44
PHYSICAL CHEMISTRY PROSES ADIABATIK REVERSIBEL

kuliah KF1 (adiabatik1)

Embed Size (px)

DESCRIPTION

penting

Citation preview

Page 1: kuliah KF1 (adiabatik1)

PHYSICAL CHEMISTRYPROSES ADIABATIK

REVERSIBEL

Page 2: kuliah KF1 (adiabatik1)

Materi (4x pertemuan)

• Proses adiabatik reversibel• Hukum termodinamika 2

Page 3: kuliah KF1 (adiabatik1)

First Law

• dU, U = internal energy change of system

• dq, q = heat transfer into system• dw, w = work done on system

wqU

dwdqdU

Page 4: kuliah KF1 (adiabatik1)

Types of Work

• Volume Expansion

w = - Pext dV (P = pressure)• Stretching

w = - dl ( = tension)• Surface Expansion

w = - d ( = surface tension)

• Electricalw = dq ( = electrical potential)

Page 5: kuliah KF1 (adiabatik1)

Work

• Work is any interaction that could have as the sole effect the raising of a weight.

• Work = force x distance

dw = F dhw = F dh

• 1 kg

• 1 meter

Page 6: kuliah KF1 (adiabatik1)

Work of Expansion/Compression

pex = external pressureA = piston areadh = displacementdV = A dh = volume change for

the gasdw = F dh

Pex = F / A F = Pex A

dw = – Pex (A dh)

dw = – pex dV

gas

dh

pex

A

Page 7: kuliah KF1 (adiabatik1)

Reversible Changes

• A reversible change is one that can be reversed by an infinitesimal modification of a variable.

• In a reversible expansion or compression, pex = pgas

pex pgas

Page 8: kuliah KF1 (adiabatik1)

Irreversible Changes

• An irreversible change is one that is not reversible.

• In an irreversible expansion, pex < pgas

• In an irreversible compression, pex > pgas

pex pgas

pex pgas

Page 9: kuliah KF1 (adiabatik1)

Expansion Work at Constant P

VPdVPw

constP

dVPw

ex

V

V

ex

ex

V

V

ex

2

1

2

1

. le,irreversib if

Page 10: kuliah KF1 (adiabatik1)

Isothermal Reversible Work

1

2ln

/ gas, idealan if

,reversible if

2

1

2

1

V

VnRT

V

dVnRTw

VnRTp

pp

dVpw

V

V

gas

gasex

V

V

ex

Page 11: kuliah KF1 (adiabatik1)

Indicator Diagram: Compression

0

2

4

6

8

10

0 5 10 15 20

• pex

• Vi• Vf

• additional irreversible work

• reversible

work

Page 12: kuliah KF1 (adiabatik1)

Heat

• Heat is the energy transferred across a temperature difference.

• Temperature is the degree of “hotness” of an object.

q

Thigh

Tlow

Page 13: kuliah KF1 (adiabatik1)

Heat Capacity (C)

ifT TT

q

dT

qdC lim

0

• The heat capacity of a system is the ratio of the infinitesimal heat transfer dq to the accompanying infinitesimal temperature change dT. C depends on:· temperature· substance· path

Page 14: kuliah KF1 (adiabatik1)

Cv: Heat Capacity

2

1

,

,

T

T

mvV

mVV

V

V

TdCnq

TdCnqd

T

dqC

• Note: Heat absorbed at constant volume, qV = ∆U

Page 15: kuliah KF1 (adiabatik1)

Cp: Heat Capacity

2

1

,

,

T

T

mpp

mpp

p

p

TdCnq

TdCnqd

T

qC

• Note: Heat absorbed at constant pressure, qp = ∆H

q

Page 16: kuliah KF1 (adiabatik1)

Cp and Cv

RnCC

RCC

VP

mVmP

,,

HU PV CC • and • for solids and liquids

Page 17: kuliah KF1 (adiabatik1)

Common Paths

• Isochoric: V = constant (dV=0)

• Isobaric: p = constant (dp=0)

• Isothermal: T = constant (dT=0)

• Adiabatic: q = 0

Page 18: kuliah KF1 (adiabatik1)

Isothermal vs. Adiabatic

• An adiabatic process in one in which no heat is exchanged between the system and its surroundings.

• An isothermal process in one in which the initial and final temperatures are the same.

• Isothermal processes are not necessarily adiabatic.

Page 19: kuliah KF1 (adiabatik1)

Work

• Isochore: w = 0

• Isobar: w = -pV

• Reversible Isotherm: w = -nRT ln(Vf/Vi)

• Adiabat: w = U = nCv,m T

If CV is independent of

temperature between T1 and T2

Page 20: kuliah KF1 (adiabatik1)

State vs. Path Function• A state function is a

property of a system that depends only on its current state and not on how that state was reached.

• A path function depends on how the state was reached.

• state A

• state B

• path 1

• path 2

Page 21: kuliah KF1 (adiabatik1)

The First Law

• dU = dw + dq defines the internal energy change of a system.

• The internal energy is a function of state.

• Corollary: Energy is conserved in an isolated system.

• state A

• state B• w

• q

• w

• q

Page 22: kuliah KF1 (adiabatik1)

Energy Changes

• Because U is a function of state, U depends only on the initial and final states, and not the path followed between them.

if

U

U

UUdUUf

i

Page 23: kuliah KF1 (adiabatik1)

Changes in Internal EnergyFor a closed system at constant composition (n), the internal energy (U) of a system is a function of the volume (V) and temperature (T):

U(V, T)

When the volume changes infinitesimally from V to V+dV at constant temperature (T), the internal energy changes from its initial state (Ui) to its final state (Uf):

f i

T

UU U dV

V

Page 24: kuliah KF1 (adiabatik1)

Changes in Internal Energy

• If both the temperature and volume change infinitesimal amounts, dT and dV, the internal energy changes from its initial state (Ui) to its final

state (Uf):

f i

T V

U UU U dV dT

V T

Page 25: kuliah KF1 (adiabatik1)

Changes in Internal Energy

• Since the change in internal energy is infinitesimal, we can express the change between the initial and final states as the exact differential dU:

• The significance of this equation is that, in a closed system of constant composition (n), any infinitesimal change in the internal energy (U) is proportional to the infinitesimal changes of volume (V) and temperature (T)

T V

U UdU dV dT

V T

Page 26: kuliah KF1 (adiabatik1)

Changes in Internal Energy

• Recall that the heat capacity at constant volume, CV, is defined as:

• The heat capacity at constant volume, CV, is the slope of the internal energy (U) with respect to the temperature (T) and constant volume (V).

VV

UC

T

Page 27: kuliah KF1 (adiabatik1)

Changes in Internal Energy

• The internal pressure (πT) is the measure of the change in the internal energy of a substance as its volume is changed at constant temperature.

• Mathematically, the internal pressure (πT) is defined as:

TT

U

V

Page 28: kuliah KF1 (adiabatik1)

Changes in Internal Energy

• Because an infinitesimal change in the internal energy (dU) is related to a infinitesimal changes in volume (dV) and temperature (dT):

• Substituting:

• Gives:

TT

U

V

VV

UC

T

T V

U UdU dV dT

V T

T VdU dV C dT

Page 29: kuliah KF1 (adiabatik1)

Internal Pressure (πT)

• The internal pressure (πT) is a measure of the cohesive forces in the sample.

• Recall that:

• For a perfect gas, in which there are no interactions between the particles, the internal energy (U) is independent of the separation between the particles, and thus independent of the volume (V) of the sample.

• As a result, the internal energy (U) is independent of the volume (V) of the sample at constant temperature (T) .

• For an ideal gas:

T VdU dV C dT

0TT

U

V

Page 30: kuliah KF1 (adiabatik1)

Kkg

kJ Cp = Cv + R

For monatomic gases,

constants. are both and

R2

3R , C

2

5C vp

Page 31: kuliah KF1 (adiabatik1)

Enthalpy and Heat

• Enthalpy is defined: H = U + PV

• dH = dU + PdV + VdP

• at constant p,dH = dU + PdV = dqP – PdV + PdV

• dH = dqP or H = qP

Page 32: kuliah KF1 (adiabatik1)

Variation of H with T

TnCH

TdnCH

TdCnH

TdnCHd

mP

T

T

mP

T

T

mP

mP

,

,

,

,

2

1

2

1

pressure)constant (at

If Cp is independent of temperature between T1

and T2

Page 33: kuliah KF1 (adiabatik1)

Variation of H with T

12

21

222

1

2

2

2

11)(

/

)/(

;

/

2

1

2

1

2

1

2

1

TTncTTnbTnaH

TTdncTTdnbTdnaH

TdTcbTanH

then

TcbTaCTC

TdnCHd

T

T

T

T

T

T

T

T

pp

p

e.g. of function a is If

pressure)constant (at

Page 34: kuliah KF1 (adiabatik1)

Adiabatic Expansion

• dq = 0• dU = dw• for an ideal gas,

CVdT = – pexdV

• if reversible,pex = p = nRT/V

• therefore,CV(dT/T) = – nR(dV/V)

q

q

w

Page 35: kuliah KF1 (adiabatik1)

Reversible Adiabatic Expansion

i

f

i

fmV

mV

V

exV

V

VR

T

TC

V

dVR

T

dTC

dVV

nRTdTC

pdVdVpdTC

lnln,

,

Page 36: kuliah KF1 (adiabatik1)

Reversible Adiabatic Expansion

R

VTVT

V

V

T

T

V

VR

T

TC

ic

fc

f

iR

C

i

f

i

f

i

fmV

if

mV

/C c where

lnln

mV,

,

,

Page 37: kuliah KF1 (adiabatik1)

Reversible Adiabatic Expansion

iiff

ci

ci

cf

cf

i

c

iif

c

ff

ic

fc

VpVp

VpVp

VnR

VpV

nR

Vp

VTVTif

11

Page 38: kuliah KF1 (adiabatik1)

Polytropic Process Polytropic Process

PVn = C

Page 39: kuliah KF1 (adiabatik1)

Irreversible Adiabatic Expansion

ifexifV

exV

VVpTTC

dVpdTCdU

constant p assume ex

Page 40: kuliah KF1 (adiabatik1)

Adiabats vs. Isotherms

At any given pressure, Vadiabat < Visotherm because the gas cools during

reversible adiabatic expansion. In isothermal process when work is done, heat lost is replaced from the surrounding but in an adiabatic process it is not. In general which one has higher pressure for a given volume?

0

2

4

6

8

10

12

14

16

18

15 25 35 45 55 65

Volume

Pre

ss

ure

• Isotherm

• Adiabat

Page 41: kuliah KF1 (adiabatik1)

p

V

• Identify the nature of paths A, B, C, and D– Isobaric, isothermal, isovolumetric, and adiabatic

Lecture 27: Exercise 2Processes

p

V

AC

D

T1

T2

T3T4B

Page 42: kuliah KF1 (adiabatik1)

Equation of adiabatic process

1pV K

12TV K

13p T K

/p VC C K1 K2 K3 are constants

Page 43: kuliah KF1 (adiabatik1)

Calculation of adiabatic process

(1) The work of the adiabatic reversible process of ideal gas

2

1

dV

VW p V

2

1

= dV

V

KV

V ( )pV K

1 12 1

=1 1( )

(1 )K

V V

2 2 1 1=1

p V pVW

2 1( )1

nR T T

1 1 2 2p V p V K

Page 44: kuliah KF1 (adiabatik1)

Calculation of adiabatic process

(2) Work of adiabatic process

Cv(T2 –T1 )

because we do not introduce any other limitation conditions, this formula can be applied in adiabatic process of closed system which has fixed composing, need not always ideal gas, or reversible process.

W = U =