17
Kinetic Theory of Gases (1) Chapter 11 Min Soo Kim Seoul National University Advanced Thermodynamics (M2794.007900)

Kinetic Theory of Gases (1)

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Kinetic Theory of Gases (1)

Kinetic Theory of Gases (1)

Chapter 11

Min Soo Kim

Seoul National University

Advanced Thermodynamics (M2794.007900)

Page 2: Kinetic Theory of Gases (1)

2/17

11.1 Basic Assumption

Basic assumptions of the kinetic theory

1) Large number of molecules (Avogadroโ€™s number)

๐‘๐ด = 6.02 ร— 1026 molecules per kilomole

2) Identical molecules which behave like hard spheres

3) No intermolecular forces except when in collision

4) Collisions are perfectly elastic

5) Uniform distribution throughout the container

n =N

Vd๐‘ = ndV

n: The average number of molecules per unit volume

Page 3: Kinetic Theory of Gases (1)

3/17

11.1 Basic Assumption

6) Equal probability on the direction of molecular velocity average number of

intersections of velocity vectors per unit area;

ฮธ

ฯ•

r d ฮธr sin ฮธd๐œ™

r

N

4ฯ€r2

Where dA = r2 sin ฮธ dฮธdฯ•d2Nฮธฯ• =N

4ฯ€r2d๐ด =

N sin ฮธ dฮธdฯ•

4ฯ€

d2nฮธฯ• =nsin ฮธ dฮธdฯ•

4๐œ‹

the number of intersections in dA

Nฮธฯ•: The number of molecules having velocities

in a direction (ฮธ ~ ฮธ + dฮธ) and (ฯ• ~ ฯ• + dฯ•)

Page 4: Kinetic Theory of Gases (1)

4/17

11.1 Basic Assumption

7) Magnitude of molecular velocity : 0 ~ โˆž

c (speed of light)

dN๐‘ฃ : The number of molecules with specified speed (v< <v+dv)

Page 5: Kinetic Theory of Gases (1)

5/17

11.1 Basic Assumption

โ€ข Let dN๐‘ฃ as the number of molecules with specified speed (v ~ v+dv)

โ€ข 0โˆždN๐‘ฃ = N

โ€ข Mean speed is าง๐‘ฃ =1

N0โˆž๐‘ฃdN๐‘ฃ

โ€ข Mean square speed is ๐‘ฃ2 =1

N0โˆž๐‘ฃ2dN๐‘ฃ

โ€ข Square root of ๐‘ฃ2 is called the root mean square or rms speed:

๐‘ฃ๐‘Ÿ๐‘š๐‘  = ๐‘ฃ2 =1

N0โˆž๐‘ฃ2dN๐‘ฃ

โ€ข The n-th moment of distribution is defined as

๐‘ฃ๐‘› =1

N0โˆž๐‘ฃ๐‘›dN๐‘ฃ

Page 6: Kinetic Theory of Gases (1)

6/17

11.2 Molecular Flux

โ€ข The number of gas molecules that strike a surface per unit area and unit time

โ€ข Molecules coming from particular direction ฮธ, ฯ• with specified speed v in time dt

โ†’ ฮธฯ•๐‘ฃ collision ฮธ ~ ฮธ + dฮธฯ• ~ ฯ• + dฯ•v ~ v+dv

โ€ข The number of ฮธฯ•๐‘ฃ collisions with dA dt

= ฮธฯ•๐‘ฃ molecules in

= ฮธฯ• molecules with speed v

Fig. Slant cylinder geometry used to calculate

the number of molecules that strike the area dA in time dt.

Page 7: Kinetic Theory of Gases (1)

7/17

11.2 Molecular Flux

โ€ข How many molecules in unit volume

โ€ข The number of ฮธฯ•๐‘ฃ molecules in the cylinder toward dA

dn๐‘ฃ : Density between speed (v ~ v+dv)

dA : Surface of spherical shell of radius v and thickness dv (i.e., ฮธ, ฯ• molecules)

Volume of cylinder: dV = dA (vdt cosฮธ )

d3nฮธฯ•๐‘ฃ๐‘‘๐‘‰ = (๐‘‘๐ด๐‘ฃdt cosฮธ )dn๐‘ฃsin ฮธ dฮธdฯ•

4๐œ‹

d3nฮธฯ•๐‘ฃ = dn๐‘ฃ โˆ™๐‘‘๐ด

๐ด= dn๐‘ฃ

๐‘ฃ2 sin ฮธ dฮธdฯ•

4๐œ‹๐‘ฃ2

Page 8: Kinetic Theory of Gases (1)

8/17

11.2 Molecular Flux

โ€ข The number of collisions per unit area and time (i.e., particle flux)

โ€ข Total number of collisions per unit area and time by molecules having all speed

d3nฮธฯ•๐‘ฃdV

dA dt= 0

2๐œ‹dฯ•0

๐œ‹/2sinฮธcosฮธdฮธ โˆ™

1

4ฯ€0โˆž๐‘ฃdn๐‘ฃ =

๐Ÿ

๐Ÿ’๐’เดฅ๐’—

Cf. average speed าง๐‘ฃ =ฯƒ เดค๐‘ฃ

๐‘=

ฯƒ๐‘๐‘–๐‘ฃ๐‘–

๐‘=ฯƒ ๐‘›๐‘–๐‘ฃ๐‘–ฯƒ ๐‘›๐‘–

= ๐‘ฃd๐‘›๐‘ฃ

๐‘›

0)โˆž๐‘ฃdn๐‘ฃ = ๐‘› าง๐‘ฃ)

d3nฮธฯ•๐‘ฃdV

dA dt=

1

4ฯ€๐‘ฃdn๐‘ฃsinฮธcosฮธdฮธdฯ•

Page 9: Kinetic Theory of Gases (1)

9/17

11.3 Gas Pressure and Ideal Gas Law

โ€ข Gas pressure in Kinetic theory

Gas pressure is interpreted as impulse flux of particles striking a surface

๐œƒ ๐œƒ

๐‘š๐‘ฃ1 ๐‘š๐‘ฃ2

Page 10: Kinetic Theory of Gases (1)

10/17

11.3 Gas Pressure and Ideal Gas Law

โ€ข Perfect elastic ๐‘ฃ = ๐‘ฃโ€ฒ

โ€ข Average force exerted by molecules

โ€ข Momentum change of one molecule (normal component only)

๐‘š๐‘ฃcos๐œƒ โˆ’ โˆ’๐‘š๐‘ฃcos๐œƒ = 2๐‘š๐‘ฃcos๐œƒ

โ€ข The number of ฮธฯ•๐‘ฃ collisions for dA, dt

๐‘ฃ sinฮธ

๐‘ฃ cos ฮธ

ฮธ ฮธ

ฯ•dA

๐‘ฃ

d3nฮธฯ•๐‘ฃdV

dA dt=

1

4ฯ€๐‘ฃdn๐‘ฃsinฮธcosฮธdฮธdฯ•

F =d(๐‘š ิฆ๐‘ฃ)

dt= ๐‘š ิฆ๐‘Ž + แˆถ๐‘š ิฆ๐‘ฃ

Page 11: Kinetic Theory of Gases (1)

11/17

11.3 Gas Pressure and Ideal Gas Law

โ€ข Change in momentum due to ฮธฯ•๐‘ฃ collisions in time dt

โ€ข Change in momentum p in all v collisions 0 < ฮธ โ‰ค๐œ‹

2, 0 < ฯ• โ‰ค 2๐œ‹ at all speed

โ€ข Change in momentum from collisions of molecules with unit time

โ€ข Average pressure เดค๐‘ƒ =๐‘‘ ิฆ๐น

๐‘‘๐ด

dp = เถฑ0

โˆž

เถฑ0

ฯ€/2

เถฑ0

2ฯ€ 1

2ฯ€mv2dnvsinฮธcos

2ฮธdฮธdฯ• โˆ™ dAdt =1

3๐‘š๐‘›๐‘ฃ2dAdt

2๐‘š๐‘ฃcos๐œƒ ร—1

4ฯ€๐‘ฃdn๐‘ฃsinฮธcosฮธdฮธdฯ• =

1

2ฯ€๐‘š๐‘ฃ2dn๐‘ฃsinฮธcos

2ฮธdฮธdฯ•dAdt

dp

dt= dF =

1

3๐‘š๐‘›๐‘ฃ2dA

เดค๐‘ƒ =1

3๐‘š๐‘›๐‘ฃ2

cf. ๐‘ฃ2 =ฯƒ ๐‘ฃ2

๐‘=

๐‘ฃ2d๐‘›๐‘ฃ

๐‘›

Page 12: Kinetic Theory of Gases (1)

12/17

11.3 Gas Pressure and Ideal Gas Law

Since ๐‘› =๐‘

๐‘‰then pressure ๐‘ƒ =

1

3

๐‘

๐‘‰๐‘š๐‘ฃ2 โˆด ๐‘ƒ๐‘‰ =

1

3๐‘๐‘š๐‘ฃ2

EOS of an ideal gas: PV = n เดค๐‘…๐‘‡ = mRT =N

๐‘๐ด

เดค๐‘…๐‘‡ = ๐‘๐‘˜๐‘‡

๐‘๐ด : Avogadroโ€™s number : 6.02 ร— 1026 ๐‘š๐‘œ๐‘™๐‘’๐‘๐‘ข๐‘™๐‘’๐‘ /๐‘˜๐‘š๐‘œ๐‘™๐‘’

๐‘˜๐ต : Boltzmann constant : ๐‘˜๐ต =เดค๐‘…

๐‘๐ด= 1.38 ร— 10โˆ’23๐ฝ/๐พ

๐‘ƒ๐‘‰ =1

3๐‘๐‘š๐‘ฃ2 = ๐‘๐‘˜๐‘‡

โˆด๐Ÿ

๐Ÿ๐’Ž๐’—๐Ÿ =

๐Ÿ‘

๐Ÿ๐’Œ๐‘ป

The temperature is proportional to the average kinetic energy of molecule

Page 13: Kinetic Theory of Gases (1)

13/17

11.4 Equipartition of Energy

โ€ข Equipartition of energy

Because of even distribution of velocity of particles,

By assumption, no preferred direction

It can be interpreted that a degree of freedom allocate energy of 1

2๐‘˜๐‘‡

๐‘ฃ2 = ๐‘ฃ๐‘ฅ2 + ๐‘ฃ๐‘ฆ

2 + ๐‘ฃ๐‘ง2,

๐‘ฃ๐‘ฅ2 = ๐‘ฃ๐‘ฆ

2 = ๐‘ฃ๐‘ง2 =

1

3๐‘ฃ2 โ†’

1

2๐‘š๐‘ฃ๐‘ฅ

2 =1

6๐‘š๐‘ฃ2 =

1

2๐‘˜๐‘‡

Page 14: Kinetic Theory of Gases (1)

14/17

11.5 Specific Heat

Total energy of a molecule in Cartesian coordinate

General expression of total energy of molecules for f โ€“DOF (Degree of Freedom)

๐‘๐‘ฃ = แ‰๐œ•๐‘ข

๐œ•๐‘‡ ๐‘ฃ=

f

2๐‘… from the above equation

๐‘๐‘ƒ =๐œ•โ„Ž

๐œ•๐‘‡ ๐‘=

๐‘“

2๐‘… + ๐‘… =

(๐‘“+2)

2๐‘… cf) cp = cv + R

The ratio of specific heat: ฮณ =cp

cv=

f+2

f

เดคฮต = เดคฮตx + เดคฮตy + เดคฮตz =1

2๐‘š๐‘ฃ๐‘ฅ

2 +1

2๐‘š๐‘ฃ๐‘ฆ

2 +1

2๐‘š๐‘ฃz

2 =๐‘˜๐‘‡

2+

๐‘˜๐‘‡

2+

๐‘˜๐‘‡

2=

3

2๐‘˜๐‘‡

U = Nเดคฮต =f

2NkT =

f

2nRT โ†” u =

U

๐‘›=๐‘“

2๐‘…๐‘‡

Page 15: Kinetic Theory of Gases (1)

15/17

Monatomic

gas

Diatomic

gas

11.5 Specific Heat

negligible

3

5

Near room temperature, rotational or vibrational DOF are excited,

but not both. DOF: 7 โ†’ 5

1

2๐‘š๐‘ฃ๐‘ฅ

2, 1

2๐‘š๐‘ฃ๐‘ฆ

2, 1

2๐‘š๐‘ฃ๐‘ง

2

1

2๐‘š๐‘ฃ๐‘ฅ

2, 1

2๐‘š๐‘ฃ๐‘ฆ

2, 1

2๐‘š๐‘ฃ๐‘ง

2

1

2๐ผ๐‘ค๐‘ฅ

2, 1

2๐ผ๐‘ค๐‘ฆ

2, 1

2๐ผ๐‘ค๐‘ง

2

1

2๐‘˜๐‘ฅ2,

1

2๐‘š แˆถ๐‘ฅ2 no y,z vibration

๐‘๐‘

๐‘๐‘ฃ=5 + 2

5= 1.4

๐‘๐‘๐‘๐‘ฃ

=3 + 2

3= 1.67

Translational

Rotational

Vibrational

DOF

DOF

Page 16: Kinetic Theory of Gases (1)

16/17

Triatomic

gas

11.5 Specific Heat

9CO2 translational 3

rotational 2

vibrational 4

๐‘๐‘๐‘๐‘ฃ

=7 + 2

7= 1.28

โ€ข Vibration modes of CO2

Bending

Stretch

DOF

Page 17: Kinetic Theory of Gases (1)

17/17

Solid

11.5 Specific Heat

x,y,z direction๐‘˜๐‘‡

2(kinetic)

๐‘˜๐‘‡

2(potential)

U =3๐‘˜๐‘‡

2+3๐‘˜๐‘‡

2= 3๐‘๐‘˜๐‘‡

cv = 3๐‘…(Dulong-Petit Law)