49
i’. ?k ! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4 REPORT SECTION (6 .- C Applied Nuclear Data Research and Development April 1–June 30, 1978 L’ L%% LOS ALAMOS SCIENTIFIC LABORATORY Post Office Box 1663 Los Alamos, New Mexico 87545

L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

i’.?k

!

LA-7482=PRProgress Report

C3● *REPRODUCTION

COPYIS-4 REPORT SECTION

(6.-C

Applied Nuclear Data

Research and Development

April 1–June 30, 1978

L’

L%%LOS ALAMOS SCIENTIFIC LABORATORY—

Post Office Box 1663 Los Alamos, New Mexico 87545

Page 2: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

AnAffmmstiveAction/EqualOpportunityEmployer

Thefourmostrecentreportsinthisseries,unclassified,areLA4i971-PR,LA-7066-PR,LA-7200-PR,andL&7301-PR.

ThisworkwasperformedundertheauspicesoftheElectricPowerResearchInstituteandtheUSDepartmentofEnergy’sDivisionofMilitaryApplica-tions,ReactorResearchandTechnologyDivision,DivisionofBasicEnergySciences,andOfficeofFusionEnergy.

Thts report w.. prepu.d as . . .. C.UIII of work sponsoredbv the United Stale. G.vernmeIM. Nmher the Umted St.wsnor the Un&led St.les Detmrtrnmt of Ener.v. nor .ny of Ihew●mployees. nor . . . of thctr .mtr.cl. rs. s. bc. nlr..tms. orIJw1, ●nvloyee,. makes .“Y w.,,.”IY. ●xmrest o, ,rrwl,td. o,●-m.. .“Y 1.”1 h.btlats or r.mon”b, hw (OZ the .CCU”CV.complctencm. y usrfulmss of any !nfonn ation. .IUMr.tus.Droduct. or IMOC.U dmcloxd. or r. Dzewnla lh.t m usc wouldnot mfrmse Pnv.t.!v owned rishu.

b

i

.

UNITED STATES

DEPARTMENT OF ENERGY

CONTRACT W-740 S-ENG. Sm

Page 3: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

LA-7482-PRProgress Report

8pecial DistributionIssued: September 1978

Applied Nuclear Data

Research and Development

April 1–June 30, 1978

Compiledby

C. 1. BaxmanP. G. Young

ABOUT THIS REPORT
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images. For additional information or comments, contact: Library Without Walls Project Los Alamos National Laboratory Research Library Los Alamos, NM 87544 Phone: (505)667-4448 E-mail: [email protected]
Page 4: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

CONTENTS

I. THEORY AND EVALUATION OF NUCIJIAR CROSS SECTIONS............ 1

A.

B.

c.

D.

E.

F.

G.

H.

I.

J.

R-Matrix Analysis of the Four-Nucleon System.......... 1

EDA Code Development.................................. 4.R-Matrix Analysis of the T-N Scattering............... 4

Calculation of the39K(n,2n)

38K Cross Sections

from Threshold to 100 MeV................0..● ......... 5

Calculation of Proton Production from n +88,89Y

Reactions............................................. 6

Evaluation of the Tungsten Isotopes................... 7233

n+ U Evaluation................................... 8

n + 242Pu Evaluation.................................. 8

Addition of the Fission Channel to the GNASH Code..... 18

Gas Production and Activation Cross Sections.......... 20

II. NUCLEAR CROSS-SECTION PROCESSING....● .....0...● ● ..........● 20

A. Integral Testing of Methods and Data.................. 20

B. Phase II Testing of Preliminary ENDF/B-V Data......... 20

c. Power Reactor Cross-Section Processing Methods........ 21

D. The MATXS/TRANSX Cross-Section System................. 21

E. Thermal Reactor Cross Sections........................ 24

111. FISSION PRODUCTS AND ACTINIDES: YIELDS, YIELD THEORY,DECAY DATA, DEPLETION, AND BUILD-UP........................ 24

A. Fission-Yield Theory.................................. 24

B. ENDF/B-V Yields.....● ............● .................... 26

c. Decay Heat Standard................................... 26

D. Spectral Comparisons.................................. 27

E. Status of Fission-Product Data for AbsorptionCalculations.......................................... 27

F. Library for Processed ENDF/B AggregateFission-Product Spectra............................... 27

REFERENCES..............................● ......................● 42

iv

.. .

Page 5: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

APPLIED NUCLEAR DATA RESEARCH AND DEVELOPMENTQUARTERLY PROGRESS REPORTApril 1 - June 30, 1978

Compiled by

C. I. Baxman and P. G. Young

ABSTRACT

This progress report describes the activities of theLos Alamos Nuclear Data Group for the period April 1 throughJune 30, 1978. The topical content is summarized in thecontents.

I. THEORY AND EVALUATION OF NUCLEAR CROSS SECTIONS

A. R-Matrix Analysis of the Four-Nucleon System (G. M. Hale and D. C. Dodder)

The four-nucleon system is of interest for applied reasons because it con-

tains neutron-source and therumnuclear reactions, but it is also of considerable

intrinsic scientific interest, particularly as a testing ground for presumed

charge-independence properties of nuclear forces. Our comprehensive R-matrix

analysis of this system provides an excellent macroscopic model for these charge-

independence properties, while accounting for a large body of experimental

measurements for the four-nucleon reactions. The isospin-1 parameters are first

determined from analyzing p + 3He scattering data, then incorporated essentially

fixed in a larger analysis of data from the six independent reactions possible

among p + t, n + 3He, and d + D (i.e., the 4He system). “

One aspect,of this approach is illustrated in Fig. 1 by the analyzing-3

power differences for p + He and p + T scattering at proton energies near 5 MeV.

The differences between measurements of the p and 3He analyzing powers for p + He3

scattering (left of figure) determines the parameters of the singlet-triplet

spin transitions in the T = 1 (isospin-1) levels. The dominant such transition

at these energies occurs for Jp = l-. Because the singlet Jp = 1- state is ex-

cluded in T = O levels due to symmetrization considerations, the 1- singlet-

1

Page 6: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

3HE(P,P)3HE T(P,P)T

.

. r,“ A(p) 5.51 MeV /

Wisconsin 68,. I

,. /

. / I

.9 /

.* /

,, !

., 1 .

.a,.lu 9 .CuOmn m Uss Uc4i

* —

A(3He) 4.89 MeV \Rice 70

,.

,.

/

.. t

,.. ,-” ● . * n .

wtm5wsm

Fig.

a - T

A(P) 4.80 MeV., — Erlangen 76

i

..

*

4

q,,

..#. r \

i... \.-. . a . . a

.A(T) 4.96 MeVLASL 76 I \

-.0Ii ~

.,0.. 9 . la * . d IL

Measured and calculated analyzing powers for the ~He(p,p)~He(left) and T(P,P)T (right) reactions at proton energies near5 MeV .

triplet transitions in 4He are completely determined by the T = 1 parameters,

which are fixed in our model by analyzing p + 3He data. The resulting differ-ences predicted for the p and T analyzing powers for p -1-T elastic scattering are

seen

cant

2

in the right side of the figure to agree well with the measurements.

The major progress of this analysis in the past quarter has been a signifi-

improvement in the fit to data for the d + D reactions at deuteron energies

Page 7: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

D(d, p)T D(d,n)3He

*.

.

iT1l

’20

fT1

’20

CIWC*m -%s mu

.-z.7c0 s IuSs .Ici,

Fig, 2.Differential cross section and analyzing power T20 = $ Azz

for the reaction D(d,p)T at Ed = 4 MeV (left), Differential

cross section and analyzing power A~z for the reaction

D(d,n)3He at Ed = 4 MeV,

up to 5 MeV. Some of these data are shown in Fig. 2 for the D(d,p) and D(d,nj

reactions. The fits illustrate a point that has been characteristic of the charge-

independent analysis from the beginning: the calculation does not reproduce meas-

ured differences in the cross sections for the two branches of the D + d reac-

kions nearly as well as it does for the analyzing powers.

— —

3

Page 8: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

B, EDA Code Development lK, W~tte (C-3), D, C. Dodder, and G. M. Hale]

The EDA program and its auxiliary codes have now been converted for use on

LTSS (time-sharing)system using the FTN compiler. The programs have been de-

bugged and checked for a wide range of operating circumstances. Because of the

large number of options and features of EDA, it is not possible to test it under

all possible configurations. However, it is now reliable under almost all pos-

sfble arrangements. The program under the batch configuration of LTSS is now

running about 10% slower than under the CROS system.

The conversion to LTSS-FTN has meant three important improvements. First,

the code is now available as an interactive tool, including graphics display.

While it is much slower under the conditions usually present in this mode, it is

now suitable for short calculations. Second, the change to a dynamic storage

allocation incorporated at the same time as the conversion has allowed problems of

larger size in certain respects to be run. And third, it should be possible in

the future to make a portable version of the program, suitable for use at other

installations where the FTN compiler is available. This was not previously feas-

ible because the structure of its code, particularly its storage arrangements,

were very closely matched both to the CROS operating system and to the exact

hardware configuration at LASL.

c. R-Matrix Analysis of T-N Scattering (D. C. Dodder)

An R-matrix analysis of the ‘m-nucleonprocesses up to 300 MeV pion energy

has been enlarged to include the n-(p,y)n,oT (n,y)n, and T (p,~ )p channels.

The last channel is to represent the large absorption in the T = 1/2, J = 1/2

state. The use of a definite mass for the 0- is an approximation suggested by

the observed experimental width of the CJ-particle. The gamma-ray data require

El, Ml, and E2 multiples in both T = 1/2 and T = 3/2 states. The Ml multiples

occur in both J = 1/2 and J = 3/2 states. The multipole strengths are entirely

determined by the data; there are no theoretical inputs. The R-matrix approach

makes this feasible despite the limited amount of photoproduction and gamma-

emission data for this system.

The analysis is essentially completed and now allows reliable predictions of

m-nucleon scattering cross sections over the 0-300 MeV range, which, for the most

part, are more accurate than the individual

shifts are in reasonable agreement with the

shifts.

4

experimental results. The phase

most reliable single energy phase

.

.

Page 9: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

D. Calculation of the39K(n,2n)

38K Cross Section from Threshold to 100 MeV (E.

D. Arthur)

‘1’he39 38K(n,2n) K cross section is used in pion radiotherapy to determine

the neutron dose arising from negative pion absorption. Because no experimental

data exist for this reaction above 23 MeV, we were asked by the biomedical

group at LAMPF to calculate this cross section up to neutron energies of 100 MeV.

For the calculations, the statistical model code GNASH1 was used, which included2

new preequilibrium routines based on recent exciton model efforts of Kalbach.

The (n,2n) cross section”represents only a few per cent of the

cross section; therefore, competition by proton, deuteron, and

included for each compound neucleus in the decay chain. Since

emission dominates, care was taken in the choice of the global3

sets used. Also, in the case of neutrons, slight adjustments

total reaction

alpha emission was

charged-particle

optical parameter

were made to

better reproduce the low-energy resonance data. The calculated results are

compared to representative experimental data in Fig. 3.

0 10 20 30 40 50 60 70

NeutronEnergy(MeV)

39Fig. 3.

Calculation of the K(n,2n) cross sectionto 100 MeV made using GNASH is shown.

0“0001 ! I I I I i ! i I

80 9k1

100

from threshold

Page 10: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

E. Calculation of Proton Production From n +88,89X ~eaction~

. D. Arthur)

As part of a comprehensive effort to calculate neutron-induced reactions86-92Y and 89-90

on Zr from 0.001-20 MeV, we have investigated neutron and

proton optical-model parameters needed to calculate proton production induced

by neutrons on88Y and 89Y

. Recently, experimental data4 pertaining to these

reactions have become available through charged-particle simulation experiments90,91 89,90Y

employing the Zr(t,a) reactions. These reactions produce excited

systems, and the subsequent measurements of the proton decay can be used to de-

termine the relative proton production cross section for n +88,89Y reactions.

Previous calculations made using Perey proton parameters produce results for

n+89 Y, which are factors of 2-3 above the data for neutrons between 10 and 15

MeV. For the present calculation, we have used as a starting point a new de-

termination of the low-energy proton optical parameters in this mass region per-

formed by Johnson’ using sub-Coulomb barrier (p,n) reaction data. We have re-89

analyzed his Y(p,n) data8 making some adjustments to the proton parameters and

using a more realistic potential to describe the outgoing neutron channel. Pro-

ton production calculations made with these adjusted parameters for n +88,89Y

are compared with the charged-particle simulation results in Figs. 4 and 5. The

general features and magnitude of the experimental data are reproduced by the

calculations.

o

61 I I I I I

0.0 2.0 4.0 6.0 8;0 10.0 12.0 liO li.O 18.0 2[

Neu~ron Energy (kVI

Fig. 4.

.0

.

.

Comparison of calculated and experimental proton production crosssection resulting from charged particle simulation of n + 88Y.

Page 11: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

o

o“ 1

lx

oG.o

0o“ -02

ao“ -a

oc5-V

0d-N

0

G h1 1 I I I 1

0.0 2.s 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 2!

Neutron Gtergy [MeVl

.0

m.?- cA-J-g, 2,

The total calculated proton production cross section for n +89Y

is compared to charged particle simulation results.

Fe Evaluation of the Tungsten T.sotopes [C. Philis (Bruy&es-le-Ch~tel)and E. D. Arthur]

As part of a cooperative effort between Los Alamos Scientific Laboratory,

Argonne National Laboratory, and Bruy&es-le-Ch~tel, we have begun a reevaluation

of neutron cross sections and gamma-ray production data for neutrons between

%3 and 20 MeV. As a first step, we have begun an extensive effort to determine

sets of sphertcal optical model parameters for neutrons in the range from 0.2 to

20 MeV suitable for use in statistical model calculations. Since the tungsten

isotopes are deformed, direct effects are important, and these must be accounted

for in the derivation of neutron optical parameters. Our approach has been

the following. Coupled-channel calculations with the JUPITOR code using the

Delaroche10 optical parameters for tungsten were made to determine the total

dtrect inelastic cross section from 0.2 to 20 MeV. This direct inelastic cross

section was then subtracted from the experimental total cross section, and the

results were used in the determination of spherical optical parameter sets.

By doing this, it was hoped that direct effects not accounted for in the spheri-

cal optical model could be separated, and the resulting data could be described

using realistic spherical parameters. In addition, other data such as the shape

7

Page 12: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

elastic cross section, s- and p-wave strengths, and the potential scattering

radius were used in the optical parameter determinations.

The above procedure results in preliminary optical sets that fit the avail-

able total and elastic cross sections over the energy range 0.2-20 MeV.. These

parameters, when used in Hauser-Feshbach calculations, produce compound inelas->

tic cross sections which, after being added to calculated direct contributions,11give good fits to inelastic level excitation data for 182,184,186W .

. Prelimi-

nary GNASH (n,2n) cross-section calculations from threshold to 15 MeV also agree12well with the data of Frehaut for these nuclei.

G. n + 233U Evaluation (L. Stewart, D. G. Madland, and P. G. Young)

The preliminary ENDF/B-V evaluation that we provided to the National Nuclear

Data Center at Brookhaven National Laboratory used the Version IV evaluation of

the unresolved energy region, which included several discrepancies. During this

quarter we have reevaluated the data in the keV range, and matching unresolved

resonance parameters were obtained by F. Mann of Hanford Engineering Development

Laboratory. The tasks remaining are to merge the new data into the preliminary

file and to derive an energy-dependent fission spectrum representation up to an

incident-neutron energy of 20 MeV.

H. n + 242Pu Evaluation (D. G. Madland and P. G. Young)

A new evaluation of n +242

Pu cross sections has been completed for the

neutron energy range 10 keV to 20 MeV. The evaluation is available on the

photostore file FS=LASL407 (MAT 107, 0AC=T02PGY) and has been processed for

use in TD Division.

The only242

Pu reactions for which experimental data exist above 10 keV

are fission and radiative capture, and the capture data only extend to 100 keV.

It was therefore necessary to rely heavily upon nuclear model calculations for

the present evaluation. In particular, model calculations were used to derive

and/or evaluate elastic; inelastic; (n,2n); (n,3n); (n,Y); and first> second,

and third chance fission cross-section components, as well as the elastic and●

inelastic angular distributions. The model calculations were performed using

LASL versions of the Hauser-Feshbach statistical reaction code COMNUC13 (3/29/78 .

version) and the direct reaction coupled-channel code JUKARL.14

All calculations

utilized the LASL preliminary global actinide optical potential.15

Pertinent de-

tails of evaluated and calculated quantities are summarized below.

8

Page 13: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

1.242

Pu(n,f) Reaction. The evaluated fission cross section is based upon16

averages of the measurements by Auchampaugh below 100 keV and upon the data of

Behrens et al.17

from 100 keV to 20 MeV. The ENDF/B-V evaluation of235

U fis-

sion18242PU

was used to convert the Behrens’ ratio measurements to absolute

cross sections. In Figs. 6 and 7, the evaluated results are compared to the ex-16,17,19-22

perimental data. The (n,f), (n,nf), and (n,2nf) cross sections were17

calculated subject to the constraint that their sum equals the measured total

fission cross section. Discrete fission channels (up to 12 each for first, sec-

ond, and third chance fission) and deformed level continuum fission channels were

employed. The calculated and measured total fission cross sections agreed to

within ~ 5%.

n

-.

#Yi?

+

>; x xx xx@x x x ‘- x -xt- X x RUCHFrMPFrUGtio 1971

m xxxx x + BERGEN. 1970x

: XxXx%x e BEHRENS. 1976

x o BUTLER, 1960r? xx xx

A FOMUSHKIN, 196S

x1

104 e Y 4 S6 7 6 9 10-’ t? 9 4 5

NCUTRON ENERGY, MEV

Fig. 6.

Experimental and evaluated242 -

Pu(n,f) cross sections between 10 and500 keV. The solid curve is the present evaluation (LASL-78).

Page 14: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

.

s

PU-Z42 FISSION CROSS SECTION b-f t

+ BERGEN. 1970x aucwinmum. 1971● BEtiRENSo 1976Q BUTLER. 1960● fOIWSliKIN. 1969x auctifltlPFluoll. 1971* FOIIUSHKIN. 1967

Experimental and0.1 and 20MeV.

NEUTRON ENERGY, MEV

Fig. 7,242

evaluated Pu(n,f) cross sections betweenThe solid curve is the LASL-78 evaluation,

The evaluated

tures approximated

fission spectrum

by23

T = 0.50 + 0.43 F

is represented by a Maxwellian using tempera-

● (1)

With this representation, the average energy of fission neutrons induced by l-MeV

incident

The

8 and 9.

The most

neutrons is 2.031 MeV.

different evaluations of the fission cross sections are compared in Figs.

The LASL-78, HEDL-78,24

and ENDL-7625 evaluations are quite similar.26

significant difference occurs for the ENDF/B-IV evaluation, which is

.

.

substantially higher than the other data sets below 200 keV and between 2 and 8

MeV.

10

Page 15: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

.

u

l--uwU3

inI

.

- PU-242 FISSION CROSS SECTION

N

70mm r -4t-

+

-..40 ---

wl‘-.

---------

- .

m ENoF/B-4‘- -- - ./”-—--

1’Ill 0

. Q

-i- ● J,

NEUTRON ENERGY. MEV

Fig, 80

Evaluated242Pu(n,f) cross sections from 0,1 to 20 M&,

b

2. Average Number of Neutrons Emitted Per Fission (~). There were no242

Pu experimental data available for the determination of ~p, the average number

of prompt neutrons emitted per fission. To determine ~ , the substantial exper-P

imental data available for the case of neutrons incident on240

Pu were analyzed,242

and the resulting data were corrected to Pu by adjusting for the systematic

variation of U with mass number.P

A comparison of the different evaluations of Vp(En) is given in Fig. 10.

Below 6 MeV, the LASL-78, ENDL-76, and ENDF/B-IV evaluations are in good agree-

ment, whereas the HEDL-78 values, which are based upon a phenomenological27model given in the Manero and Konshin review article, are 3-4% higher than

the other data.

11

Page 16: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

NEUTRON ENERGY. MEV

Fig. 9,

Evaluated 3P F42Pu) for neutron energies between 0,1 to 20 MeV,

6

5

1:

4

3

I I I 1

‘2PuPROMPTV

ENDL-76

/

4

Evaluated 1P (242Pu) for

8 12 16 20En(Mel/)

Fig. 10,

neutron energies between O and 20 MeV.

J

12

Page 17: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

3.242 242

Pu(n,Y) Reaction. The Pu radiative capture cross section was

calculated using the COMNUC model code and a gamma-ray strength function adjusted28

to agree with the measurements of Hockenbury. For energies above 4 MeV, the

capture cross section was calculated using a preequilibrium cascade process with

gamma-ray emission probabilities calculated at each stage.

The evaluated cross section is compared to the Hockenbury data and to other

evaluations in Fig. 11. Large differences exist, particularly above 3 MeV. A

~ 1 mb near 14 MeV, is supported by recent238

value of 0 , U measurements at then,

Los Alamos Scientific Laboratory.29

- I I [I

mzccccm

.

u

U-3

‘t ‘.. \

ENDF/B-4 Z; ‘=s

CROSS SECTION

\L #

Q

?o I I 1 u

104 ~ y c S678910-’ 4 S678910° 29 4 S676S10’ z

NEU;RCi ENERGY. MEV

Fig. 11.

Evaluated242

Pu(n,y) cross section from 10 keV to 20 MeV.

13

Page 18: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

4.242

Pu(n,n’) Reaction. Hauser-Feshbach calculations were carried out

for the discrete compound inelastic scattering for 19 levels up to an excitation

energy of 1.152 MeV. Above this excitation, continuum compound inelastic scat-

tering was calculated using a deformed nucleus level density. Direct coupled-

channel inelastic scattering was calculated for the first five members of the

ground state rotational band assuming an axially symmetric rotor model. Quadru-

ple and hexadecapole deformations were taken from Ref. 30.

Figure 12 compares the total inelastic cross section from the various eval-

uations. Numerous differences exist among the data sets; one of the more signif-

icant is the fact that the maximum in the ENDL-76 cross section is broader and

occurs some 1-3 MeV lower in energy than for the other data sets. The average

emitted neutron energy from inelastic scattering is given in Fig. 13 for each of

the evaluations. The ENDL-76 (n,n’) spectrum is significantly softer below 1 MeV

than the other evaluations, and large differences exist among all the evaluations

above 1 MeV.

o .

.

In..

0 .

u).0

0 .

I I I

PU-Z42 INELfKTIC CROSS SECTION

W#,-e,

● ENOL-76 c)/o HEOL-7E /

m

B-

w

\

c)”

% :

J,\

44? “.

@ ---

y@m

0-’ 1 c1S67S91O”’ c y 4 S678S10° 23 4s676910 2

*

.

NEUTRON ENERGY. MEV

Fig. 12.

Evaluated 242Pu inelastic cross sections from threshold to 20 MeV.

14

Page 19: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

I 1 I I I

ENDF/B-4

1

#/ 0_.. - --

2.0 - //

—--Lo -

0.5 -

:

zw

0. 1- 1 x-ENDF/B-42%

0.05 :1

I

‘1

0.02 1 I I I 1

0 2 4

En(MeV)

Fig. 13,,..,.

The average emitted neutron energy from ‘4ZPU inelasticscattering calculated from several evaluations for inci-dent neutron energies between O and 5 MeV.

5.242

Pu Elastic Cross Section. The elastic cross section was determined

by subtracting the sum of the evaluated nonelastic cross sections from the eval-

uated total cross section. The evaluated elastic cross sections from 10 keV to

20 MeV are compared in Fig. 14. The present (LASL-78) evaluation differs from

the calculation by at most ~ 100 mb. The LASL-78 elastic and inelastic angular

distributions include both compound and direct contributions.

6.242

Pu(n,2n) and242PU n Sn ~eaction~o

9 Hauser-Feshbach calculations

of the (n,2n) and (n,3n) reactions were carried out with discrete (10 levels) and

continuum (deformed level density) contributions included in each case. The cal-

culations are compared to other evaluations in Figs. 15 and 16.

Page 20: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

.co

● ‘\* r I 1I

\\ \a. PU-242 ELflSTIC CROSS SECTION

w \

4)●

p .. ,& \am

jti

+ \(J \LLl” .mm ‘\

‘\K’

!9 -

.w

● EuOL-76

. I t 1 J-l@ ~ 3 4 Stasal(y”’ f s 4s 670810” c S 4 S679810’ 2

NEUTRON ENERGY. PIEV

Fig, 14,

Evaluated242

Pu elastic cross section from 1.0keV to 20

loq

‘1PU-242 (N.2N) CRO$S SECTION

‘2ofga Qm~ ●

o HEDL-78e ● ENDL-76

. eo e

z~ ● ttapu . . . * /

wENoF/B-4 “\— K. ● \

1 I I I IW

.

0 -2\

* \t L-

------ ---8 I

.

‘4. 6. 6. 10. 12. 14. 16. 18. 20.

MeV,

NEUTRON ENERGY. tlEV

Fig, 15.

Evaluated 242pu(n,2n) cross sections f~om~threshold to 20 Mev .

16

Page 21: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

00 .

o

m@l

.

0

00 .

PU-242 (N,3NI CROSS SECTION

ENDF/B-4

.

● ENDL-76Q HEOL-78

! I I

‘4.J/ I 1 1

6. 8. 10. 12. 14. 16. 18. 20.

NEUTRON ENERGY. MEV

Fig. 16.

Evaluated242

Pu(n,3n) cross sections from threshold to 20 MeV.

7.242

Pu Total Cross Section. The 242Pu total cross section was obtained

in an ad hoc fashion. The deformation effects (inelastic scattering in the

coupled-channels formalism) were combined with the total cross section calculated15

with the preliminary LASL (spherical) global actinide potential in the follow-

ing manner. Calculations with this potential for actinides (uranium isotopes)

of measured total cross sections showed that the differences between calculation

and experiment were approximately equal to the calculated total direct inelastic

scattering using the coupled-channels method without modification of the absorp-

tive potential. Since no inelastic scattering data exist by which the change in

the absorptive potential could be determined, the total direct inelastic scatter-

ing was simply added to the calculated (spherical) total cross section to obtain

the final total cross section. [The LASL preliminary (spherical) global optical15

potential for the actinides is presently being used as the starting parameter

set to obtain a global (deformed) potential in coupled-channel calculations that

include inelastic scattering data.]

17

Page 22: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

.

s

%-—-—’- ‘ I v-r—

[

\\ PU-24Z TOTRL CROSS SECTION.

● 2,*to.-+- \\*~-

I ENDF/13-4--& -y

0 IICOL-78● ENCIL-76

.&-..=l, I Iz Y 4 5670910-’ t

.u.~Y 4 5678910” ? Y 4s6?0910” z

NEUTRON ENERGY. MEV

Fig. 17.

Evaluated242

Pu total cross section from 10 keV to 20 MeV.

The total cross sections from 10 keV to 20 MeV for

pared in Fig. 17. The peak in the ENDL-76 total near 1

in the (n,nf) cross section shown in Fig. 12,

four evaluations are com-

MsV results from the peak

I. Addition of the Fission Channel to the GNASH Code (E. D. Arthurj

As part of a program to upgrade the preequilibriuwstatistical model code

GNASH1 we have incorporated a fission channel so that multistep particle emis-

sion cross sections and spectra can be calculated for nuclei in which fission

occurs. The fission barrier is represented by a harmonic oscillator hetght EB

and curvature liu. The fission transmission coefficients are then given in the

Hill-Wheeler31

formulation as

1 .‘F(E) - 1+ exp [21T(E-EB)/liU]

For

eluded.

each fissioning system, up to 50 discrete fission channels can be in-

These can be supplied by the user or, as a default, the levels of the

.

,

.

.

18

Page 23: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

compound

discrete

ture and

supplied

system compressed by a given input factor can be used. Above the last

fission channel, a continuum level density based on constant tempera-

Fermi-gas forms is used. Barrier heights and curvatures are generally

as input, although the option exists for default values based on syste-

matic to be used.

Comparisons have been made between GNASH and the statistical code COMNUC

with identical parameter sets for n +242

Pu, and good agreement was obtained for

the (njf) cross section. We are presently using GNASH to calculate (n,xn) reac-

tions on235U and 238

U, to provide spectral efficiency correction data for recent

measurements of Lynn Veeser of LASL Group P-3, and to compare with other available

(n,xn) data. Usi~g neutron transmission coefficients based on a recent actinide32

optical-model parameter set of Madland, the fission-barrier parameters of Back

et al.,3334 235U

and the preequilibrium model of Kalbach, we have calculated the

and 238U fission cross section from 4 to 21 MeV. The calculated curve is compared

in Fig. 18 to recent measurements of the235

U and 238U fission cross sections by

Leugers et al.35 in the energy range from 1 to 20 MeV.

, 1 , , I , , I , I 1 1 r 1 1 I # i I ‘ t

235U(n,f) .*b..2.0 - ●e

●* .*● .

●9●

n.●-%.

“! 1.0 -0

238U(n,f)$

rQr~ma

m P4mo

G I.o -

:.●

0’ ‘:’ ! 1 , I I

o 5 10 15 20

En(MeV)

Fig, 18:The GNASH calculated fission cross sections are compared with theexperimental data of Leugers for 235u and 238U0

19

Page 24: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

J. Gas Production and Activation Cross Sections (L. Stewart and E. D. Arthur)

Many of the cross sections required for ENDF/B-V have not been measured,

and a few are virtually impossible to determine experimentally. For example,

hydrogen and helium production cross sections for structural materials such as

stainless steel have not been measured above a few MeV except at 14 MeV.

A paper36 discussing the problems associated with providing gas production

and activation data for ENDF/B was presented at the June San Diego American Nu-,

clear Society Meeting. Examples of calculations of hydrogen and helium produc-

tion cross sections with the GNASH nuclear model code were presented.

II. NUCLEAR CROSS-SECTION PROCESSING.

A. Integral Testing of Methods and Data (R. B. Kidman)

The 50-group library LIB-IV,37 38

generated with the MINX processing code

using ENDF/B-IV39 data, has been extensively tested on all 17 of the Cross Sec-

tion Evaluation Working Group fast reactor benchmarks.40

Results from this test-

ing have been compiled in a LASL report.41 Every experimental measurement is

compared to 1-D and 2-D diffusion theory and S P16 1/2

transport theory results.

Several comparisons with other laboratories are also presented. In general, the

results do not show any outstanding improvements or discrepancies over previous

calculations. The main benefits of the study are the introduction of the pack-

aged bench mark concept, which provides a convenient tool for rather complete

testing of data and methods, and the establishment of a reference set of calcu-

lations that can be used to assess MINX and measure future data and code

improvements.

B. Phase 11 Testing of Preliminary ENDF/B-V Data (R. B. Kidman)

Phase II testing of preliminary ENDF/B-V data consists of having

laboratories process the data into multigroup cross sections and then

several

to test

the processed data in the calculation of several assigned benchmark problems.

LASL has just recently received the preliminary ENDF/B-V data tapes. We

have decided to process the data with the new code NJOY. Also, in order to make .

the processed cross sections applicable to fast and thermal reactors, fusion,

weapons, and shield calculations, new 185-group neutron and 48-group photon .

structures and a new weighting function were programmed into NJOY. This proces-

sing is currently under way with high priority. It will require setting up,

debugging, and “pushing” through the computer approximately 100 runs.

20

Page 25: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

When Phase 11 testing of ENDF/B-IV was carried out, LASL provided 50-group

cross sections to several laboratories. We intend to collapse the 180-group

data to 50-groups to minimize-any changes required to repeat the bench mark

calculations.

co Power Reactor Cross-Section Processing Methods (R. E. MacFarlane)

The new generation of thermal reactor codes sponsored by the Electic Power

Reseach Institute (EPRI-CELL, EPRI-CPM) use the same background cross-section

approach to self-shielding as is used in fast-reactor codes. A detailed investi-

gation of the effects of the approximations used in this method on thermal reac-

tor problems is npw under way with the goal of improving both the libraries and

the analysis codes. Some early results were reported in a paper42

entitled

“Data Processing for Power Reactor Fuel Cycle Codes,” presented at a symposium on

Nuclear Data for Thermal Reactors held at Brookhaven National Laboratory. Some

effects of non-1/E flux, intermediate resonance parameters, elastic scattering

self-shielding, transport correction, and heterogeneity were discussed.

D. The MATXS/TRANSX Cross-Section System (R. E. MacFarlane, R. J. Barrett, andR. B. Kidman)

The MATXS cross-section interface file is under development as a comprehen-

sive file for use in the CCCC system. Recently, capabilities to store and re-

trieve thermal cross sections and self-shielding information have been added to

the format, to the MATSXR formatting module of NJOY, and to the TRANSX retrieval

code.

Thermal data are stored in a special “data type” that allows for free-gas

and bound-scatterer incoherent and coherent group-to-group matrices of arbitrary

Legendre order. For each nuclide, several different binding states can be in-

cluded in the same library. This would allow, for example, the construction of

cross sections for both water and polyethylene without having to duplicate the

high-energy cross sections of hydrogen, whtch are not altered by the binding.

In practice, the TRANSX user specifies the number of thermal groups desired

(e.g., 40) and the names of the thermal coherent and incoherent scattering reac-1

tions desired (e.g., “H20”). The code then replaces the static H elastic scat-

tering group-to-group cross sections for the lowest 40 groups with the cross

sections for lH in H20

requires setting “NUP”

up and down scattering

and adjusts the total cross section accordingly. This

greater than zero; TRANSX will consistently truncate both

if necessary in forming the transport tables.

21

Page 26: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

The traditional method of representing resonance self-shielding effects has

been to use “f-factors,” defined as the ratio of the cross section for one par-

ticular temperature T and background cross section 0.0

to a reference case (often

T=Oanda .mo ). MATXS departs from this tradition by storing AU = C(T,CO) -

a(ref). This representation requires less storage in the retrieval code since

only the accumulating cross section and AU are in memory at once, whereas the

traditional method requires the accumulating cross section, the f-factor, and

the reference cross section. The Aa method allows TRANSX to shield each element

of the scattering matrix without excessive use of memory. Provisions are in-

cluded to shield the heat production cross section and the photon production

matrix. .

TRANSX allows for group and nuclide dependent 00 values for each mixture.

The values can be determined by iterating the total cross section of a mixture

to convergence (the 0o-iteration), by using a simple buckling, or by specifying

a single escape cross section.

Once T and 00 have been determined for each nuclide, the code interpolates

using multipoint Lagrangian interpolation with special branches for very large

and very small ~. values. This approach requires only one material to be in

memory at any time and is therefore well suited to reading through a material-

order file like MATXS. These new schemes have been investigated with the use of

an auxiliary plotting program that has graphically caught several errors. The

latest iteration is still under investigation.

To make use of the new thermal and shielding capabilities, the TRANSX user

must supply some additional information. An example for a simple three-region

pin cell follows.

YRANSXMATXS TO TRAN$PORT 3Q,QAISS

OPTIONS..W.O.9

IPRINT 0IOUT 01PR08 0ISET t:FOQU 1ITIME 1IFPART BlTRC 0ICOLL =1IFLLJX e

PARAMETERS,W.,w-e.mqNGN zNGG 0

(8/lxL’oNG/snoRT)(k311/s/3/u=~ONEILASL/TD/FIDO/ANISN)[Otl=DII?ECT/AOJOINT)(1/?/3zNN/GG/COUPl.ED)C1/2=MAT~ISE/G20UPdISE)(1/~=sTEAOY-STATE/2QOM2T)(fl/tSNO/yEs)(0/1/2/3/u=NO TQANspoRT COaR/CONS,~/DIAG/B_HWS/INFLOUl(=1/0/NFINE=LIR FLux/NO COLLAPSE/QEAD FLUX)(0~1/2xN0 FLUX cALCULATIfJN/Ba/Bl)

t4EUTRON GROUPSGAMMA GRouPS

.

?.

.

.

22

Page 27: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

NL TABLEsNTABL d! POSITIONS IN TABLENUP UP SCATTER GRoupsNMIX : MIXE$ OR t447kR1ALsNMIXS 5 MIXTURE SPECIFICATIONSNED AA EXTRA EDIT POSITIOVSNCDS 3 EDIT SPECIFICATIONS

MIX NAHES HETEROCENIETY,W-wava.v 99.99w.-089--

(1) 1 FUEL l,0173E+0Ei 0,2 w;5 1! 0, 0,3 0 2), 0,

NIX SPEcS DENSITY TEMP (K) SIGZERO REG THERMALW*9?OW9V8 99----- 9.9-9-.. we-.,-m w-w ..m.w-,

(2) 1 Llz35 6,253E;a/1 3,000E+Fj? 0, i aa FREE

U23B 4,721E-02 3,809E+a~ 0, 40 FREE

; ALz1 6,025E.k3i? 3,E’H0E+a2 l*kli30E+10 ; 48 FREE

(?)3 Ml 6,676Eo02 3000L3E+a2 l,nO@Et!n 3 40 H203 016 3,336E=B2 3,~@~L40~ loOi)@E+lB J 40 FREE

.

EDIT NAMES9*m-*-mv-w

CHI

: F2383 F2354 C236

EOIT SPECIFIC~710NSWUa----.woa.-.w-.992 NFTO1 l,a@OE+aB u231J

3 NFTOT l,L3B9E@fin UZ35

a NG i,000E+Dk3 U232J

COLLAPSE SPECIFICATIONS..wqa-=.w.---.w . ..-”...

45 24

FILE ID MATXS T2LASL NJOY VERs 1

THERMAL TEST●

CDMPUTEO SIGMA ZERO ?ALOES BY FINE GQOUP-*--*-=----- . . . . . . . . . . . . ..--=.m-m.-- -v--GROUP 1 UI?35 ~ J238.“-99 89-...9-. . ..9.---=

2,13E+03 2.16E+M1; 2,21E+93 .s,i7E+@l

POSITIONg9*0w.*.

1 CHI2 F238S F2354 C231)5 AOS6 NuSIGF7 TOTAL8Q INGRP

to

.:.

GROUp 1● *-..9”-.l,a?aE+noU,317E.n35,669E.M~3,33ZE.g2~,975E-o122,577E-mz5,Z09E.nlV.363E.~0AJ,609E=@lo,

GROUP z.9.8 . . . . .

0,0,l,8A3E-017,170E.az7,228E.31u,u99E.all,15uE+0aJ.u,3B7E.Or

2,536EoI?u

Page 28: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

Line (1) indicates that mix 1 is to have an escape cross section correspond-

ing to a mean chord of 4.915 mm. The other two regions are infinite and homo-

geneous. Line (2) specifies that in mix 1,235

U is to have a given density and

temperature, that 00 is to be calculated, that mix 1 is in region 1, and that 40

groups of free thermal scattering are to be used. In mix 2 and mix 3, U. = ~ is

adequate. Note on line (3) that the thermal scattering appropriate to water is

used for the hydrogen in the moderator region. The results are collapsed to two235U fis

groups (0.625-eV break), and special activity edit cross sections for238

sion and capture and U capture are provided for calculating the standard spec-28 28

tral indices p , 825, and 6 . The resulting cross sections for the three mixes

are directly avai~able for use in a standard transport code.

E. Thermal Reactor Cross Sections (R. E. MacFarlane and R. M. Boicourt)

A library of multigroup cross sections for thermal reactor applications has

been prepared from ENDF/B-IV evaluated nuclear data using the NJOY processing

system. The library uses the 69-group structure of EPRI-CPM,43

which has 27 fast

groups (above 4.0 eV) and 43 thermal groups. The nuclides included are listed

in Table I. Note that temperature and background-dependent self-shielding fac-

tors are included for the heavy isotopes. Most nuclides include complete sets of

cross sections and P3 group-to-group matrices versus temperature (usually 300 to

2100 K), although only transmutation cross sections are given for the indicated

isotopes. All nuclides have had prompt heat production cross sections (KERMA

factors) and free gas thermal scattering matrices constructed for them. In addi-

tion, bound thermal scattering matrices are included for lH in water,1H in Dolv-

2 9ethylene, H in heavy water, Be in beryllium metal, and12C in graphite. Coher-

ent scattering is given for beryllium metal and graphite. Although this library

was originally produced to be converted into a job library for the CPM code (a

reactor cell code using the collision probability method), it can also be used

in standard diffusion and transport codes after appropriate reformatting.

111. FISSION PRODUCTS AND ACTINIDES: YIELDS, YIELD THEORY, DECAY DATA, DEPLETION,AND BUILD-UP

A. Fission-Yield Theory [R. Pepping (University of Wisconsin), C. W. MaynardUniversity of Wisconsin), D. G. Madland, T. R. England. and P. G. Youngl

Fission-product yields have been computed,based on the assumption of oblate

fragments at the scission point. This is done by constraining either the center-

.

.

.

to-center or end-to-end separation. Such a constraint is consistent with the

24

Page 29: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

TABLE I

ISOTOPES IN THERMAL POWER REACTOR CROSS-SECTION LIBRARY

Nuclide Nuclide (with(complete) (transmutationonly)

H-1H-2He-4B-10C-12

N-140-16Na-23Mg -Al-27Si

KCaCrMn-55FeNi

Ru-103Ru-105Rh-103Rh-105A$3--1O9

1-135Xe-131Xe-133Xe-135CS-133CS-134

Pr-143Nd-143Nd-145Nd-147Pm-147Pm-148

Nuclide (withresonance only)

Th-232Pa-233u-233u-234U=235

U-236U-238NPF237Pu-238Pu-239Pu-240

Pu-241Pu-241Pu-242Am-241Am-243Cm-244

Zircalloy-2 Pm-148mMo Pm.149

Pm.151Sm-149Sm-150

Sm-151Sm-152Sm-153Sm-154Sm-155

44nmdel proposed by Jensen and Dossing. The general features of the yield do not

differ greatly from those previously reported.45

In some cases the space of al-

lowed shapes appears to be too restricted, the minimum potential energy occurring

tor shapes of maximum allowed oblateness.

A persistent feature of the yields computed,assuming both oblate and prolate

configurations,is an enhancement of the yield of fragments with odd Z. Recent46,47

measurements show an enhancement of about 25% of fragments with even Z.

There are two possible sources of this effect: the level density and the ener-

getic. The level density, with the parameters reported previously,48

shows an

25

Page 30: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

odd-Z enhancement, while the energetic (G-function) favor even-Z. The effect of

energetic is then not sufficiently strong to overcome the level-density effect.

As an independent check, level densities have been computed with a code devel-49

oped by Moretto for a few test cases, confirming the odd-particle number en-

hancement. A reevaluation of the shell and pairing terms is under way.

B. ENDF/B-V YIELDS [T. R. England, J. Liaw (University of Oklahoma), W. B,Wilson, D. G. Madland, and N. L. Whittemorel

Subject to data testing results, Version VE yields will be supplied to re-

place those values currently being used in ENDF/B-V. The target date for com-

pletion of this effort is August 15, 1978.

The new yiel~s correct several known, but minor, errors in Version VD, and

include more delayed neutron branching fractions (92 vs. 57) and measured data.

Currently,the isobaric chains are being extended to include all nuclides in

the decay data files, and the yields and their uncertainties put into the new

ENDF/B-V format structure. Data testing will begin about August 1, and the re-

sults will determine whether or not the new values will be used.

c. Decay Heat Standard [T. R. England, R. E. Schenter (Hanford EngineeringDevelopment Lab), and F. Schmittroth (Hanford Engineering Development Lab)

An extensive report50

on integral decay-heat comparisons with ENDF/B and

generation of the nominal values for use in the ANS 5 Decay-Heat Standard has

been prepared. The results were presented in an invited talk at the seminar on

Nuclear Data Problems for Thermal Reactor Applications held at Brookhaven Nation-

al Laboratory on May 22-24, 1978.

In this report, results from recent integral decay-power experiments are

presented and compared with summation calculations. The experiments include

the decay power following thermal fission of233U 235U and 239PU

9 1 . The sum-

mation calculations use ENDF/B-IV decay data and yields from Versions IV and V.

Limited comparisons of experimental beta and gamma spectra with summation cal-

culations using ENDF/B-IV are included. Generalized least-squares methods are235 239

applied to the recent U and Pu decay-power experiments and summation235U

calculations to arrive at evaluated values and uncertainties. Results for

imply uncertainties less than 2% (1 0) for the “infinite” exposure case for all239

cooling times greater than 10 s. The uncertainties for Pu are larger. Ac-235U 238U

curate analytical representations of the decay power are presented for s s

.

and 23’Pu for use in light-water reactors and as the nominal values in the new

26

Page 31: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

ANS 5.1 Standard, accepted by the

inal values with ENDF/B-IV and the

eluded. Gas content, important to

on decay power are reviewed.

The importance of this report

ANS on June 21, 1978. Comparisons of the nom-

1973 ANS Draft Standard in current use are in-

decay-heat experiments, and absorption effects

is that it documents all comparisons and con-

tains a detailed summary of the nominal values and uncertainties used in the

Most of the effort toward understanding the239

standard. Pu decay-heat discrep-

ancy between IASL and ORNL and calculations made during this quarter are dis-

cussed in the report.

D Spectral Comparisons (T. R. England, R. J. LaBauve, and N. L. Whittemore),

During this quarter, we have compared239

Pu and233

U gamma spectra recently

measured at LASL by E. Jumey and P. Bendt with calculations using ENDF/B-IV

data. The results are generally as good as the earlier235

U comparisons.51

E. Status of Fission-Product Data for Absorption Calculations (W. B. Wilsonand T. R. England)

The status of fission-product data for absorption calculations was described

in a paper presented at the seminar on Nuclear Data Problems in Thermal Reactor

Applications held at the Brookhaven National Laboratory on May 22-24, 1978. In

addition to the summary of the development of methods and data, a study of the

fission-product nuclides and parameters most significant to parasitic absorption52

calculations was described. The sensitivity of the fission-product absorption

rate to each of the nearly 300 nuclide parameters was examined at a number of

irradiation periods of 33 GW days/MT light-water reactor fuel.

F. Library for Processed ENDF/B Aggregate Fission-Product Spectra (R. J.LaBauve, T. R. England, and D. C. George)

The library of processed ENDF/B aggregate fission product multigroup pulse

spectra (PEFPYD), the code for collapsing to a broad-energy group structure and

fitting the resulting broad-group pulse spectra with analytic functions (the

code FITPULS), and the application of these fitted functions in the calculation

of decay-energy spectra for finite irradiation times were described at the June

American Nuclear Society Meeting.53

To date, we have obtained parameters for

pulse fits in 11 broad-energy groups for 5 ENDF/B-IV fission-yield sets.

27

Page 32: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

The parameters for the fits, shown in Table II, are in an ENDF-like format233 235U ~herml 238U fast 239PU themal and 232~ fast

and are for U thermal, 9 s s

neutron incident energy for both beta- and gamma-decay energy spectra.

In the ENDF-like format, columns 66-70 contain the “MAT-No.” that is used

to identify the target nucleus. The MAT-Nos. used in the listing are the same

as those used in ENDF/B-IV and are as follows.

MAT No. Target Nucleus

1260233U

1261235U

1262238U.

1264239PU

1296232m

A zero in column 70 signifies the end of the data for that MAT. The next two

columns, 71 and 72, are used for the MF-No., which identifies the energy of the

incident neutron. Here only two numbers are used; MF=80 denotes “thermal”

neutrons, and MF=81 denotes “fast” neutrons. A zero in column 72 signifies the

end of the data for that MF.

. Columns 73-75 contain the MT-No. that is used here to identify whether the

parameters are for a fit for the beta decay energy spectrum (MT=802) or a fit

for the~amma decay energy spectrum (MT=803). A zero in column 75 signifies

the end of the data for that MT.

The data for a particular MAT, MF, MT combination are given in field widths

of 11 and are organized as follows.

1. The sixth field on the first data card (number 11 in this case) gives thenumber of broad-energy groups for which the pulse fits are given.

2. On the next card, the first two fields give the energy bounds for thegroup in MeV; 0.1 to 0.9 MeV for group 1, for example. The sixth fieldgives the group number; 1, 2, 3, 4, etc.

3. The first two fields on the third data card give the cooling-time range

in s over which the fit was made; 0.1 to 1 x 109 s for group 1, for ex-ample. The sixth field gives the number of pairs of parameters used inthe fit; 16 for group 1, for example.

4. Next follows a number of cards containing the ai and Ai used for the pulsefit.

28

Page 33: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

For example, for group 1, six cards are needed to contain the sixteen16

parameters needed for the pulse fit fc(t) =z

aie-Ait .

. i=l

TABLE 11. .

USEFUL FITS IN 11 GROUPS

11 GROU? FITS FROM EpT/TIHE DECADE PEFPYD D474tJUN78tRJL/DCGoLASL -0-0 ●00, 0 0 u ll126u8@8ezI,naaot?- 1 hnwul- 1 B e B l12bBB08@i?1,921?(3R- 1 l.dndk!u+ 9 0 161?bti8~80ZI,17887w 3 1.31789*0 7,3@fJZ3W; 1,23996-1 3,3S156=i l,b?269= Z12b~8~8024,191!917- 5 3oi(154@- 3 ~,9s31?8* 5 1,fj9729- 3 8,50174- b 4, 1fG?89-, U12b~8@6023,93218- b 1.U3197- Q“Y.872U~- 7 4.15921- 5 4,88582- 7 1,537949 5126B8080~6,2S912- 8 qo5z95H- 6 3c25ai6- o 1,~7531- 6 7,57565- 9 U,985913- 7126080802U,ZZ?OID 9 ~m2flu67- 7 6,7995U-10 7m57b4cjw 8 3,61435-11 l,b148ti- 81~6i~8@8@21,8i2686011 8.87199-!0 0oO’dk3@0+ i! 0.’d’?iUa0+ O 0p00aL4@+ a @otii$U@d+ U1260808a2am~aeaa- 1 9.afiaf10- i a c1 a Z12b08ti8f12lo~dd?n- 1 loil@dUti* 9 c1 u 171?6U8t?8tiZ7,89~lb- S lmU8bf45+ 8 1,695599 z 2,99261- 1 ~,95b7Z- 3 l,i?286b- ll~ba838k121,79883- 3 1,85960- I? ZmIJZ225W u 3,97993- 3 1,03123= 4 l,3t3779w 3i2bldB08023,45265- 5 4.54434- 0 1.23831- 5 l,b741S- U i?,la957= 6 4,42Zli3- 5126ti8@6@2l,U7@U5- b 1.7flu84- 5 2.f1228b- ~ 5,76BU3W 6 s,8594d- 8 l,Q41?b- b12bfi6ti8~29,13u35R- 9 IJ.62132- 7 6,85P99w 9 2.031U7- 7 1,23372- 9 8,a9713= 81~b~8~802l,0@fl~3wli3 2.11370- 6 l,5z75u*ll 8,b2735-lfl O,@fdOWO+ : ti#OaWM+ ai26aS@Bu29,fld3iJ!?- 1 1,35ABO+ 0 a nl,aa3uL3- 1 j.00auO+ 9

31260B@8fif217126flfJB13Bz

1,571B6w 2 l,606ab+ a 4,61113= ! 3,54381= ; 7,bla68* f l~27003=ll~b~0~S~22,9g6b?J- 3 Z.51209- 2 3,61966- U 4,49169- s l,22~b6- 4 10U@394- 3126be08023.73b73- 5 a.73914- 4 l,3uS4b- 5 1,78L353v (l ?,b193b- b 5.48139- 5126UBtf8ib21;48189- 6 2.31377= 5 1.27872- 7 7.abi6L4- b 1,19771- 0 l,336bl- 612b08ti8023,33251= 9 2,98222- 7 2,1zU19- 9 104093KP 7 bOU3U93-ia 5,93584- [email protected] 2.19179- 8 1.89017-11 8.S4770-19 8,ma@@@+ a kl.aOOCiO+ 0120WB08’d21.35330+ a 108t+a14a+ 0 0 0 IA 412bd81?8f121,nan314w I 1.an300+ 9 1712bfi8ti8022,515u1- z l,6933b* a.8.l?767- : 3,24759- : 1,05374= : l,3619iI- l12b~808@23,9287?- 3 2.17891- 2 3.68696- 4 4,51fl!u- 3 1,UQ071= 4 l,U44f16W 312b~8~ti~23,bi36~l- 5 0,7S951=Q 1,031136=5 I,715U59~ l,73b\T- b 5,D49uU= 512b~8fi0~2l,b1758- 6 Z.7R9~5- 5 8,5s165- B 9.20376- 6 u,f?b210- 9 l,U53f39* b12bW8a8ai?U,3u?690J~ 209UQt0- 7 4,au202-11 5Q85841- 8 U,19332-13 2,B3529m 81?bd906024,22!)93=11 2a~U31b- 8 1,483ZU-11 7,82~OW*lti “0,0301)0+ d klotl@ak3L?l+ 312b~8@8U2

l,~a2aa+ R 2.2va3u+ n 0 B u 51Zbd9d802l,aat4tifl= i I.OaafiO+ 9 0 ii 161?6’@8~8’d22.679~7- 2 1,758?5+ 0 9.79129- : 3.97575w 1 l,2B35vi- i? I,U1739- ilZbUOOBO~3,65?4?- 3 Z.381’J3- 2 3,81235- u 6,1!2!3- 3 1,152514- 4 1,s3819- 312b88~JJ@23,2bb4b. 5 S.2U298- 4 4,77b7~- b 1.748(I8w 4 1,29386- 6 4,76461- 512b~80b~2l.l~nl(l- 6 30135131~ 5 600~!!b9- 8 l,lJb94- 5 5,21521-10 1,’d059bo b12b#808022.33656-12 1.8?bbZ- 7 3.66U27-10 2,77694- 8 ?.h3892-14 7,73643- 9126f19f1802a,la29n-la 7,832’afl*10 m,flaliltin+ a 0,k3vlakl@+ fi .a,OaOLi(.#+ a k1,000aa+012b#8f180z2.ZZY339+ 0 ~.bP3~0+ 8 a 0

l,aanw- i 1.8t7au0+ 9V h12b~80602

1612698B8022,68043- ~ 1.85815+ 0 lo20Q39- : 5.25591w : 1,3798U= ! l,4i9ba~ l12b~80802

. is,l~~llfl. ~ 2oU2660- 2 4.~2520- u 5.91974- ~ 1,P4156m 4 l,5089b- 3126@8a8t12,2,61@6~- S S.657~0- a 3,24b67- 6 1.84159- # 5,2U379= 7 4,99604- 51Zbi!8~892‘l,26~R0- 6 3.63bfJb- 5 2,71195- 8 l,408n0- 5 ~]08737-11 6s8730a= @l~b~8q8a2‘ i,3fi35d.10 2.6R711- 8 3.7a320-11 2.85321- 8 ?,035dL3-11 2,u5991- 812bU8080i?

2,7a43e91u 7m8u394=la fl.aaflan+ o 0.aOHtaH+ n O,naOtiO+ a a.wtimu+ 012b@8d6822oba@an+ o 3.3k7aati+ 0 0 @ a 712b@8@8021,0?009- ; l,aaxon+ 9 1512bti8BMti22,i17528* 2 2,q9u93+ 0 1,319719 ; 5.bRZ21= ~ l,3109flJI j l,5z802w l12b~Sfi8Q2~,8??81-3 2.b~U91- 2 306B876- 4 5,9S494Q 3 5,54516= 5 1.67914= 312bdBtitJ@2

29

Page 34: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

2,111?!8- 5 5.09142- @ 1.30756- 1$ i,66biQ_ 4 2,12659= 7 6,67863= 51260606021.U3713- 6 U.~6290- 5 3,82?8(4- 9 l;Ll15t5w S l,23U30-11 9,33799- 712bH0013022P5150Z-11 3.0138@w 8 2,1b852-11 2,3bi58= 8 b,07421-17 l,klt30flkl- 91?b08W8023;i3aaao9 0 IIe8nBn0+ 0 0 0 0’ 812b380802l.maane~ 1 l.afJankI+ 9 ;511?b143080?3.8a283. 2 2.b362i3+ 1? 3,3z298w ! 6.19487- y i!,l162Sm ~ 1,35191- l126c49080?304U896- 3 ~03817f?- 2 b,2~859m u ~e133902- 3 1,31045- 4 1,77137- 31261~f3@b~z2,!~UV- 9 S.87194- U l,3i31331- 6 1,51939- U 1,~58Yh 6 6,57357- 51?bklR@8@z1,9!29S. b 5.tlf126kl- 5 3,579b3- 9 l,bW)57_ 5 1,9b7931Bll l,2ud7id- b12bd9@5(!24,@5ub(7~!(J’ ”f,?23nl- ~ 2.63993-12 2,21b77= 8 U,61356-17 b, B8u15=lU126USt!8@2a,ai?;lila+ a 5.tin213ti+ a a n 91Z6ti8B8f12l,naaoo- I 1.00i3k4tf+ 9 ; 14126ti8@8D2

.l.7b58Z~ 2 ~;4q386+ 0 ~.362bu- ; 5,217311~ ; 1,2’S863- 2 1,UU344- i12bti8L38k121,165999 3 ~.93475- ~ 2.9uF459- u 8,48785- S 2,771?22m 5 2,bbS\9m 312bl!B0@@27,1bS39= 7.3.92118- 4 U,7S888= B b,2L1396- 5 9,85050- 7 (>,92667= 512608i?80~

●203162Z=lFj 3,45321- 5 2,8S7B6=12 1,0376?- b b,UT814wlJ i,llb37aw 71t6vfRf10Ei2“Z,b6dij5w18 2.81795-11 2,U7742=1B 2,81298D11? 3ofli1000+ 0 il,0B@k3il+ 01ZbflilI18k425,3if!)tif!+ ~ t30L3n20b+ 0 0

l,eaoaO- 1 l.doauo+ 9 ;101?b@80602

‘! 1312bti808028,21597- 3 z.59379+ 0 4,51384= 3 3,8bPi88- : 6,33458- 3 lc3i95i3= ll~b08@fi@2s,las~fl.U 3,%3b7- 2 9,5cW9!W S 1,0956?- Z 1,22660= 5 4@3!ti53w 31260808029,49810- 8 1.lub66= 3 1,93264= 8 b,85bl)9_ 5 1,01233=1U 5.19931- b12b8B08’d22,93196-!3 1.d3353- b 3eFIn223~19 1,29786- 7 2,11902-20 2,70455wl ll~bi3Ll@@3z5,87326.ZU 2,4247u-12 f3,fl~13Lltl+ a lj,z144gFID+ 0 E,kiiifltifit i3 O,B@OI?kI+ tilli?bA8n8@zb,Bafieut @ 705BOCIO+ ii u a a ll12bti8k1802’l,OaaOfI- 1 l.tifld~l~+ 7 ll12b@838023,5?551J- J 2.463U8+ 0 l,u070b= ; Q,7F175uv : 2,809ul- : i,478U3W l12bUbf18@21,Q236?- U b.5X921- 2 l,7B010Q 5 1,573959J2 4,878(]5-7 U,9765V=31~b@L!ti8023,2218s- 9 1.7UB15W 3 3.!u936-lB 8,253t36- 4 i,91U98-14 i!,2972U- 412b28f16t?zboU83bSmls lo@~76b- 6 b,25361@Zl 1,B3u13- 7 ‘d,O’dOOO+ 0 0,D000i3+ 01~b0Y0ijf12

0,126aB0 o

l.eatifdo- I i:00i5PR- 10 0

:lllZb~808fi3

ol,OaOkicI- I l.tdpanfl+ 9 B

l12b@808i330 : 1712bti5ti835

1,89325- 2 1.UI17B3+ 0 7,R53Un- 3 1,52217= 1 1,3Rf15aw 3 20U3368- 212b148F10@3l,625Rk3= 4 S.76486-0 3 4,3723k3- s 1.04591- 3 1,87778- 5 S,la3Ci5- 412bfi8@8f136,98570- & Z.47235- U 305b388= 7 3,74z53w 5 t2,3371@. 7.l,05b7U- 5i?bd8i31J03b,U7575v o a.Ul’767- b 2,95853- B 1,88254* b 9,,7bh73= 9 7,2388UW 71?b08klet?Ji.al137_ V 3.23R56Q 7 t.31n78=10 7,97996- 8 2,BSZM9-13 2,66028= 81Zbti8P8035.bd42z-12 1.U5227- 8 2.9b!fi8=~6 l,Dk30L30- 9 @,0i3klW@+ Id kf,Okld@@+ til?bd8P8iJJu,0aa!3fi. 1 9m@~~@~a 1 0 0 a 212bU601i031.2aaao- I l.unacst 9 B 161Z&WB08@38,2zI?3s- 2 2.23831!+ 0 4.77709. : 8,12574- : 3,63U71= 2 1,87581- l126UB@8033,tiZfJfJl~3 2.31596*i?5,83374-0 4,43976-3 1,81455*U l,398@b~ 312bd8Brn@3U,37b08m 5 4,~9u59- 4 3,9479u- 5 107b089- 4 F!,73Z26n b 5,18154- 512ei3tlilB133l,@3bbU_ b 1.26902- 5 1,u14U2- 7 fJ,88981- b 2,ti2228- 7 1,91329- fi12b08f18f131,u5733= 6 l.~?fa~~- 7 1,1FIU23-lB 3,31blw 8=lo38ub8-15 13,74UUa= 9126~8ti8033,11532-11 7.47294-10 0.PBBflfl+ a L4,3EibFir4+ n 00FIi10ti6)t 0 @,O$?@Ra+ 012bV8@8@39.@20@R- 1 I;35aflU+ 8 e y1.F18Pl?P- 1 l.u~ailldt 9

0 312b~lJti8@3a 0 6 lb12bB80803

1,93236- 2 1.b8138+ @ 7.17798- 3 3.04052- 1 8,73bti7- 3 l,llb13w l12b@8Q8ti33,ta9ti9- 3 1.9P921- 2 2efi3b18- 4 U,fJ69Rb- 3 t,89blfl- 4 l,0U53B- 31?b08ti6tiS6,8217!- ~ Ij.U3310- 4 2,23397- 5 2,2918Lj~ U 2,1U063- b 5,0f1771m 512bd908f131,01770- 4 Z.3rn5~l-5 8,4u203-O 6,76027- 6 3,178b9w 9 2,ti7u99-b12b30fi803l,llbili-lo i.2~775- b 2,98279w 9 S.2U921- 7 1,5L34u6-12 2,2iti89- 812bti8k!8flj106!2i?3~lb U.532th~-l@ 0,t3gflk!W+ E ld,ao\40n+ fl 8,L!BL{PGI+ ‘d b,afiBfld+ 0\26@8R803l,353a’d+ @ l,8fl,!ti[lt O ‘d B 8!,otik~~la- 1 \*.433kJG+ 9

41i?f,IU8@8ti3U 141i?Di49178~3

9073U8u- 3 l,3~52ut R 7,1131fj3- : l,3z~t35- 1 3,917B2w : 1,85826- 21?6P8B8U36,03135- 4 505i~99zm 3 U,9UQblW s 1v~9L147- 3 4,9321J7=5 3,37293=41c?6tiHV6213~.’il3Rbb- 6 !09fi:123- 11 7,728?6- b f).57317- 5 7,38599- 7 S,dqbld- 51261dti@ljti3

●1.d86u5- N 5.41RQ0- h 7,?b5bU- 9 b,33U~14- 7-8,71$\56-15 6,33373- 712b14Hk41303b017t~JP-1~ 2,7f’Ifllkl- ~ ?,3~~63-lb 3,S74?3~Ii! ti,~ilOli[J+ a O,O\~OOd+ 13126*89U133

ltiantia+ 0 2.Z~aUB+ @ al,m7@ifW” t l.vneoo+ Q

0 0 512bali_5803o 0 1512bn0f1003

2.4?866- 3 1.35b92+ fl 1.9;617- : 1.Z70U2- 1 1,25692- 3 1.73512- 212609$6039,P193P- s a.63927- 3 b.67399. S 9,53a98- 4 8.93792= b U.Q5U3i?- u12bkJ9Q8@38,2$995- b 1.5fIi!n0- u 3,1ui?l.3- b 7,92VU5- 5 6,9UUU3= 7 3,8~M97= 512b~BW$3502u338- 9 5.d$1527- 6 9.0b8B9- 9 2.58819- 6 3,35679-10 98515a8- 712eti!iP8dS

•b.79C?9f-1~ Ua~U252- R 2.7765!9-11 2.9328s- 8 b,C973b=17 3m315z9wldi2bflB0t31d3

5455

%5859bObibi?6364656667686978717273

;:

;!

;:

:;82836485868788899a91929394959b9798

1;;lklliul?1H31841 @sitiflld7108189110ili112113ilui15116117118119i?o121122i23

3Q

Page 35: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

.

.

.

~,I?2i~iYiJt”-’J ~.6Pd0k3+ n B n d1.z29ila- 1 l.aklil:~k.1+ 9

b12hkJ8ff8k13131i?b~J908d3

U.233~5- 3; f,3?!J19112+. 0 3.29337- ; 1,3!706- : 1,80627- ! l,7743b- 21~bd8(~d~32,23u5~~115.959flf393 2,43730-5 ~,c~Uab=& 1,17665-S ~,elhbg-lll~6k4!lfl~038,71145-~ 8068~31w5 5,2g131~7 s,gss~b=5 3,C;4~~Wl@1,251~2-&j12btiljk!L!ld3

u.tb8,2b- 9 b.315?ba~ l,2~792D1319,111B57*8 7,fl?21j8_lllZ,313Z1.612btii3@ti@s5,79528-177.072~3-1~$l,Oa~ti~tfl@,e@@ti@+H tl,ti?lu4~0+3 0,09i5n@+ld12b88~l18S~.h~~~fi+d 3.a92~o+0 a 0 0l,,na~ap=1 1.3F)vu+9

712bfi9ti803l/Jli?bk4f3fl13@3

3,5923?- ~ l,$r~ltl+ fi ?08b95b- ~ 1,31731- : 1,k157397 ~ 2,07u29- 2j2bd8fi!l@31,6a55i- Q $.b9d92~ 3 2,9uU12W 5 l,B@819~ 3 U,8739Q. b 3,9bQb7- fk126ti5k381ilj3,9a425- b 1.95825- 4 4,80228- 7 1,11253- 4 a,81360w 7 7eZ!015a- 512bU8n8~3

-6,797~~-11 5,92597- 6 9,69!56-11 .6,41079= 7 l,slib3b.lQ 8,f1627a. 8~26Uf3:a3ti38,3769W-15 1.95U12- 8 107~686*17 2,969;6-12 0,@2r4GJLl+ a !d,ak!kl@lti.+ 01c?6d8148U33,Llatian+ a a.mfli!okl+ a a 0 nl,k?a2J:l- 1 1.3nan6+ 9

131.2bi48(48k330 0 151L?ba8J8i13

2.6!4737- 3 1.26668+ ‘d 2.1s189= ; 1.1S420- 1 1,52309- 5 1,66084- 212bti8d8u3~,925!18- 4 ~.37b6ti- 3 1.35UZ3W U 2.5~77Z= 3 5,62011.b 5,4177d- u126ti8ti9033.@9U9fl- 6 1.078f14° 4 b07ba27- 7 1,14637- 4 2,89359- 7 7,69293- !il.?ba80603

w1,’?7323-11 1.45?a5- 5 5,~47011-11 7,07436- 7 l,8af187-13 2,28~2a- 712&i19k18@3~,543R2- 19.IJ.91284= ~ 7,82941=19 5,15$333-lt 1,~2158-17 1,3953’2-l Jl?6dfJf18~34.aaafik3+ d 5,4iIa13k3+ 0 ‘a n B!,@3?3k?m 1 1.2k12ak’+ 9

912bfi8U8030 m 13126UtlP603

1,537u7- 3 1.Rt716i3+ D 1,sz8B3- ; 2,25B9@- 1 9m83U04- & 3t7772J- 2!2b:40~8@30,49936- u bO~b22ti- 3 102s74U- 4 4,027’ZO* 3 6,99651- b l.lb~u~- 312b~ai~tlU33,1?$73b- 0 2.863bti- 4 2,47969- R 8,2il14@- 5 9,73688- 9 6,18353- 512kf130f3@31,!9193-11 1.lb12k!- 6 5,46.651=12 7,b92z0- 7 1,5?u15-13 4,36754- 712bd8i18032,3a12t-19 3.?Rilk3u-11 B,Fin?4aa+ ~ a,aoamo+ 0 n,OklOk!iJ+ a 0,80000+ ~12b~8f18@35,i?L17JC!+ @ ho116?QU+ idl,mamhn- 1 I.kjvzau+ 7

0 0 a ~012bdYi’6a31212bti848k33

1.274S0- $ 2.91UU5+ a 8.78971- ~ 8,01UU2- y l,fJ4b23. ! 1,78353. l12bk18~8k131.9?PQ3- U 5.69186- 2 6,u1882v 5 101L3U2C3- 2 1,74379- 5 5,97bblm 31~bf18P83’32,31@6@- 5 q.12b12- 3 5,b9813- 7 1,58143- 3 4,1aU3fJ- B 7,857?6- 412bf10k18ti31.23318-13 1.36278- 7 U,11718=12 7,511a78- 7=s,f!89b2-lU 5,73bkllw 812bU80803b.OJad$I* 8 7.5tiafiu+ B a @!.fi83anm 1 l.noiltiti+ 7

v lili!bog@t)i\3a u ll12b380803

2.65368- Q 2.23u5u+ @ 1.11320- u S.30125- 1 2,3787g- : 1,53795. 11260B98B59z6u5b9- 6 108R{J1U- 2 b,16U53- b 1,1~~* 2 1,16051- b l,015b7. 21~b#908035,n3227-19 1P55U58- 3 7,03R80-14 13,19fllfP 5-2,17311-;3 80U3794W 71260008@36,41982-13 bO@Q32b- 7 101U132F15 l,Bk48UUm T ~,13300@+ U O,@OU@ti+ k312bti8~8@3

!2bf18@ 3

l?btl P a

0,LlOB

l.onnoob ; ~IOOa@fl- 1e o 0 lli~blB08@20 m B l12btB08k42

l,od~tirn- 1 l.tt~atifd+ 9 0 e lbl~blB@802~.7687Qw 3 1.45381+ 0 1.28097- ; 1,38592- 1 U,76t13- U l,7@69b. 2126J9illj@25,01187- 5 ZafJ075f!= 3 2,37695= 5 9a233bB* U 9,3b897m’b 3,70@9U- ll12b19f18U~3,8~7%1- b 1,U7U29- U 6,97162- 7 U,227db- 5 5,25675- 7 1,47919- 512b13013142b,a217?- 8 U.56536- 6 3.?7577- E lm29i454- b 7.271%7- 9 5.a8353- 7126180802U,13!k63u- 9 Z03M415- 7 7,2D339=la 7.b6225- 8 U,66Q55-11 1,58689- 812bl!lk!8#2l,5d32b-11 uea1828-10 0.8af?d0+ B 0.000’20+ 0 0,08@0Pl+ a @,OaOkIO+ 0126190802u,aa?~g- 1 q.anzno- 1 0 0 u 212b1998@2l,nabl;~m- I l.daavti+ 9 0 0 1712bleneu21,8zb~6- 2 ~,hb124+ ~ S,818zh- f 3,21188- 1 5,i4~635. 3 1.0?291. l12blf10&~22,416j5~ J l,H45Jul~ 2 ?,4~?92=u J,8t)9t47_3 f,ld7~f4-u Iod’tytj-\l?o16’15~2S,7S035-S 0,3SS86-0 1.282SS-S 1.66976- 4 l,8bU68w b 4,67802= 512b16ZJf3021,59383- b 1.7~337- 5 2.339k57- 7 5.93531- 6 5,132395- 0 1.u8776- 6126180802l,a?bflfl= 8 ~.?225b- 7 bak15b22- 9 2,26!085wJ 7 !,3215b- Q 8,12784= 81Zb18@130Z1,24375-14 2.09389- 8 l,25P5b-!l 7e917U8-lV 0,Vai40kl+ kl B,ti$?d@ti+ 012b19Q8029,0a.4R0- 1 l,358btib 0 0 k! o 31Zb18~fJf42l.~a:~dfl- 1 l.flPdtiti+ 9 B a [email protected] 2 1.64979+ 0 1,20318w ~ S.21283- 1 9,ba8Z9n 3 l,k458a3- \126190tl@23,91M77- 3 1.99A22- 2 3.8924a- 4 4,5t?b~@- 3 1,32117- Q 1c39~!59- 31?618fi8024,38136- 5 U,bUi125= U !,3RU31- 5 i.778f19- d 2.a1778- b 5,8b555- 51~b13fi8@2~,51@d9= 6 2,31593- 5 1,3z817- 7 7,225f4ZD b 1,22656- 6 l,U~6Udo 61261N@8?122.75929- 9 3.b6U0ti- 7 2.16993- 9 l,S@b68- 7 7,13751wid 5,92765- [email protected]@\6-lb 2.i6B17- 8 1.55507=11 7.1303u3-10 @,Iddk?tiO+ 8 0,k7flu03+ 012bi028@21,{5?3M+ z 1.!3?.4?19+ @ n P o dl~blbfltlk~z

124li?s120127li!b12913L313113213315a135136137138139Iuti141142143iau1451461471481U9150151!521s315415515615715815916tilbl162lb3lba1 b5166

:345b789

101112i:Ill15lb171819Zkl2122232a2526

31

Page 36: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

l,oauno~ I 1.i3aa?d+ 9 a 171261808025,65U1AW 2 1.f19b68+ n 2,389139 j 4,1fJ76u- : 1,53936- 2 1,03639= l1261fJfi8020,59877- ] P,31U8Z- ? U,f479b9= 11 4,4zb58- 3 i,QU@31m 4 l,42549w” 312418?8023,9373?- s 4eb7963- 4 l,0112u2= 5 I,777u13- 4 l,565flS- b 5t77599- 51~bls08021,6$683= 6 Z,7Q.23S- 5 7,9z657* 0 9,61t5350 6 a,39155w 9 1,505729 bli?618n8023,14?12~c10 z,38752w 7 @,5f3378-11 3,4cb81- 8 a,47Z96.lkl 2,76327= 812b10~&lB23,6s979=11 z.22888° 6 l,3dlbfl-11 7,927fJ8=lfl O,Di?@fltit U kl,aU@fld+ 012b10080?l,8ati3P+ 0 z.3n,42cl+ 0 d 0 nI.fiafl,lfdw 1 l.a$!ztiti+ 9

51~bi8B8020 161~618f1602

bai8952- 2 1.85587+ 0 2.63810- : 40fJ4567- : 1,70417- 2 l,13851?~ fi2b~BU8a2a,146878= 3 ~.19bi?8- 2 4.2blbl= 4 S;16312- 5 1,195k!8a 4 1,53$9s- 31c?b18~8~23.70577- 5 5.Z3311-4 a031d25-6 1.90b9~=4 ~,08707=b 5,1886d0 512616~6@zl,17a4T~ f 3.2u598w 5 7,87866- 8 1,22247- 5 5,38u24wld 1,15384cc 61261888023,25310-lt 3.g8b~~g 7 4.33761-ld 2,76a19w 8 3,70592-13 2,9baa8- 81Z618f18~23.56942-12 7.9zb91-10 0,c400130+ 3 0,3(3ilId0+ O lJ,k3i10Uti+ 3 0,U~08t)+ [email protected]+ 0 Z.bflaoo+ B a 8 e blZ61B0tl132l,flc3f1061= 1 I.dt?aotib 9 [email protected] a 2.6023ti+ B a.28a95= ! 5,53390- f ioea235- ~ 101743a~ ll~618uB02u,037b3- 3 2029ba0= ~ 4.68438= a 5,7601f4wI 3 1,09553-4 105946B-312616tlEl122.,91333-5 5.722.20=4 3,fl1798=b 1,97920=4 2,3Z26R-7 4,a353a_51t?b18ti0021,15Q5A-6 S.5t9fJ0m5 1.1094?-8 1.166bO=5 ~,667ti5-11l,7b4~s-7i2blB@8~210?b4a5-lLi 2.6R3~R- 8 3.7n529-11 2.75715* 8 2,9b361Qll 207~522- 812618~8~22,al157-14 8.J792U-10 0,?13G0@+ a O,dO”hl+ 0 0,0di3Bfl+ 0 f3,’dUO@O+ 01261808822,6a@au* @ 3.OkldPa+ a a 0 0l,i!amaOw 1 l.o~ilokl+ v.

71261888i32R u 1512blMn802

6,t1313&- ~ lo93ilbb+ 0 2,b5232w : S,46a3U- 1 1,99957- 2 1038453e 11261808~23,5S7U1O 3 ~,U343Zv ~ fl,71QU5- 4 b,lU342- 3 6.61565- 5 ;,bbb4z- 31Zb18@L!B22,fiau29- S b.$ddll- 4 fJ,2521b= 7 2,571U8- 4 U,1383U- 8 7,12u53m 512618C48U2l,4S412~. b 5.05745- 5 lo35~Su- 5 l,6628b- 5 3,93246-11 l,ti6953* bli?b18P8w22,b3822mll 3.1719b- 8 3.17’723-11 2,34170- 8 1,836S2=17 l,1853a- 91261808023,8aaa\\+ t 4.a070M+ 0 a e 0l,aalJn70 I 1.3n2aE3+ 9

812b19@8a2a’ 0 0 1512618fi002

1,23767- 1 1.813b7+ ~ u,3u20kl- 2 U,5988W 1 2,94350- 2 10241?b= l12b15W8fi2U,83717W 3 2.3352u0 2 7,!8957- u b,b985tW 3 1,3S34(4- a 1.76473- 312b18U8022,33i?>b- 5 6.43176- 4 1,55786= b P,3847f!- ~ ~,54762w 7 7,b493U- 5126189802i,by~68mA6’&O$~J12- s 6.39867- 9 1,78196--5 5,flT757*”ll l,t47271- b12618a&302

‘ .3,62214-13 9of12b5?- 7 3,9u?38=t2 2,185143- 8 l,a3b63-17 b~i!a427-l~12b18f18~2a,3anm0+ 0 5.dO,~ufl+ 0lg~a~an- I 1.-dI43cI44+ 9

0 0 0 9it?b180f3L~20 U lU12b18k18L32

5,211u1- 2 l,77biB6 $3 1,40632- ; 4,a9978- 1 1,72253- 2 1,33420- li2blLiti8klZl,au23d- 3 2.7R3U8- 2 3.b8~88~ u 8,67964- 3 2,81370- ~ 2,699ab- 312b1808027,55437- 7 U076S99= fJ 4,bw218= B 1.95245- 4 7,226s3- 7 60Q198fJ= 512b180802

-2,3a797- 8 8.191fib- 5 6,/45730-12 1,33762- 6 l,575b!slb Z,488Ef60 712b18?8@25,30b9z~!9 3.2ft33b-11 7,58336=19 2,41889-12 O,OaOOti+ 3 U,@@a@d+ 012b18f18’di?S,BaAtikft h 6,d5i3fllJ+ 0 a 0i,Oavw= I 1.00J0o* 9

e 1012b19aL1020 i3i2b1838Bz

2,a7958- 2 1.761a9+ P 7,73591- ; 2,83S92- 1 7,31U43- : 1,22365- l12b19f18fd2U,97547= U 1036318- 2 1,179040 4 1,12570- i? 102U710- 5 0,3!’d53- 31?b!B0bf12l,251dom? l,a~at~~-3 1,32243-9 6,f17S31D5 2,9$47~$-lU~,z?f593.61?618@8~28,93566-131.d3\53*6 4.9b’?3b_191.s345b-7 ~.lblbti=i?l 3,b~92!J-lli2biBti5BZl,S9~19=2g lm6flbs7-1~ 0,80000+ D O,OUOO@+ 0 6,0a0F10+ 3 0,0000$+ 012b1808026,aaaa0+ @ 7.503014+ B a 0 0 ll12b16@8a2lbfia300= t l.saw+ 7 0 0 ll12b18k?U021.~66ua- ? l,Oub~t+ 0 2,37762- : 3,80208- 1 3,76743- 3 l,4746a- lli?b19~8222.133f187w u 6.t115~l- 2 2.5753Bw 5 l,56k154- 2 4,51912= 7 4.99222- 31?b19@9f12a,97q529 9 lm786U9_ 3 3m33klz8-la ~,29u13= o a,79i2u=i3 8,58480- ai2bi50t3022,Q2Q9a-14 ;.a3b10- b 2.0nbb7-21 Z,0b82b- 7 a,B@13k!l!+ a 0,3@U0ti+ til?b1838~Z

126180 aB,l,aa~i~o- 1 ~IidFaOU- 1

0 @ a llli?t)lo@8t33a 0 0

toaaow- j l.untior+ 9l12b18n8U3

1912619RMC?32.81727w 2 2.82757+ n 1.61475- : 8.8Qlb29- ; 1,2473S- : 4,22587- l1261f108036,9b348~ 3 lof384’d2- t 1,87744- 3 4,33672- 2 9,71714- 4 lo6iiiiCjQ= 212b1868$43l;f19923- 4 a.182@9- ~ /4.luf173= 5 7,22565- U 2,1LIu984- 5 5,4u!43- a1261@38U35,R3bS8* 6 2.11393- 4 3,46526- 8 1.3753(I- 5 3,7b66Q= 7 1,37567- 512b19G18037,Qb6Q2m g 2,97?PU= b 1,31237- 8 0ofJ02138- 7 1,29305- 9 2,59565= 712blB@803&297z2wll Z,8RZ74- 8 1.3!j579~12 Z,8fli!U7- 8 7,b82i69_la 0,09492- Q1Z61838C3r,rn’9bll-17 1.lq;86~10 fl,kTa@b@+ 0 14.OErnPti~ B ‘d,t!WWO+ a R,B0@@8+ 01?b18~8a3a,flaaaa- 1 9.3@fl$K-1 0 a 0 21i?bl$~E03

27282930313233 ,343536373839aa4142434Uusa6474849505152535455565158596061bzbs646566b76869

H72737075

;;7879608182838a8586878889999i92939495

.

*

.

32

Page 37: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

.

.

v

l,fda020w I l,2t3ai38+ 9 191~b18a8031,84161- 1 2.93360+ O 1,01402= ; l,fl$92fl+ : 8,91371. ~ lJ,25b80. 11261508032,65U36- 2 1.3671C= 1 6.35638= 5 U,83b@@- 2 ?,052tIk4- 3 1,490109 21261608035,130780P o s.8!15VD J 1.37557- u l,3~j60m S 108E4822- 5 2,18253- 4126100803UC7U5P50 5 1.73u9VW O I,5s297w b 3.49170- S lo70i29- 6 !.19Zk4dW 51Z64808@3i?,!u785w 7 Sm29k43U- b 2.85053- 0 3m3601@- b 6,34009- 8 1,14778- 6126180803!,0713?- 8 lalU5Ub= 7 1,861UF4D11 1,58230= 8 3,41UUk3r915 1,58230- 812b18rn8032,713360-1[ 7.2EIlln-10 (4,DROBL3+ D W,i3tiB0a+ P 0,@nMfic4+ a a,nl?tine+ @l?b\8@8039,aafl$@9 1 l’,3sz0R+ 0 a U 0I.natmo- 1 1.0niiL40+ 9

31i?61508F45191261838(43

3,?~bbflw ~ 2.56a3kj+ 8 ~mQ760B- ; !5,129b~- ; l,38!j@a- ; 1,3MU93. l;~61808035.73730- 3 4.i!824Dw 2 ?,bf)2bB= 3 l,44110w 2 5,889U@- U 4,92423= Sl~b1038L331,53fJ’dO- 4 1.k3u92’d- ~ 9,fJ95tklu 5 5,9t76;0- 4 ~,197L10- 5 1,97383- 41i?b1001Jk!32.4667!dw tj 3.f)R34@w s 6,5525@= 7 1,68960- 5 4,19126!- fj 2,64928- bl~b1828B33,25360- 9 b:9!7~0- 7 !,f!712fl- ? S,6943FI- 7 2,9ZC350=11 1,56540- 712b10U8@31,9?510-la 2,17630- 8 2e4q112ti-1$ 2,1765fi= 0 2,1772n-17 b, 775Z3-ll12blB0b035,01@80018 s,5546P~,ll OoO~OOn+ B 0oOOB!30+ fl ‘d,000urlt 0 0,0k300ij+ 01?b18148E3l,350Mn+ (j 1.80900+ o a o 0. 412blBti803l,0a03n* 1 l.aklaoFl+ 9 0 e 14i2ii8080j1,5u?2u* 2 2,63302+ 0 l,5@988m : 5q01187- 1 8,1883EI- 3 l,3640b* ll~b18b8@35,14Z7S7W 3 a.35751- 2 2,94196= 3 lm5537~-2 7,46Z36.4 6,91bf13q 31~b!8H8t139,33988- 5 2,91559- 3 6.7775ZD s 3.78648- U 9,799u2= b 1,29181- 41261L108034,B66U7- 6 u.uS812- 5 7,51U65- 0 b,31631m 7 7.30439-12 2q7@265- 81~61t4@8~32,3i3393-lb 9,25ijb2- 9 4c3b459-17 b,2T813-11 ld,@i3@ti0+ 8 0,a@3Ri4+ 012bi8a8~3l,8d74ail+ 0 ~~zc!a~o+ 0 0 n oI,rdaono- 1 l.anaotit 9

512618a!3Q30 0 1812619ti8Q43

~,a~131aD ~ 2.55 9L!+ t! 3,7756b-. ~ 4,94890- 1 i,8~07?- 3 l,3441aw lli?b!i3C?8E43i1,01679- 5 5.9?.ti~- z l,DaI?8& 34.43t?5kJ- 2 1,63591- U 5.(J988B- 312618@0U3

6,12283- 5 9.599Q2- 4 l,fjb6?0- 5 5,98660- 4 6.57733- b ln73~@3* -’41?b18@43034,@7153w b 6.35768= 5 3,b4b13U- 7 3.8&7$10- 5 2,07467- 8 1.1%070- 512618V18639,0b6u0- 9 2,45130- b 5,33514-11 S,3111OO 7=4,17S64-12 5,83268- 81261e08~3~,8221b-11 2.B1lPZ= 8 2,93299-1S l,bObb8- 8 l,?7293-17- l,U802B*] 01?blB06ti32,2il~E4fi+ a ~.b~ilflld+ 0 a 0 0 [email protected]~- 1 l.ti~d~tib9 0 0 lbi2b10080i7,22591- ~ P,Ufl#iia+ @ b,79147- ~ 4,5343a- 1 3,U995Um 3 l,03k340w l12b1808032,@467fP 3 a,783?P- ? 1,13849- 3 9,861J3U-3 3,94452=5 2,37028-31261808032,a2358= 5 3.97881d-O 7.9n39b= b i,277ic4- 4 2,393bu- b b,b427!4- S1261B~803

“=0,Z2U4Rm 9 8.47111- 6 2,Fj972b-10 5,9R3110- 7 3t16U9U- 9 6.67160- 712b180flf131,S366S- 9 s.379kiU- 7 j0239Q3-15 2.15969- 8 U,7799U-2B V, 3@i?uti-l ll?b18b8U3l,4b64t.4*17 Ia311?4k4-11 H013BL40Cl+ a 0.flflk46io+ 0 ‘d,@20tiO+ 0 0,@MB$4ti+ fd12b18@8t332,63Pa3+ o 3,3?d~fl+0 a B B 712hluoLlo3l,oa~anw1 l.fitiaoti+9 B 15i2b19ti8@35,89171=3 2.66.$56+0 5.67017-; 5.134V17W1 3,@48ti4-i 1,38354-l12b18Zbk?3l,68190D J 4.75150-~ 7,27511=U l,b~sti~-~ ?,65719-4 70909~4.312bls08~436,9715u95 3,05388-S 2,06474=b 1,06808-4 9,30650-6 3,79582=#;%%f&a80j4,2733107 7a597f1195 7,2~566-~17.66677-7 U,097116wl~5,02311QQ712bl13@[email protected]~575-lIJ2.12375-@ l,7836@=2~2.45925-114,33630-18 2,45775-121261808033af?aR’7@* @ a.@93clt!+ n 0 @ a1,03?30= 1 \md?lannt 9

812b1808fd30 8 16126180803

3,99571- K 2.63670+ 6 3,9zU39- ; 5,B88U7- 1 2,15233- 3 1,47318- $i2b1808@32,i35flkj7. 3 3.959199 2 1,32325= 3 1,27392- 2 3,18026- 4 4,17817w 312bt8@f)fd3i!.6b7?\m 5 1.46259- 3 5,77121= b 4ob7151- U 1,84319~ b 1,312u5- U12b180d0J3,93P9h- 7 t03119?~ 4 ~056163- 7 7,49333- 5 8,12831011 9,5bb96- 71?b1908032,05E?3wlI 5097fIflR- 7 7,37638=17 1,01114- 7 1,32823-10 3,429113.1 ll~b183@@31,468>3.18 3,1b14ti-l? 0,2D130P+ a 0.at?Ij#u+ 0 ti,tlt4klk\Gl$ ‘3 tiok!kliY~O+ 01~b180ti03fl,83@k4w il S,a:)amti+ 0 0 0 0 9126188803\,0a3ting 1 I.domv+ 9 0 u lblZb18@RD33.!8297- 3 z.5685fi+ 0 2.87557= ~ 4.9S990- 1 l,7t15i!- 3 l,3!i71a- ll?b1801303l-,@76Zb- 5 3,9559U- 2 5.6115U- Q 1,35330- 2 1,39928- 4 5,95bla- 312618BH051,,9d7flYw 4 3.9118L?- 3 1.!9133- b 9,266513- 4 8,t398131- 8 &,~9iI19 4126180003*;98a3uI- 13””’~.4elFBw 5 b.393a0- 9 b;ilQB9L4- 5 4,66038-11 1.03150. 61261808032,478u3-14 5.061809 7 4,987U4W17 1.72a28- 7 1,59311-21 8,82550- 91261808035.b17flU-2kJ 3.351.25-13 9qa~(3L40+ z f4.i3f?tinP+ P @,ML?nv4f4+ i? 0,0Pk40d+ 012b18@8U35;Ai?f18c4t Id b,aaduv+ nt,,”ntivae- 1 1.<9nAofit7

0 0 u l&41~bl,8fitlP15e B a $21~blLi?8’?13

~,3$81?w 3 z.l?!3ti7+ 0 2m7b97a= 3 3,51749- 1 1,29471: 3 l,07u55= lt2b19F1803l,lb145- @ I.-45795- 2 3.570?22- 5 q,8731s- 3 5,59klL47- 6 3,18480. 312blbOljC437,51UQb, 8 8.68Ulb- 4 2,9z191- 9 6,78993w lJ 4,09fl10w13 l,b?b65w 412b1800@J5,3?912-!2 1.tifI?71= b 1,15456-13 b01691b- 7 9,99597-24 4,87660- 8126180803

96~7

-;:lids101t k4218310uIilsltib1U7108109110111112113--—11411511611711011912312112212312412512612712812913Q131132133134135136 I

1371381391401011421431441451U6i47la81491581s1152153154155156157158159160lbt16216316U

33

Page 38: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

.

..6,i!a@d@+ @ 7.593aE+ 8 0 @ E IllI?bf80Ba3l;PdOJfl- 1 1.tii?d@2+ ~ l(3i2b18c48L138,068ti10 li.1005i117+ B~/J.59189= f 2,69962- f l,28026m t 8,55785w I?1261B@803l,3b26fk= 5 1.36U26- ? 4.3j4ba- 7 8,1313kw.3 4,50608=10 1,54721- 31i?b18@8035,41038912 7.882246- q 2,32383-14 l,B6kj9’iiQ 6 1,94953-14 6t1795a- 71261Bf4i3i338,3v431-23 ~,Z3540W 9 il,EI(jCIOO+ a k1,00FIOO+ 0 0,f3W?~fl+ a 0,0tia$3a+ 01ZblRP8B3

12618P 01261 0 ii

Of100.l,oaooo= 1 ~104(~e5= 1

0 B e ll1262818@20 B

l,naaai4- i f.iwfaofd+ 9e 1126281802

1612628!8025.75984- 3 1.372i?5+ @ 2.13S91- ~ 1.5SU52- ~ 6,338b9- ; 1,73561- 212bi?818026,01283- 5 Z.Z1289- 3 2,67481- 5 7,88411- 4 8,81B2Zm 6 J,8U4C39- 4126?818W23,68856* 6 l,5Ri3u0- 4 6.946U3= 7 9,L1811J5- 5 5,31779- 7 1,51041- 51?6251502S.79fi17- 8 U.51Q67- 6 3,14393- 8 1,31992- b 7,j?91t42- 9 5,3b79il- 71262818023,66713- 9 2,52219- 7 6.96905-107,942~1-8 S.16S69=111,62993- 81262616021.139LIR=11 7.992f14-10 !7,@af!3L3Ut a 0,00R0O+ 0 O,k!BOflFi+ @ O,BOOflO+ B12b2818024,n2?!i3mD 1 9.atiaHkl- 1l,aa~flfl= 1 I.aPwO+ 9

‘a 0 0 2126.2818U2l?l~b2818f12

3.53@Z0- i? 1,673P9+ @ t055ib3m ; ~,497btl= : 6,31286= ! 8,95714-21.?62918022,9994a- s 1.7995P-. 2 2,bflE!~7m u 3.8590$- 3 1,23547- 4 l,lblbU- 3126281802

‘3,96979- 5 4,35063- 4 1.27932- s l,70i~U- ~ i!,r~20b4- b S,067U1- [email protected] b 1.81574- 5 2,711a5= 7 6,00195- b 5,15126- 9 1.4765u_ 61?6?918029,179Z7W 9 q.:59RfJ5m 7 3.59384- 9 2,7746s- 7 1,31058- 9 5,27631- 81262818021.64!11wl@ 2.0b3f12- 8 7,57229-12 7,93bf17-lB @,c30@0+ 8 Ot~aO@O* ~12b281n~29.0i18Bra- 1 1.55aF13+ P f? 0l,nanklll= 1 1.3ra0u+ 9

312b281f10z: n O 1712bi?81BB2

7,33239- 2 1.71121+ 6 3,?898Qw z 3,76539= 1 1,27824- 2 9,17627- 21.262B18U2u,5blB?- 3 to92flll- 2 11,333u7P 4 4,b?7U7- 3 1,43~55m q l,351J@50 312b/?fl18P2lJ,Ub339- 5 u.77893* 4 le3L3731W 5 1.8UQ38- 4 2,23879= 6 6,u9e13- 51262816021,3972P- 6 2.Q61til- 5 1,43645- 7 7.43Z5ii- 6 10390w4- 6 l,4776i3- b12b$ti18flZ2,02911- 9 3.993!15- 7 l,b3~9?m 9 2,01$323- 7 7,1511d9-lL! 5,79491- 812b?fJ18!.i~2,967B5-l@ 2.J5S29- 8 0.0s739.12 7,78b98-lB !d,FIaOklId+ U 0,k+a0618+ t?12b2818f12l,3sLlbn+ @ l.Pndtlti+ n w 0 U12bt?918t?~100a~Oa- 1 l.tiOdilkl+ 9 : F1 a 171Z6Z818PZ1,!36UI?- I 1,7516H+ fi 5,5z199- a S,7(1291W 1 l,71b60w 2 8,93023- 212b?!ll13?2“5,3051793 [09?{x’~-2 4,1f,nJ9m11u,47yl\9I l,5M159m4 l,J!i2Rla!l?h?tlth~?

SC*1660- 3 o.7dtfJ3= u l,rn1017m S l,8!796~ U 8,635S0= 7 5,51538- 51262818S21,S7733T 6 3.a04~5- s Q.~?342- b 9,71a58- 6 5,04098- 9 1,53196- 61?6281002S,1917b=10 2.J76b8- 7 l,93ZSbmlti 2.4~312- 8 U.29b00ul13 2,63340- 812b2B18f122,41377-!1 z.4173b- 8 703U?03=l~ 7,8aa2b-lfl ‘d,Gli4~@0+ ‘d 0.OBOaa+ 01i!b2B10@2l,8i101acl+ k! 2.a@i?an+ 0 (d 8 @ 51262818021,’aa?fja- 1 1.td910f10+ 9 j6i262B180~1,2182?= 1 1.674aa+ a 6,715??= ! U.4~0661D : 2,1il184m ~ 9,79773- 212b2518a25,I)?381o 3 ~,0b433- 2! U,OflSS?D u S0071aD=3 1,24747-u 1,49232-31262018023,83982-~ a.4;b37mU 4,88170-6 1,98849-4 S,54439-7 4,244159512b281801!•,33b7@~ 7 3.b174ti- S 7.68902- D l,l~993m S 7,8S048.10 1,37681. 6126?81802l,a7515=19 u.3@b6b- 7 5.2617b=l@ ?,5S611- 8 ~,78392-12 ltu82~Q~ 512b2818B?2m@2893-la 7,83408=10 0.?l@OOfl+ a O,a@OflO+ B f1,00V1@fl+ R 0,ag090+ 01?62818022,aa8ea6 o 2.60af10+ @ 0 e a b12628180al,BWW i i.aflaOa+ ~ ~612b28180Zl,lBQb5m 1 1.72670+ @ 1,00788- ; S,UT4111P : 2,4560$- : l,B9i30= l12bZ810024.94003= 3 Z.219~mm ~ 5.697939 4 5,78Z313= 5 1,12438- u 1,S587EW 31262818023,09993= 9 S,8~090- a 2.66004- b 2.ll130Q 4 s,lS608= O S,010600 5126?818029,fj~86~0 ~ 3,82860- s 2,4s419- S 1,2B9YIw $ l,lb787-10 3,87879- 7126i?13180aZ,*ltillmlfl 2.4Y37ti= 8 2,37?68-11 8,69907- 8 2,01270-11 2,4S36B- 812b28180Z1076u10=14 1096B3W Q 0,06000+ u 0.O~eam+ 0 O,GIOOOn+ 0 B,tiOOOO+ 012b2fJ180a2,600s0+ o 3.00000+ @ e o 0 7126281802i,OaOOa- 1 l,OwaOO+ Q 1512b28100aI,2B735w 1 1.09558+ ~ 6,5s667- : S.20294= : ~,6b05Sm : $,29667= 112620160~4,4795?= ~ ~,37821~ 2 5.67751- 4 b,12419- 3 8,4i1430= 5 1,7039S- 312625180Z3,129439 g b.48b73- 4 l,31abb= T 3,7t~fJ1- G 2,14065= O U0030919 S1266?818021.6B41s- 6 s.3f1285- $ 1.?73aU- 8 l,4f147~ S 1,60230-10 l,a6i27- 61262810021,OU823=1O 2.2!1906= 8 2.21337-11 3.32754- 8 2,2731?-17 l,1877flw 9126?1310fda3,eae0a+o O,soaflo+0 0 n B 812b251e0?i.12000s-1 1.0000a+9 1S12b2UlS0a2,384130 1 1,8$105+ @ 1,1T61811 ; U,7*8*b- ; 3,70757=; 1,15181-11262818026,00884= 3 ~.2T0$00 2 6.07918- u 6.6$S2b~ 3 :,3866$- U 1,78724- 3126281802

...-

34

Page 39: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

~.8U8aU- s b.a2b7U= a 4.1891?- 7 4,i339U4* 4 1,35841- 7 6,82657- 5126281802i,Q~uS9- 6 6,51991- s 6,84070- 9 1.45006- S 1,97417-1% 1,05066- 61262816023,49S36=la 1.04363- 6 2,74842-11 8,17635- 8 l,7b9uu.17 8,z009S.1012b2S180au,88B8R+ o gmijOOOO+ 8 ‘a @l.BaO@m* i 1.00i3mvl+ 9

0 912628180214126281802

i,03f156= 1 1.8j947+ 8 S.02733= ~ Uo538PJ~- ! 2,1a87bm ~ 1,28099w l12bZ81B0Z2,0U337- 3 2,b2339- ~ sa7~239m IJ 9,15149- Z 2,bU2~b. S 2,77299. 312bZ810026.46653- ? Se~4921- U 70b661J1. O loU802b- U 4,bU498- 7 6,9aSZ8m 51i?bZ5180Z

●u,lOl@bw 8 8.75553= 5 2,598#7-11 l.OsBufl- 6 hoba012wl~ l,861U0w 71~bi?81L1021302003u-iQ 1,6Z273=11 705B267M1? 1,21534-12 O,B@GIOcj+ 0 flO@OO@B+ 012b?81B02~,aawfaa+ a b,iiFJwao+ 0 0 0 0l,?JaOOQ- 1 1.013fa0u+ 9

10iZb281B0Zi312bi?e18a2

s,a18UsW a ~.72907+ R smblS58- ; Jm981b7- ; ~,4@725- ; 1,12557. llt?b2818@z5,26359- a z.7J3i?8w 2 l,l~993v II i0211U3- Z 1,08389= % 4p3@592w 312b281a@Z70y7?;b- B 1.53S30= 3 a05b!Ui?- 9 6,688g2- S 1,1620?-13 l,lu2b0- 61262816023,5!)707=la 1.03413= b 108ulb3-19 l@2SObf4- 7 8,58998=21 l,81964w~l 1262818021.24D471w213 9.0Si?8S-13 0,@DMt3fl+ B k3,BFi0tlB+ FI B,9W3ENZI+ El 0,00000+ Eii2b281802b,eankmn+ 0 7.5ma0B+ 0 0 e e ll1262Q18ni?l,@laOOfl- 1 I.@Ban@+ 7 li12b2818022,11323- 2 1.76891+ B 102L1115= ; 4,78349- ; U,27U13D ; 1,29529- 11262818022,19Ubb- fJ u-55492= 2 3,65313- s lmt1979b- 2 3,857&b. 7 5,@91b9- 31262618028,16977- 9 10bz087- 3 3,311321=l@ 8r3313f)~- U U,55698=la 8,55842. 412b2818@Z8,139s2-!4 t,03b32- 6 P,0@bb7w22 ll,llbq~- 7 B,@iM?Bi13+ B 0,Bm01?k3+ k+12bZ0i802

0,126281 9

0 0 0 ll12bd81S03l,OanOfi- 1 ~:0130mu- 1 0 0 0l.flanafl- 1 I.eRfIEIO+ 9

1126281803e 19126281803

8,Ub91fl. 2 1.88662+ B 2.99%19. ~ 6,0?957- ~ 2,@5b78m Z 2e85b9S. 11262818039.>7417- I B.bU7@9- 2 l.blJBbfl. 3 3,Z355U- 2 l,@~lJL)lJ. 3 ~,U8350. z12b28t8@38,11508- ~ 3.41533- 3 5,$g278- 9 bm74fJQ0- 4 1,8741?- 5 s,30Ub5- 412bZ81803507U489- 6 2.10i4U9- 4 5,59763- 9 9,7cJ8t49- b 3,53688= 7 1,37S07- 512628180SFiQ3UI113- 8 2.96951- 6 10391ti?- 6 80bUb55- 7 l,Zl~3~- 9 zo659~ld. 7126281803

l,9ij51um11 2.83662- 8 1,323.?2-12 a.2s852- 8 1,213241=13 8,09548. 912b281Mt43l,U31?2i3-17 1.17289-1? Bafl@9BD+ a ti,0k3aaL4+ EI 0,03000+ O U,i190R0+ L41~b/81Mi13O,nantia- 1 9.0k3anti- 1 d n u1.,0a0k30a 1 l.anawt 9 m

t?li?bc?Bi8030 0 1912tJza18i43

5,2b91f3c 1 201!lzb+ O l,qblb?o 1 b,8b3kjS- \ 1,U6M95- 1 3,41199- l12~Z51btiJ3,1ij873= ~ 10d3b51- 1 6,84173- 3 U,189tJ7- Z 2,S7752= 3 1.33669- 21?b~81803!5,46734. 4 3.b491bm 3 1,1J9U133- U 0,Ublkls8’ IA l,bbYTtim 5 2,Ut379. 4126281803U,M8521SI ~ 1.75641- U 2045bd9m b 4,22245Q 5 1,525u1= b l,Z88bi3- 512bL?B18P33,13599- 7 J063B85- b 6,32gk$U- B 4,14714* b S,9dB03- b 8.66236- 71i?bc?tl18L331,37149- 8 1P1361U- 7 6.08! 18=11 1.50B45* 8 3,U1440-12 1,78598- 81262818032,75?~b~ll 7.351f?3-10 0,00000+ a 0,00000+ @ 0,k)dOk3@+ @ O,klUO@O+ tll?b~51tlk339,313LIEIB- 1 l,J5d00+ Ll 2 0 ul,OaOOO~ 1 l,O~dBkt+ 9

jl?b~131t!031912bc?8i8k33

1005106~ 1 1,70053+ ~ 5,98281- : s,9TbTz- ! Z,2398L3- ! l,llb99- l12b2Ll18035,8b919w ~ 3,37i199w Z 3,@2blU- 3 1,25987- 2 7,371d95m 4 4,54105. 31Zbi?018031,1B651= 4 I,135671D 3 9,31884. 5 t,15Bdl~ 4 1,9j336- 5 2,v8397- 4126Z816k132,5091fl= b 3,92186- s 7,a507B= 7 1,70362- 5 4,78548= 8 Z,6~335W bl?b2818035,77342- 9 7,52215= 7 ;,027859 9 5,L19137B- ? 2,28855-11 1,71S46- 712628!8031,4U932-11 2016b3b- 8 U,33bld8014 2,23759w 8 20B2uti5-17 5036277.1112bZBlB035,@4U85=1@ ~@7773t4=11 floilOaOO+ 0 O,BOOOBt O 0,0i300fdt 13 0,’d@OOB+ 6flZbi!818@i3i,~92JB9? 0 l,8k3da0+ U e 0 w 4126281803I,Baaktew 1 Iqdntila’dt 9 0 n 1412b2B181333,32479= 2 z.?3515+ 0 QmUb984* ; Um875bIW 1 10532132- 2 l,157b5w liZb2B180J5,4j3b8- J 3.49792- 2 2,930S7W J l,5b2bB= 2 7,5U3b0- 4 7,b72B2- 31262810031,17996- 4 2.46018= 3 6,79717- S ~,9695b- U i,lb05b- 5 1,53525- 41?62018032,90589= b 4.07339- 5 6,B7086= 8 6,35152= 7 8,3214b-12 2,5176a- 812b2816B3?,41599-\b 9,ti51@9= 9 5C27716-\7 U,U36b3-il i~,O~Bk)kl+ 8 B,ifbOOO+ Id12b~818B3l*Maok30t @ z.a0k3t4kl+ 0 0 0 0 5iZb2818a31.OOOOO- 1 loOrnaOB+ 9 181262818031,J78131- z 1,43343+ 0 5,35?51= ; 2,961v13c ; 3,4ti31d9- : 1,27204- 11262018031,7s1039 S 2.83300= ~ 9,u44Bb- 4 l,395b9~ 2 l,3b912- 4 50b1941- 31~bi!B1803b,S7btil!n 5 9049B!$2w4 10U709b- 5 5,52576- U 4,9i?fJ91- b 1,9~121- 41i?bc?810@3S,7228i~ b 9.aU5i2W 5 3,3zU71W 7 U,llJb75* 5 i,9alC12)- B 9,9tib2d- 612b2B18031,1J51?7Q @ 2,3S522- b 2,11403-10 5.27219. 7~9022881=12 3,25351- R12bzBt8@33,11042-11 2.6@3U3- 8 4,01780-Is 1,A8259= 8 1,81528.17 2,94831-lk41~bZ61b832,20000+ @ 2.60000+ 0 0 e m 61262818031,00a(lO~ 1 1.00000+ 9 a n 0 16126281803

6162636465666768697071727374

K77787980818283848586878889909192

939U9596979899

ilealldl1C32lti3la4llds1d61U711J8189110111112113114115116117118119lzil121122123124125126127128129

35

Page 40: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

2,y@tJ5i0 2 t.a56?7+ ~ 8,75441= J ll,bS824= t 5,16266= 5 9,75119cI i!l?bi!B1803?,U416Q- 5 z.5Z449W a 1,2S109= J 9,3t48S- 5 5,71229. 5 2.9U6U5. 31262018032,1~b4~s s 4mlsu79- 4 7,sbaB9= b 1,46158= 4 1,9UB85= b 6,88077- 5126281803

s3,43876. 9 o.0f12b5@ b 4,1s627=10 1,19616= b 2,865UUm Y b,bb13bSw 71~b?8iC!k331,5$5729 Q 9.*633* 7 8,5z373w13 2,167U7W 8 4,7794.919 4tb91f2d=lllZb2810@3i,7b868=17 5.3bbk18=\z O,O@OOO+ 0 0.00000+ 0 0,001300+ 0 lbrBOOO@+ 012b281812S?.6aos9+ @ s.R900’a* o 0 9 8 712628100$t,aaoea= 1 l.of100@+ 9 1512b?8i81331,9b407* Q 1;S9816+ g 8,70956- ! 3,24869- ; s,t187b@w ; 1,29u99w 112!6281003lc663ilU-$ 3.0$664- 2 6.11S45-u 1,U7115W 2 2,64222= U 7,66709- 312b2818@370937’3fjs 5 3.?7213= 3 2,5Q0S4- b l,b02ti7~ 4 f,e8f130= b 3,082?5Q 41262018033,24849- Y 7,541B9~ S i,29~70=10 1,10587- 6 i,L3i69b-1’d 6,625Q19 71262616031,06436=13 ~,$bb8S= 6 3,U0545=22 0,0370RW11 s,38Sb3milj 3,73610-121262818033,90000+ a (1.@eOOO+ 9 0 R 0 8126281803l.faaeaew 1 l,ralll?nfl+ 9 161262610031,S2071- a 1,41975+ @ 5085Udl- : 3,29234- ; 4,2JH9B3w ! 1,2?0S6- l12bZ8180S2a5b2ulm J 3,$6u29w 2 1,3Q542- 3 1,31015- 2 2,23585- u UU451U3- 312b28t8032,919S3= 5 l,$B87um S 6,11476- b 5,16U67- u 1,4U95?= b l,486f14- 4126?810036,2741s- 7 1.31276. 4 1,SS711- 7 7,b63~b= 5 3,1f12b7mld 1.0230i3= 6126281003l,9i3393911 S,?86b2~ 7 1,29404-16 1.91114- 7 l,9j@b2-lU lc7~fB63-ll 12b?S18@31,460a4wIc 1.?1301-1? u.e6000+ a 13.unekw+ O fl,O@OLW+ ~ doO@OOO+ @l~62818@3U,ma(aldm+ Q 5mee000+0 4 0 9126281003l,llelnaam1 1,00900+9 lbli?b2131B031,~987S-2 1.30003+~ 3,76431=; a,bi?9~9* ; Z,9S2U0w i l,24~55w 11262818031,31773- S ambZ3Z7- i? 4,32764- U A,3@Sb8* 2 7,58W11D 5 8,7553aw 312b281803l,7uSq9m u u,~517fd~3 1,s7’?62= b 1,0172S- 3 7,89368=-8 3s47493- 4A2b~L$1803

1i5a3E9-”39.733flji5 6,23427-9 6,2a248*5 1,87093=101,M4411-6126281803I?,~33110-13b.77zQ2m7 2.2S972ml~1,72’d2~-7 l,3129@w22Z,%T~i_ 8126251803h,R7Z17-2a z.39375-13 FI,~fik300t 9 @,OtltiflU+ 0 k3,0B1313F4+ d 0,k3dk300+ 01Z6Z818U35.f126fi@+ @ b.a3a~fl* fl 0 0 8 lQ12b2B1603l,fla?flfln 1 1.0?7FIP+ 7 1212b281~f131.@0S&?9.2 ~.7f19~9~6 b.5u(J61?-! 3,u583@*: 1,5277bw ! 8,70199- 2126~818@31,5235?- u 1.b77nb- 2 2.@u631- 5 5,11i?45- 3 b,42U99- $ 3,Z91fIBW 31ZbZ81@037,615u5w !) 8,60636- Q 2,1J7P9V- 9 l,17UfJ8- 3 U,44115-13 2,4R87@- U12bi?9i8332,1673?-11 l,bu218- 6 1,89161-14 5,9f1263- 7 9,99597-23 2,Q383a. 13126?818U3b,~aaiipt U’7e5Fi3@P+ ~ a n 0l,~a~afd- j 1.7JPao13+ 7

lll?6?81Bd3lti12bZ!J1803

1,7517Q- 3 1.78J?6+ 0 1,15398- ; 3.b3083- ~ 2,5i!9b7w i 5,U52bb- i?i?bd810i331,3BQL13w S 1.56583- ? 6,48457- 7 8,4Qb~l- 3 1,91878- 9 1,53165- 31E!bZ9113038,6fiaB7wla 9.~472b- 4 8.92896*1U 1,03916- b 2,63164=15 6,U52QU- 712b23!8f136,52UU1-21 1.558R5- 9 @OPOO?O+ a O,BL?BOi!+ 0 O,fdW[lO+ a t3,@000ti+ 01262!Jll!Id3

1262B1 a126/ a 0

nO a0, ‘ 8 II 0i.0a90p- i i:ananw 1 0 0

111264608020 l12bu8a8’ai?

l,natn(l- 1 1*71300V+ 9 0 0 lb12bdB0802l,515Zfl- 3 1.3??16+ a 8,20608= ! 1,27219- 1 3,818UO= U 1,58019- 2i?6u5UB02U,0Z9Z3- ~ 2.31347- 3 i?,72bU3- 5 7,b85U9-.lJ 7,01046- 6 3,96417- U1?6U8Q81423,3U7b6- b 1.62355- 0 6.65!77- 7 4,U3@33-. 5 5,33139- 7 l,U59f19~ 51~6u028321,$13116- 7 U.I?6015- b 2a8651i- B 1.83135* 6 U,67937- 9 U,b~l@6= 712butli18023,F591?- 9 2,U8bu9- 7 508~98U-lB 7,86038- 8 U,756Z3-11 l,7@574- 512648?Sti21,051?6-11 8.52187-tfl BaOO~klTI+ 3 0,#@Ok7U+ % fl,fl@@ti@+ 0 ti,0@08B+ 012buR$3tJ02U,fl~t4a(t- 1 900Pilkli!- j a Ut,~a?a~~ i l.antivkl+ 9

Zl?6UBilB3za 0 ; 17126U9?I!R2

1,tiUl?9- 2 1.42215+ @ 2,2u530- 3 2,51511- 1 ~,lt135= 3 l,2f310& 112640?5021.Qa538- 3 1.81233w 2 2.5557b- O ~.Z2CflL?- 3 1,13091- 4 l,1951bw 31~bQ8@8@2U0138bQ- 5 U.SA191- U 1,29300- 5 1,80159- a 1.87301- 6 5.28654= 512buBn8~?loasb83- 6 1.83792- s 306b317- 7 6od6]z6- 6 3,51889- B 8,99Q89. 7126UU38L+Z7.uaa3t- Q IJ.0875u- 7 6.78442-10 3.23u6@- 7 l,fAb3a@- 9 8mdnb’?8- 012bU6~a@21,69868-10 1.98178- 8 5.19700-12 7,639U2-l@ a,0aUb40+ ‘d 0,00000+ @i26~Bf18ti29,0afann- I 1.353Rfi+ 0 0 P 0 3t26fJ9fltlm2l.nai~ti(!- 1 l.ac!,latl+ 9 3 n @ 17126U986(422.!6755- a 1.U(J88U+ 0 5.125U8- 3 2,7976S- 1 7,883S9- 3 l,22u@l. l~26U8?b@23,22f189- 3 1.9S19L!- 2 3.69223- 4 0.68?57- 3 1,39072- U 1,32926- 312bU6fld0Z3.S376?- 5 U:W8969- a 1.2233U- 5 t.87s2b~ U 1,2?662- b 7k31d6U- 51261Jll@t!@i?1,U9S73- 6 2.49349- g l,flP012- 7 b,llUf15- b 1,J314@kl- 8 I,IC327- 612b4P38021,76S39- 9 5.32517- 7 8.53121-10 @,60217- 7 5,98391-lti fJ,9sb92* 812h40atl@2~,-736iJ6-jB 1.9ob5& B 5,673ab-4Z 7.86607-19 @,@a@O@+ @ B.D@@aiM 0b2bu.838,~,2

1301311321331341351361371381391401411421431441451461471481491501511521s3154155156157158159lbti161162163164165166lb7168169170171172173

:3

:b78

1:11

H1415161718

!:212223aa2s”

.

?

,36

Page 41: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

?;7?069- i! ig57b36+3,3d466!!3 2.?417ti99,8b@07~6 6.56324”~.b733fl_7 4.26260=3,2903U91B~,36994m7,6;533-156.736S2°Z,hdaoe+0 3.zc?aPo+1.3?vfle- I l.anavu+3,72@14- i? 1.57595+2,78922--3 2.Z277V-1-.3359?- 5 5.??72i-6,3943.5- 7 5.11if39-l.bfJ?bU-lti Z.3Z279-3.PaGlldm+ fl u,i4t44Llti+

l.~bx;~;~- 1 lo331;ik~+

4,79771- 2 2.585U7+3.67583- 3 2.14f51-1*R9U?1- ~ 4’1156~-6,77823- 7 b,51h?9-

‘ 2,!!592!0-13 bOUfiPL!5-U,ili!?ap+ g S,till.n(lll+l.fla?il(?~ 1 t.~ifi!$!ti+

t?.uu~al- i? i.1377zJ9+l,ti5bb~- 3 ~oU?b5P.-9.57515- 7 5obi!f172-

9503%.U35-10 7,535u7-

l:fidak?i?- 1 i:il’!aLlu+”9 lb12bfJb.’L)~?D 2e5167Q- ; 5,95191- ; 1P44ZU2- : l,i?bi?02- ll~bqsab~~2 5,17911- u 5.49068- 3 9,7B4739 5 1016297= 31zb4~~1~~~4 4.s1617= b 3,@6~40- U 2,08155- 7 3,05789- 512ba8@802S 10b5890- 0 l,!la47- 5 8,52570-11 2,S5424- 71~bu8f18828 7,55774wlz l,bS72U- 8 3,39814-11 2,36443- 812b4flk?t)f12% 0.@BaE~+ B B,@PtiqQ+ 0 0,0d0b9+ O G,BO@ZO+ @i~b~S@Bfi20 a n m 71i?buBQ6029 m e 151264s89k12@ I,13z751w : 5,18554- 1 1,UU3399 z l,377?t3- 1126480!3(322 U.3ZU89- U S,blb91~ 3 7,(!3665= S 1,2’378U- 312buY08f12U 1038B28- 6 3,1J37!?3- 4 5,77862- 8 3,9U6U5- 51264890025 b,~IV83- q 1,175?4- 5 !,155u6-10 1,07719- b12buBk18028 4,319Zk3-12 l,b5311= 8 5,14126-17 l,a~~na- 912buBtii3B20 @ 09

812b48ti8U2: n d 151204F$FtiffZ

a 4;3u899- a b,U17980- 1 ~,087b3- Z i,5klbUd- Ilt?bfJ5k’8@22 6,aQ773- 4 b,fk~119- 3 1,G19437= 4 l,btib53- s)?bu$b~~~U 2,~7~32- 7 b,71112b- 4 4,0abk15m 7 7qa1519- 5\.?bUt3118t125 4,725Ub- 9 10U5291- 5 1,13418-12 7,90S14- 712b48Pkl@?7 Ua\7731-11 2,j7J47- 8 2,9db72-17 2,9T98b-jVlt?bU8~5k32@ D n (3 91264638029 a 0 d 1U12648SB020 8,Sb555- 3 b,3267b- 1 1,23413- 2 l,588~bw ll?b46@hf12~ 205b581J- U 9,U5z11- 3 2,12Q41d- S 2,71694- 312bu8tifJt12Q 1.94hb8- B 1.S3248- 4 2,hb58Q- 7 bs987fi~~ 5t.?b~SA~@2S 1.QoSR!3-11 1.03762- 6 2mR7\lU-lb l,795Uf4. 712bu8J6@2

1,9X933-18 7.i95qt-l? ?,ubfi78~!8 7,1832P-13 0*ti{M3k10+ 2 kJ,i3:lu0ti+ @120403d17Z5.~arntiHt 0 b.!d!’13MU* @ @ 8l,ti?ti?n- 1 ~.cl~adk!+ 9

fd l~12b49g8R20 a

l,lY5b6- 2 t.87bul+ R 3.3E17t7- ! 5.L43159- 1 6,1aU31- 3 l.5’5~l5-lsl~bug~t)~z

ll?bfi8@8ti22,6?U?U- & 3.24962- 2 lofda2u6- U 1.2Qkj~3- 2 7,tiu2Y7- b 4,u74flb- 312b48,k832l,bi?ht39- 7 !.34414- 3 4,95P8R- 9 6,85b89- 5 8,753t,9-14 l,i?298d. blr?bU8h13@22,63581-lz 1.03353- b 1.5381EI-18 1,55652- 7 6,24351-21 7. Ub29ti-1212b482B026,1?234-20 2.klfJ38?-12 002:.jOklU+ a 0,C91@00+ O O,OtiOklk!t U ‘iI,k~~k’aOt 012buBfi6026.,ilail137+ g 7,533ve+ 0 0 63 01,02U20- 1 l.klkld~t+ 7 a

l!l.2b~~~8ti2

0 a ll12b~6080?5obS718- 3 IOOU372* D 9.73995- u U,12U(C?5- 1 2.1132(!- 3 l,b51U4- lt?hu8~8~i?

i?,b7929~ 4 b.854U4- 2 1,52465- 5 1,41366- 2 3,71382- 7 5,14886- 312b4Bti8025,26799- 9 1.495ti7- 3 2ef!z328-la 8,31972- 4 2,~5ULIt-14 9,1709UW U12b480kkflZ5.9912b-i4 l,037bb- b, 2.R5@7fl-2a 5.86991- 8 @,fli300k4+ 8 003{~klfld+ k$i2bu8~8gi?

12bu8fl 0P

<aanpn- I fla~finkl- 10 n Do

lll?buJ3aMu3e 0 lV26u9?18BS

l,kladtl?j- 1 loDOd’7D+ 9 n 8 1912tJQ8”OBa3l,67ZQ3~ 2 q291~7+ @ l,bbfitio- ~ 8.9783kl- 1 9,67546- 3 5,96817- ll~b48f18235.95517- 3 1.3u321- 1 1,81682- 3 5.52554- 2 q,7b6bt3- 4 l,71bF11- 2126U838F131.19397- 4 3.953111- 3 5,2u36.9- S b.7@283- 4 1,92828- 5 5,31679- Ui2b(48fl&)B35,73U81- b 2.15703- U 9,69922-”8 l,iQ9Ub- 5 3,59483- 7 1.4tib89m 512b40fi803t!,917b6- 8 2.897U9- b 101J31U2- 8 8.52u13- 7 1,27377- 9 2,b548~- 71?bu8Wd31,U4556-1] 2,8v!~7u- 8 l,z136?-!~ 202550~- Q 2.68642-13 %,u9492- 9126u83klR33,863’92-17 10119?7-j’i! 0.BPFik!O+ a OOa~klRtI+ O 0,k3i100VI+ O d,ti~tic?a+ kl12b4!30BB3

262728?9303132333435363738394U4142U3444546U7U8U95051

;:5U555b575859bflb;6263b4656667686970?17273747576777879tlti018i?8384

z875889909192939U

37

Page 42: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

lJ,0aF41?lcl- 1 9*F!f13iaP- 1 nIotianoo= 1 l.OrIti~d+ 9

Zli?b48~803:“0 : 1912648J8G33

1,133631= I Z078269+ 0 200~964P ~ 8.96753- 1 7,~3595w 2 5.41161- ll?6Uf!tiBn32,5d5U7- z I,6u70u- 1 5,60799- 3 S.89620- 2 2,08150- 3 1,636?0- i?12bu13f18035,5Q560- u U,4R761- 3 1,631413~ u 9.07396- U 2,E!3364- 5 3,3596u- ul?648@80.\4,QzfldI- 5 10i31557- 4 ?m05059w 6 3,8539z- 5 1,50735- 6 1,?2766- 51ZbU8a3832,8763R- ~ 3.118UiI- 6 5,6u695- 8 4,13(?511u- 6 5,14641- 8 7,B8z15- 71264Bf18V31.263u1- R 1.27U59- 7 6,3333?-11 i,092Qb- 8 4,bi3S2t?-15 b,22488- 812bU838032,9?U57-11 70~924-10 D,FIRt4Jfl+ B \100F4dOti+ B B,14dOt4H+ B lb,tivklni!~ al~eQbtit)ti59,ailti&4P- 1 lo35dvi3+ d B 0 U 312648M8V3I,lld?oo- 1 1.2H,?F40+ 9 0 0 8 19126463883~,lZ176- 2 ~,9783k4+ 0 7,771U4- $ 6,2fllk41J~ 1 ;.16178. 2 2oa297/- l126U&Vtj1336,1aZ48- 3 6.218Uf?- 2 2.7z779- 3 1.58014- Z 5,9flV55. # 5,672B4. 3126u8flBL33!,i8777_4 1.S25a7*3 1.01579-4 0.38315-U 2.B2Z91W 5 Z,1OO15, 0i2b4Hflt)032,10042- b 3.97404- s 6,68904- 7 1.78639- S 5,09027- 8 2,79144= 61264508036,1S193- V 7.207?9- 7 9.21518=10 b;17ti23- 7 l,43fi80-11 l,0f4blbw 71?bU8B01?31,93310-11 i?.la163= 8 2.81505-12 2.3U5/lS* 8 8,81S28-17 4,32278-111264808033,3917fi-l@ 1.U225f!CC~1 a,B~@k3tJ+ a BaOklUP@+ 0 0,030f10+ 0 O&OOBOO+ a12648i18L13l,35Qan* 0 l.enzlntl+ 0 ‘a 0l.nilflan- 1 l.oflat~n+ 9

0 U1264&t1803B 0 14126umP6k+3

7,398939 5 ~,62.t32} ~ 7.Iu888- : s,b96b4~ 1 5,3555191 J l,78341ih lJ?64Ht413f134,3a069- 3 6,33813- 2 2,6u5160 3 1,792S3- 2 7,(5780- 4 8,0733b- 512648381A39,21!453- 5 ~.156t23- 3 b,l?27U9w 5 4,i13454- 4 9,899~9- 6 1,57134- U12b4~tlljfiS2,U2923_ b 3.9P2UU- 5 bm88Q@fl- 8 6,35759- 7 8,4”5161-12 2,41681- 812bU508031,09583-15 6,,33652- 9 10UZ691=16 3,40i3b9*ll 0,03a6Kl+ O a,@QGflLl+ @12bubf18k43l,8a3J3+ 0 2.2a,~Iac\+ 0 0 0 0

“1.k32f!J0- 1 I.J~klOU+ 95126u83b03

0 0 ~812b48aB032,89863- 3 1.5z677+ 0 6.57198- f 3,R9237= 1 1,20121- 3 1.91651. l12bU8k48t131,R?298- 3 5,55j79- 2 ~oBbbU2- U 1,60QU2- 2 1,39917- 4 6,18555- 3126u14~t4036,579U5- S 9oSbf17t4- 4 f!,B931Jb= 6 4,S67U@D 4 6,15332- b 2,26552- U12b4(!fl$J143“3.22fItU- b 1.U382?- 4 3,1s523- 7 4,31S18- 5 1,99951- 8 8,01178= bJ2bU8U80J1,0U25Fl@ 8 2.356!7- b 3,32~i37-la 5.329k?2- 7w1,@lt3t48-11 2,92972- 811?6UlJHB03?,9afJ98~l~ ~,7bfi3~- 8 b,U63ibl-ls 1,22794* 8 5,050c17w17 Z,9b275.\k312bUbf18kl~2.2~f4flP+ 0 ~.bf13tiV+ 0 e 0 If! 612bUti0ilf15l,aaron- 1 l,ona~i~+ 9 1312bu80B035,61~bb= 3 ~.3S51ti* B $,t33?b?~ : 1,37989- : 107Ub32= ; 2,13414- ?12b’J8~i3034.92543- 4 7.521$95- 3 2al&155- S 4,17905- 0 1,43048- b 4,~1932. [email protected] ~ 9.859f14- 5 8.93048- 8 9,77286- 5 1,V3329- 9 7,70247. 71?64008032,77722’- 9 6033JR1- 7 8,92693-13 2,3t437u- 8 4,5UI?75D13 Z,a3019w [email protected] 9.84a5FI-13 3,0a36!0t a t!eOflO@O+ fi O,OIBOOU+ 0 fd,00B@O+ @12b4B@80Ji?,bc?UOkI+ Q 3.KjP39ti+ a 0 @ 0 712bu8?803l.n?titin- 1 lmOila@c!+ Q e lsl~ba8~8fi34,fj~fJdl- 3 lab187:++ 0 lm@5113a ; U,72756W ; 2*it?93bm J IU758U3- li2bu8P9ti31,?7@79Q 3 S,95966- 2 7,52267= ~ 1,94178- 2 2,21919- U 9.8796S- 3126U80ME36e52u7z- 5 3.18742- 3 Z.16U26- ~ 1.72918- 4 6,16318- b 3,15688- 41264308032.11?32- 7 7.1f792- 5 9,9u987-fl 1.268UO* 6 l,@iLl134-10 b,5bd9b. ?12bU8flfjB31,61S18-13 2.1558U- 8 1.7’8360=19 1,22962*11 l,a6873P17 l,2~88?*1212buBP8@33mrta3xfi+ a u.ni133tA+ 0 0 8 01.fla30fn- 1 l.anavu+ 9

811?6u8\~8030 B 161r?b4b0t!8j

2,13! 16- 3 ~,UU9f!D+ B 1.940S9- ; d,398,60- 1 9,42593- 4 1,9965?4- l12b4M13!3031,82295- 3 5.2S980- 2 l,t91U3- 3 l,U?fJ90- 2 l,595f!8~ 4. 4,7255A 31t?buBp80~2,56339- 5 1.5588U- 3 b,lz9j6= 6 5,3323t4- 4 1,4a13U- b 1,3?743- 412b48@8f434,310f13~ 7 lo289~iI- fJ 101(1614- 7 50125BL4- 5 ?,31118-19 l@ti36ad- 61%64L!08a32,5!13~oi-11 6,1559L4- 7 l,5sfl12-15 1,36730= 7 5,95F?L$1-18 4,425Bi3-1212bU8iZfjk!33,37495-18 5.46950-13 0,0flk10F4+.11 a,avacja+ a t4,0aw30+ a 13*@tiaue+ 0!2bU80803u,baO~O+”O s.efiflctat u n eI,maatitx- ; I.afi*fiot 9

91?b48@6ti3: p u lb126uSP8E?3

1,U3917- 3 z.7~852+“6l,3z6~SW~ 6,43S99- 1 1,22299- 3 l,8630i. l126U0t38039,225s9- u 5,26222- a Se69351= Q 1,43259- 2 4,89@11- 5 1,31195- Zl~649tit1031,83980= 4 3,?67121- 3 1,07296= 6 9,50211- 0 3,31RLll?m 0 3,94246. [email protected] 8 1.bhZ81- u 5,217k3ty 9 b.928?8~ ~ i,aa5ti2-18 i,03j84- b12b46050~2.111M7-13 U.07527- 7 la13291-lh 1.b287s- I 1,10450-22 7,7dt4Uti- 812bU608931.8?738-19 7.1815B-13 0,021(4~0+ a @.’d00t3B+ 0 0,03flPfi+ 8 8,80000+ @12e4fJ@8@3s,G4ddtIQ4* 3 beafi~~f?+ 9 a 0 01.n3i9$)D- 1 1.L4f13(4ti+ 7

l@l?b4L!(lL!k138 0 12126460EW3

2,52938- J 1.61372+ 0 8.95921- ; 3,25133- 1 9,57559- U l,3f14U3- l\ZbUE98f431.16917- u 1.938bfi- 2 !,07947- 5 5,76564- 3 5,82U31- b 3,32708- 512648086437,U7b39- 8 8.?V382- 4 2,145g0w 8 1,18B14w 3 6.28kl10-16 9,497Q8- U12b48@180S1,6?835-11 9.91546- 7 1,12598M12 5,53587* 7 9,99562-22 1,23214- 8126utJQ803

95969798

J:lU1IH2103jti4li)slk461R71U81??9lle1111121131141;5ti6117118119i2e1211221231241251261271281291311113113213313U135136137J38139lunlU1juz14314U145146147148i4915M15115215315415515b157158159i O@161lb2163

38

Page 43: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

. .

b

1641651 b6lb~108lb~17b9

ill172

i3

z6789

~tl111213lU15lb1718192821222324$25262728293a3132333U5536573839qn41Ul?43Uu45Ub47484950515253545556575859

39

Page 44: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

6,16752=3 2.28199=2 8.5s’122-Q 6.46$f12ri3 1,18263-4 l,8b51uQ35.11603-5 b,d~%l~b-U ?,59684-6 6,99~44-5 2,795?1w7 b,9~~i3bm 5!,5~ltfJR0 b f,,quf~l= 5 !,?57?9= 8 1,4?418- 5 7,3931?w12 l,2b!194m btl,FibUhF1-lU 3.FJ13952- 7 UclIEi932-j3 2.21333- R 8,U939U-lB 3,81i?b5-inU,namlzin+ M 5.t4k4a’ati+ o n n @ 9l.aanakl- 1 l.tlnaoo+ 9 n 0 a ~ubm797b5- z z.71128+ 0 5,LJIf111- 2 5.la8?4- 1 i!.475R9- Z 1,21386- 12,35525- 3 2.116?~l- 2 U.3(4295D u 8,11014- 3 3,b10Clbo 5 3,01364- 3l,l13u80- b 5.3U153- u 4.lu3ktfl- 7 6,01636- S 1,tiB708- b 7,22842- 50.78207- 9 7,23151- 5 7,93591-13 1.Ba987- b b,U8a9kl-lb 1.79138- 75,202aU-19 ~.lb883=ll b.5u327-19 7ma3245-j3 Q,flO@nP+ 0 O,kIPk!ak!+ fl5,0a00fl+ 0 b.Otlf100+ @ B R Bl,namEv- 1 1.0aaPi3+ 9

II?a @ B 13

Q.t?U126- z 1.69877+ 0 iObfJOUQo 2 Z,9811a- 1 l,@a532w 2 1,12123- 16,75477. a Z.88257- Z 106?Sla- u 1,09155- 2 1.68557. 5 f/.27U3Z- 32,777bu- 7 ~.3653b- 3 i!,5Q92a- 8 6.86112- S 3,20931-lU 1,22232- b7.72785-la 9.96913= ? 9.1s821-lB 1,73032- 7 bo8b056-2i 2.u8196-11l,15b999??l b.9a295=13 L4*8W3U8+ 8 O,O@f)am+ 0 O,n$vlOn+ n B,aMeoB+ 06,’3i?@0@+ 0 7.50k10W+ 0lsOaOOn- 1 l.enofag+ 7

e m 0 11

lo83a92- 2 1,70393+ E 60604a8- ; 3,30171- ! 4,4552n= ! 1,20398-1;Z!,i7b7tjW 4 u.$8u57w ~ 3,27137- S 1,40288- 2 7,38277- 7 4,974a7- 37,79688* 9 1,8$977= 3 3,26129-10 8.2931u~ a l,bb3U1-13 2,60513- U2’,3Uab2-15 1.03613- b ~mS01Ua=22 1,632FJ6- 7 fl,’ilaRt?04 a @,PJ@0rn04 @

6!, 0 n a 11l,flaeOOw 1 ::000009 1 0l,~ilnflfl= 1 l.a#n@O+ 9

00 0 : 1:

b,B9a3u- 2 1,82056+ @ 1,75749- Z a,U2UJb- 1 1,7962U- 2 3015735~ 18,;/!862- 3 &,ZlB510 i? l,Sb763- 3 300QbQ3- 2 8,8071am a 1,s2913- 21,0D6i91T U u.0873Bm 3 4,f17a18- S 9,15304- U 2,2b29a- 5 6,63367- ab,165b2- b 2,10661- u 100b@a4n 7 2,19246-5 3,196U2= 7 1,41375= 55,bb1930 6 3,590ab- b loIn292- g 8,138b2- 7 1,53176- 9 2,S8370= 75,3489?011 2.82396- 8 1,S988?=12 1,99297- 8 9,3166Q=1U 8,09fl~2- 9i.132i8-t7 1.i91bU-lb @,RaORRt 0 ~,O~OOa+ 0 8,@0BflFi+ 3 O,O@OOO+ 0Umaatlklklm 1 9,0t10fdn- 1 a 0 0 zl.Oaf100= 1 l.flnakw+ 9 0 F1 k! 19U,Z282fl- 1 2.1081b+ 0 1,11971. 1 6,58bsl= 1 l,t829b. 1 3,25994- 12,6975z- 2 t.0729b- 1 bo59bba- 3 3,b~2UfP 2 t,8020u9 3 1,?9727- 27,0Q9111w a 3,7a172m 3 1.23783- u 1,’ilbutla- 3 1,43191J- 5 3,rn8336m UU,*U3711a 5 lm8377ZW U !,9262UW b a,55b93- 5 l,5aa30. 6 1,30698- 51,13710~ 7 3.6132bO~ b 3,37506= 5 3,1L1679~ 6 b,9577b* 8 1,18609. bl,t216Q- 8 1.la5U0- 7 l,7i8U3-11 1,9$637- B 8,34489B12 2,27629- 83,13287*11 7.35785-10 OeflnnBEl+ @ 0.Be10R21+ n 0,000(40+ 0 0,000t40+ a9,03008- 1 1.35k3@0+ @ 0 # B 31,000u@= i l.llnaOO+ 9 0 n 0 198,82611= ~ 1.B9B21+ @ a,79a26w z S,2bSb9- 1 1,9Q9u13- Z l,1592bm I6.57171- 3 J026515- Z 2.78555- 3 1,16895- 2 5,65112- U U,8@5t31- 31.78337- 4 9.85003- u 9,28013- 5 5.85409- a l,79abf3- 5 2,1il!i8Bw U2.a37S7* b 3.69557- 5 b09u2n3- 7 l,7b9B3- S 2,7784s= 8 2,5U538- b2.9jai?6- 9 h.587ati- 7 1,07938- 9 fJ.llb38- 7 fi,52U14Vl~ 2,2277U. 7u.5d627-13 3.42Zu2- 8 8.85773-IQ 1,98529- 6 1,9378S-17 106938U.11ao!!77U9-10 1.666s8-11 aOOOnB@+ a 0.000flO+ 0 fl,naflfln+ 0 O,BflOBld+ O1.35aflUI+ o 1.80E10t3+ 0 0 P 0 al,0ak30n- 1 1.000nn+ 9 0 0 0 142.59581- a 2.72284+ B 3m76al~- 2 4,63823- 1 1,U2129- 2 1,21589- 17,!0ak18- 3 3,05U32= 2 3e5B375- s l,UtI187- 2 1,13153U- 3 6,35u00- 3U,26521- 5 a@Ub698- 3 8,3198R= 5 3,7Fi601- a 7,U1766- b 7867959= 530aba11- b u,q0359- 5 8,59748- B 6.26207- 7 l,~689Glmll 2,8@ti16ba 8i,7bS@2-i7 2.8L?bb7- 8 3,R2367w17 1.36227-11 O,flaO@(?+ 8 O,uO$@B+ 0l,8ano0+ 0 2.i2f18F10+ o 0 v u 5l,OaBun- 1 Imarn.gnfa+ 9 P m 181.F!26u1- 2 1.U3U17+ fl 5,a93U8= ~ 3.12S35- 1 3.27115- 3 1,167U9- 1lm96glu- 3 2,0u0q3- 2 1,PJR775= 3 l,323tIJ- 2 !,21183- a Q,B7u1UW 37.2238R0 5 7.11Rb2- 4 7,97283- b 5,5b282- U 701426173- 6 l,lb59~. 43.87177- b 7.Z73?9- 5 U-46273- 7 J08~109- 5 l:7U93ao 8 l,J7~5b- 5b,32h5b- 9 2,56804- b 5.8u567-11 7.53693- 7-6.29261=12 9,a92b0- 84,’22356-11 2.8!962- 8 2,19Q57-16 i!.97386~ 8 1,11162-17 9.7f1859-li2.23~a0+ 0 2.bH2Zn+ ~ a 0 @ 6

296816R2,27b81802,Z’)hb!t!tiz296B18G1229601802296818R22968180229bfllIji4229b816n22968180229b81802296818f12296818~z29b818f12296818$322968180229b8!8BZ29b81BD22968160229b0180Z29b818P229681002

,29b8180229b8180229681 3

,2968180s296818032968180329681803

,29b818@3,2968180329681803296!!180329b810032968180329601803296818032968180329681803

,296818032968180329681803

,29b818032968180329b818f1329681803

,29b131803296818032’9b81B0329b91803

,29681803,29681803,296818012968180329b818@329681803

,29b8180329b816B3296818U3

,29681803,29b8180329b8183329b818k!32968180329b81823296918n3

29b81i3f13,29b818P3,~9b818P3

..—6W61bz63babS666768b9707172737a757677787980818283oa8586878889909192939U95969798

1::101IB21L43ltia1051!461071081 f19110111112113114115llb117118119lza12112212312a11?5

12h127lt28

A

40

Page 45: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

12913U!311321s3154135136137138139llJ’J1411421U3144j 451(J614714814915P15115215315U155156157158159lbFI16116216316/4

i65106lb7168!6?

172173

1

41

Page 46: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

REFERENCES

1.

2.

3.

40

5.

6.

7.

8.

9.

10.

11.

12 ●

13,

14.

42

P. G. Young and E. D. Arthur, “GNASH, A Preequilibrium, Statistical Nuclear-Model Code for Calculation of Cross Sections and Emission Spectra,” LosAlamos Scientific Laboratory report LA-6947 (1977).

C. Kalbach “The Griffin Model, Complex Particles, and Direct Nuclear Reac-tions, “Z.’Phys. A283, 401 (1977).

C. M. Perey and F. G. Perey, “Compilation of Phenomenological Optical ModelParameters 1954-1975,” Atomic Data and Nucl. Data Tables 17, ~ (1976).[Neutrons: Wilmore-Hodgson (14-40 MeV); Bechetti-Greenlees (40-100 MeV).Protons: Bechetti-Greenlees. Deuterons: Perey. Alphas: results

from a +3’ K as listed in the compilation.]

J. Wilhelmy, Los AlarnosScientific Laboratory, personal communication.

E. D. Arthur and P. G. Young, “Neutron Cross Sections for Yttrium and Titan-ium Isotopes,” in “’’AppliedNuclear Data Research and Development April 1-June 30, 1977,” compiled by C. I. Baxman and P. G. Young, Los Alamos Scien-tific Laboratory report LA-6971-PR, p. 6 (1977).

C. M. Perey and F. G. Perey, “Compilation of Phenomenological Optical ModelParameters 1954-1975,” Atomic Data and Nucl. Data Tables 17, ~ (1976).

C. H. Johnson, A. Galonsky, and R. L. Kernell, “Anomalous Optical ModelPotential for Sub-Coulomb Protons for 89 < A < 130,” Phys. Rev. Lett. 391604 (1977).

89 89C. H. Johnson, R. L. Kernell, and S. Ramavataram, “The Y(p,n) ZR CrossSection Near the First Two Analogue Resonances,” Nucl. Phys. A107, 21 (1968).

Ch. Lagrange, “Optical Model Parameterization between 10 keV and 20 MeV--

Application to the89Y and 93

Nb Spherical Nuclei,” Presented at the NationalSoviet Conference on Neutron Physics (1975).

J. Delaroche, G. Haouat, R. Shamu, J. Lachkar, M. Patin, J. Sigaud, and J.Chardine, “Study of Even-Even Tungsten Isotopes by Neutron Scattering,”Proc. of the National Conf. on Neutron Physics, Kiev (1977).

P. T. Guenther, “The Elastic and Inelastic Scattering of Fast Neutrons fromthe Even Isotopes of Tungsten,” Ph.D. thesis (1977).

J. Frehaut, Bruy&res-le-Ch~tel, private communication (1978).

C. L. Dunford, “A Unified Model for Analysis of Compound Nucleus Reactions,” “Atomics International report AI-AEC-12931 (July 15, 1970).

H. Rebel and G. W. Schweimer, “Improved Version of Tamura’s Code for Coupled-.

Channel Calculations: JUPITOR Karlsruhe Version,” Gesellschatt fur Kernfor-schung M.B.H. report K.F.K. 133 (Feb. 1971).

Page 47: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

15. D. Madland, “Neutron Optical Potential for Uranium Isotopes,” in “AppliedNuclear Data Research and Development July 1 - September 30, 1977,’’compiledby C. I. Baxman and P. G. Young, Los Alamos Scientific Laboratory reportLA-7066-PR, p. 12 (Dec. 1977).

16. G. F. Auchampaugh, J. M. Farrell, and D. W. Bergen, “Neutron-Induced Fission

Cross Sections of242

Pu and244PU

s“ Nuc1. Phys. A171, 31 (1971).

17. J. W. Behrens, R. S. Newbury, and J. W. Magana, “Measurements of the Neutron-

Induced Fission Cross Sections for240PU 242PU and 244PU Relative to 235

ufrom 0.1 to 30 MeV,” Nucl. Sci. Eng. 6&,’433 (1678).

18. M. Bhat, Brookhaven National Laboratory, personal communication (1977).

19. D. W. Bergen and R. R. Fullwood, “Neutron Induced Fission Cross Section of242PU

s“ Nuc1. Phys. A163, 577 (1971).

20. D. K. Butler, “Neutron Induced Fission Cross Sections of Pu242

from 0.1 to1.5 MeV,” Bull. Am. Phys. Sot. ~, 234 (1959).

21. E. F. Formushkin, E. K. Gutnikova, Yu. S. Zamustrin, B. K. Moslennikov, V.N. Belov, V. M. Surin, F. Nasyrov, and N. F. Paskin, “Cross Sections andFragment Angular Anisotropy in Fast-Neutron Fission of Some Isotopes ofPlutonium, Americium, and Currium,” Yad. Fiz. [Sov. J. Nucl. Phys.] ~, 689(1967).

22. E. F. Formushkin and E. F. Gutnikova, “Cross-Sections and Angular Distribu-

tions of Fragments in the fission of 238PU 242PU and 241 -Am by Neutrons of

Energy of 0.45-3.6 MeV,” International Nuc~ear Data Committee report INDC(CCP)-7/u, p. 28 (1970).

23. J. Terrell, “Prompt Neutrons from Fission,” Proc. of the IAEA Symposium onthe Physics and Chemistry of Fission, Salzburg (1965).

24. F. Mann and R. E. Schenter, “HEDL Evaluation of Actinide Cross Sections forENDF/B-V,” Hanford Engineering Development Laboratory report HEDL-TME-77-54(1977).

25. R. J. Howerton, D. E. Cullen, R. C. Haight, M. H. MacGregor, S. T. Perkins,and E. F. Plechaty, “The LLL Evaluated Nuclear Data Library (ENDL) EvaluationTechniques, Reaction Index and Descriptions of Individual Evaluations,”Lawrence Livermore Laboratory report UCRL-50400, Vol. 15 (1975).

26. H. Alter and C. Dunford, Brookhaven National Laboratory, personal communica-tion (1974).

27. F. Manero and V. A. Konshin, “Status of the Energy Dependent ~-Values forthe Heavy Isotopes (Z > 90) from Thermal to 15 MeV and of v-Values forSpontaneous Fission,” Atomic Energy Reviewg, 637 (1972).

43

Page 48: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

28. R. W. Hockenbury, A, J. Sanislo, and N. N, Kauehal, “ke’VCapture Cross Sec-

tion of242

Pu,” in Nuclear Cross Sections and Technology Volume II, NBSSpecial Publication 425, p. 584 (1975).

29. D. Drake, Los Alamos Scientific Laboratory, personal communication (1978).

30. C. E. Bemis, F. K. McGowan, J. L. C. Ford, W. T. Milner, P. H. Stelson, andR. L. Robinson, “E2 and E4 Transition Moments and Equilibrium Deformationin the Actinide Nuclei,” Phys. Rev. ~, 1466 (1973).

31. David L. Hill and J. A. Wheeler, “Nuclear Constitution and the Interpreta-tion of Fission Phenomena,” Phys. Rev. 89, 1102 (1953).

32. D. G. Madland, Los Alamos Scientific Laboratory, personal communication (1978).

33. B. B. Back, H. C. Britt, O. Hansen, B. Leroux, and J. D. Garrett, “Fissionof Odd-A and Doubly Odd Actinide Nuclei Induced by Direct Reactions,” Phys.Rev. C1O, 1948 (1974).

34. C. Kalbach, “The Griffin Model, Complex Particles and Direct Nuclear Reac-tions,” Z. Phys. A283, 401 (1977). -

35. B. Leugers, S. Cierjacks, P. Brotz, D. Erbe, D. Groschel,

F. Voss, “The235

U and238

U Neutron-Induced Fission Crossto the H(n,p) Cross Section,” Argonne National Laboratoryp. 246 (1976).

G. Schmalz, and

Section Relativereport ANL-76-90,

36. Leona Stewart, “Hydrogen and Helium Production Cross Sections for ENDF/B-V,”Trans. Am. Nucl. Sot. ~, 740 (1978).

37. R. B. Kidman and R. E. MacFarlane, “LIB-IV, A Library of Group Constantsfor Nuclear Reactor Calculations,” Los Alamos Scientific Laboratory report1.&6260-MS (1976).

38. C. R. Weisbin, P. D. Soran, R. E. MacFarlane, D. R. Harris, R. J. LaBauve,J. S. Hendricks, J. E. White, and R. B. Kidman, “MINX, A Multigroup Inter-pretation of ~uclear ~-Sections from ENDF/B.” Los Alamos ~cientific ~abora-tory report LA-6486–MS (1976).

39. D. Garber, Ed., “Data Formats and Procedures for the ENDF Neutron Cross Sec-tion Library,” Brookhaven National Laboratory report BNL-50274 (1976).

40. H. Alter, R. B. Kidman, R. LaBauve, R. Protsik, and B. A. Zolatar, “ENDF-202Cross Section Evaluation Working Group Benchmark Specifications,” BrookhavenNational Laboratory report BNL-19302 (1974). *

41. R. B. Kidman, “ENDF/B-IV, LIB-IV, and CSEWG Benchmarks,” Los Alamos Scien-tific Laboratory report LA-7355-MS (July 1978). *

42. R. E. MacFarlane, “Data Processing for Power Reactor Fuel Cycle Codes,”Proc. of the BNL/EPRI Seminar on Nuclear Data for Thermal Reactor Applica-tions at Brookhaven National Laboratory (May 1978).

44

Page 49: L%% · i’.?k! LA-7482=PR Progress Report C3 * REPRODUCTION COPY IS-4REPORT SECTION.-(6 C Applied Nuclear Data

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

EPRI-CPM is part of the proprietary Advanced Recycle Methods Program (ARM?)developed for the Electric Power Research Institute (EPRI) by Nuclear Asso-ciates International and AB Atomenergie, Studsvik. Additional informationcan be obtained from EPRI.

A. S. Jensen and T. J. Dossing, “Statistical Calculation of the Mass Distri-bution in Fission,” in Proc. of the Third International Atomic Energy Sympo-sium on the Physics and Chemistry of Fission, Rochester, 1973, Vol. I, p.409.

R. E. Pepping, D. G. Madland, C. W. Maynard, T. R. England, and P. G. Young,“Fission Yield Theory,” in “Applied Nuclear Data Research and DevelopmentJanuary l-March 31, 1978,” compiled by C. I. Baxman and P. G. Young, LosAlamos Scientific Laboratory report LA-7301-PR, p. 12 (June 1978).

H. G. Clerc, “The Influence of Pairing and Nuclear Structure on the Thermal

Neutron Induced Fission of235U ,,

Institut fur Kernphysik TechnischeHochschule Darmstadt report IKD~ 75/10 (June 1975).

B. L. Wehring, University of Illinois, personal communication.

R. E. Pepping, D. G. Madland, C. W. Maynard, T. R. England, and P. G. Young,“Fission-Yield Theory,” in “Applied Nuclear Data Research and DevelopmentJuly l-September 30, 1978,” compiled by C. 1. Baxman and P. G. Young, LosAlamos Scientific Laboratory report LA-7066-PR, p. 24 (December 1977).

L. G. Moretto, “Statistical Description of Deformation in Excited Nuclei andDisappearance of Shell Effects with Excitation Energy,” Nucl. Phys. A182,641 (1972).

T. R. England, R. E. Schenter, and F. Schmittroth, “Integral Decay-HeatMeasurements and Comparisons to ENDF/B-IV and V,” Los Alamos ScientificLaboratory report LA-7422-MS (NUREG/CR-0305) (1978).

T. R. England and M. G. Stamatelatos, “Comparisons of Calculated and Exper-

imental Delayed Fission-Product Beta and Gamma Spectra from 235U,” Los AlamosScientific Laboratory report LA-NUREG-6846-MS (July 1977).

W. B. Wilson and T. R. England, “Status of Fission-Product Data For Absorp-tion Calculations,” Proc. of the Seminar on Nuclear Data Problems for ThermalReactor Problems, Brookhaven National Laboratory (May 1978).

R. J. LaBauve and T. R. England, “Rapid Spectral and Decay-Heat CalculationsUsing Processed ENDF/B Fission Product Data,” Trans. Am. Nucl. Sot. 28, 749—(1978). .

45