Von

VGG

ID

+

vout

Rout

Gate-Connected Cascode

M1

M2Sat.

Act.

NoCascode

NormalCascode

Reduced HeadroomCascode

Gate-ConnectedCascode

voutVon1 1

1 + ß1ß2 1 +

ß1ß2 (2x-x2) 2x +

ß1ß2 (2x-x2)

Routrds

1 2ß22ID

2ß2(x-0.5x2)

ß1(1-x) + ID x-0.5x2 2ß2(x-0.5x2)

ß1(1-x) + ID x-0.5x2

Note: vDS(active) = x·Von1 = x·(VGG–VT)x = 0.1 and ß2 = 9ß1 vout=1.145Von1 and Rout=1.45rds for reduced headroom cascode

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-22

CMOS Analog Circuit Design © P.E. Allen - 2010

Solutions to the Low Headroom Problem – High Voltage Tolerant CircuitsHigh voltage tolerant transistors in standard CMOS†:

050416-02

Thick oxidetransistor Thick oxide

cascode

VDD(nom.)

VDD(nom.)

Upper gateswitchedto highestpotential

Retractable cascodecomposite transistor

(Transistor symbols with additional separation between the gate line and the channel linerepresent thick oxide transistors.)

† Anne-Johan Annema, et. Al., “5.5-V I/O in a 2.5-V 0.25μm CMOS Technology,” IEEE J. of Solid-State Circuits, Vol. 36, No. 3, March 2001, pp.

528-538.

Page 12: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-23

CMOS Analog Circuit Design © P.E. Allen - 2010

LOW VOLTAGE BIAS CIRCUITSA Low-Voltage Current Mirror with Wide Input and Output SwingsThe current mirror below requires a power supply of VT+3VON and has a Vin(min) =VON and a Vout(min) = 2VON (less for the regulated cascode output mirror).

iin

M1 M2

M3

VDD

IB

M4

M5

M6

M7

iout

I1-IB IB I2

or

iin

M1

M2

M3

VDD

IB1

M4

M5M6

M7

iout

I1 IB2 I2IB1

IB2

Fig. 7.6-13A

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-24

CMOS Analog Circuit Design © P.E. Allen - 2010

Low-Voltage Current Mirrors using the Bulk-Driven MOSFETThe biggest problem with current mirrors is the large minimum input voltage required forpreviously examined current mirrors.If the bulk-driven MOSFET is biased with a current that exceeds IDSS then it isenhancement and can be used as a current mirror.

VDD

iin

iout

M1 M2

+

-VGS

+-

VBS+

-VGS

VDD

iin iout

M1 M2

+

-VGS1

+-

VBS1+

-VGS2

M3 M4

Simple bulk-driven current mirror

Cascodebulk-driven current mirror. Fig.7.6-11

+-

VBS3+

-VGS3

+-

VGS4

The cascode current mirror gives a minimum input voltage of less than 0.5V for currentsless than 100μA

0

1 10-5

2 10-5

3 10-5

4 10-5

5 10-5

6 10-5

0 0.2 0.4 0.6 0.8 1

Cascode Current MirrorAll W/L's = 200μm/4μm

Iout

(A

)

Vout (V)

Iin=50μA

Iin=40μA

Iin=30μA

Iin=20μA

Iin=10μA

2μm CMOS

Fig. 7.6-12

Page 13: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-25

CMOS Analog Circuit Design © P.E. Allen - 2010

Bandgap Topologies Compatible with Low Voltage Power Supply

VPTAT

VBE

IPTAT

VRef

VDD

Voltage-mode bandgap topology.

INL

VRef

VDD

IVBE

VDD

IPTAT

VDD

Current-mode bandgap topology.

VRef

VDD

IPTAT

VDDVDD

INL

IVBE

R2

R3

R1

Voltage-current mode bandgap topologyFig. 7.6-14

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-26

CMOS Analog Circuit Design © P.E. Allen - 2010

Technique for Canceling the Bandgap CurvatureVDD

M1 M2 M3 M4

IVBE K1IPTAT

1:K2 1:K3

I2 INLK3INL

Cur

rent K2IVBE K1IPTAT

Temperature

INL

M2 activeM3 off

M2 sat.M3 on

Circuit to generate nonlinear correction term, INL. Illustration of the various currents.Fig. 7.6-16

INL = 0

K1IPTAT - K2IVBE ,,

K2IVBE > K1IPTAT

K2IVBE < K1IPTAT

The combination of the above concept with the previous slide yielded a curvature-corrected bandgap reference of 0.596V with a TC of 20ppm/C° from -15C° to 90C° usinga 1.1V power supply.† In addition, the line regulation was 408 ppm/V for 1.2 VDD 10Vand 2000 ppm/V for 1.1 VDD 10V. The quiescent current was 14μA.

† G.A. Rincon-Mora and P.E. Allen, “A 1.1-V Current-Mode and Piecewise-Linear Curvature-Corrected Bandgap Reference,” J. of Solid-State

Circuits, vol. 33, no. 10, October 1998, pp. 1551-1554.

Page 14: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-27

CMOS Analog Circuit Design © P.E. Allen - 2010

LOW VOLTAGE OP AMPSA Low Voltage Op Amp using Normal TechnologyVDD(min) = 3VON + VT (ICMR = VON):

060804-01

VDD

VPB1

VNB1

VPB2

vIN+

vOUTM1 M2

M3 M4

M5

M6 M7

M8 M9 M10

M11

Cc

Performance:Gain gm

2rds2

Miller compensatedOutput swing is VDD -2VONMax. CM input = VDD

Min. CM input = 2VON + VT

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-28

CMOS Analog Circuit Design © P.E. Allen - 2010

A Low-Voltage, Wide ICMR Op AmpVDD(min) = 4VON + 2VT (ICMR = VDD):

3:1

1:3

041231-15

VDD

VDD-VT-VDS(sat)

VDD-VT-2VDS(sat)+ −

VT+VDS(sat)

VT+2VDS(sat)

vOUT

Performance:

Gain gm2rds

2, self compensated, and output swing is VDD -4VON

Page 15: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-29

CMOS Analog Circuit Design © P.E. Allen - 2010

An Alternate Low-Voltage, Wide ICMR Op AmpVDD(min) = 4VON + 2VT (ICMR = VDD):

3:1

1:3060804-02

VDD

+ − vOUT

VPB2

VPB1

VPB2

VNB2

VNB1

VNB2

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-30

CMOS Analog Circuit Design © P.E. Allen - 2010

A 1-Volt, Two-Stage Op AmpUses a bulk-driven differential input amplifier.

vin+

vout

VDD=1V

IBias

Cc=30pF

CL

Rz=1kΩ

vin-

M1 M2

M3 M4Q5 Q6

M7

M8 M9 M10 M11M12

2000/2

400/2 400/2 400/2

6000/6 6000/6 3000/6 6000/6

Fig. 7.6-18

Page 16: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-31

CMOS Analog Circuit Design © P.E. Allen - 2010

Performance of the 1-Volt, Two-Stage Op AmpSpecification (VDD=0.5V, VSS=-0.5V) Measured Performance (CL = 22pF)

DC open-loop gain 49dB (Vicm mid range)Power supply current 300μAUnity-gainbandwidth (GB) 1.3MHz (Vicm mid range)Phase margin 57° (Vicm mid range)Input offset voltage ±3mVInput common mode voltage range -0.475V to 0.450VOutput swing -0.475V to 0.491VPositive slew rate +0.7V/μsecNegative slew rate -1.6V/μsecTHD, closed loop gain of -1V/V -60dB (0.75Vp-p, 1kHz sinewave)

-59dB (0.75Vp-p, 10kHz sinewave)THD, closed loop gain of +1V/V -59dB (0.75Vp-p, 1kHz sinewave)

-57dB (0.75Vp-p, 10kHz sinewave)Spectral noise voltage density 367nV/ Hz @ 1kHz

181nV/ Hz @ 10kHz,81nV/ Hz @ 100kHz444nV/ Hz @ 1MHz

Positive Power Supply Rejection 61dB at 10kHz, 55dB at 100kHz, 22dB at 1MHzNegative Power Supply Rejection 45dB at 10kHz, 27dB at 100kHz, 5dB at 1MHz

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-32

CMOS Analog Circuit Design © P.E. Allen - 2010

A 1-Volt, Folded-Cascode OTA using the Current-Driven Bulk Technique

-

+vin M1 M2

M3 M4M5

M6

M7

vout

VDD

VSS

VBiasN

Cx

CL

VBiasP

M8

M9 M10

M11 M12

M13

M14M15

M16

M17

Fig. 7.6-21

Transistors with forward-biased bulks are in a shaded box.For large common mode input changes, Cx, is necessary to avoid slewing in the inputstage.To get more voltage headroom at the output, the transistors of the cascode mirror havetheir bulks current driven.

Page 17: Lect2 up300 (100328)

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-33

CMOS Analog Circuit Design © P.E. Allen - 2010

A 1-Volt, Folded-Cascode OTA using the Current-Driven Bulk Technique -ContinuedExperimental results:

0.5μm CMOS, 40μA total bias current (Cx = 10pF)Supply Voltage 1.0V 0.8V 0.7V

Common-mode inputrange

0.0V-0.65V 0.0V-0.4V 0.0V-0.3V

High gain output range 0.35V-0.75V 0.25V-0.5V 0.2V-0.4VOutput saturation limits 0.1V-0.9V 0.15V-0.65V 0.1V-0.6V

DC gain 62dB-69dB 46dB-53dB 33dB-36dBGain-Bandwidth 2.0MHz 0.8MHz 1.3MHz

Slew-Rate (CL=20pF) 0.5V/μs 0.4V/μs 0.1V/μsPhase margin (CL=20pF) 57° 54° 48°

The nominal value of bulk current is 10nA gives a 10% increase in differential pairquiescent current assuming a BJT of 100.

Lecture 300 – Low Voltage Op Amps (3/28/10) Page 300-34

CMOS Analog Circuit Design © P.E. Allen - 2010

SUMMARY• Integrated circuit power supplies are rapidly decreasing (today 2-3Volts)• Classical analog circuit design techniques begin to deteriorate at 1.5-2 Volts• Approaches for lower voltage circuits:

- Use natural NMOS transistors (VT 0.1V)

- Drive the bulk terminal- Forward bias the bulk- Use depeletion devices

• The dynamic range will be compressed if the noise is not also reduced• Fortunately, the threshold reduction continues to allow the techniques of this section to

be used in today’s technology