40
Duke Advanced Heart Failure Symposium Michel G. Khouri, MD October 5, 2013 CardioOncology

Khouri AM - Cardio-Oncology - Duke Department of … · Khouri AM - Cardio-Oncology.pptx Author: Anthony Doll Created Date: 20131017180050Z

  • Upload
    lybao

  • View
    217

  • Download
    3

Embed Size (px)

Citation preview

 Duke  Advanced  Heart  Failure  

Symposium  Michel  G.  Khouri,  MD  

October  5,  2013  

Cardio-­‐Oncology  

Disclosures  • None  

Cardio-­‐Oncology  • An  emerging  field  to  keep  pace  with  the  rapid  evoluDon  of  cancer  therapies  and  the  incidence,  magnitude  and  consequences  of  their  CV  side  effects  

• Relevant  to  cancer  survivorship:  i.  Early  CV  toxiciDes  arising  during  treatment  may  

interfere  with  compleDon  of  very  therapies  needed  to  enhance  survivorship  

ii.  CV  issues  arising  aPer  cancer  therapy  compleDon  •  New  fronDer  in  medicine  

•  CV  toxiciDes  of  novel  targeted  cancer  therapies    

Site   1975  (%)   2007  (%)   %  increase  Overall   50   67   17  

   Childhood   30   79   49      Prostate   67   99   32      Breast   75   90   15      Colon   51   65   14  

   Lung   12   16   4  

•  DramaDc  improvements  in  early  detecDon  and  adjuvant  therapy      →  significant  survival  gains  

•  ~13m  cancer  survivors  in  the  US  (~25m  worldwide)  •  Projected  to  explode  with  further  improvements  

•  Increased  risk  of  the  late-­‐effects  of  cancer  therapy  

Improvements  in  longevity  after  cancer  

American  Cancer  Society,  Surveillance  Research  2012  

Cancer  Therapy  and  the  Heart  Cardiotoxicity  I.  Is  there  a  problem?  II.  How  serious  is  the  problem?  III. Why  is  there  a  problem?  IV. What  can  we  do  about  the  problem?  

Is  there  a  problem?  Among  63,566  breast  cancer  paDents  from  Jan  1992  -­‐  Dec  2000,  CVD  was  leading  cause  of  death,  followed  by  breast  cancer.  

Patnaik,  et  al.  Breast  Cancer  Res  2011  

Among  women  who  died  as  a  result  of  CVD,  only  25%  were  also  categorized  as  having  CVD  as  a  co-­‐morbid  condiDon  at  Dme  of  breast  cancer  diagnosis.  

0  5  10  15  20  25  30  35  40  45  50  

1   2   3   4   5   6   7   8   9   10   11   12  Years  from  diagnosis  

%  M

ortality    

Other  causes  

CVD  

Breast  cancer  

Scope  of  the  problem  Anticancer  therapies  with  CV  complications  

Adapted  from  Suter,  et  al.  Eur  Heart  J  2012  and  Moslehi,  et  al.  J  Trans  Med  2013    

How  serious  is  the  problem?  Incidence  of  CV  complications  -­‐  Anticancer  drugs  

Therapy   Target   CA   Heart  Failure  

↓  LVEF     HTN  

Chemotherapy  

Anthracyclines   Breast,  Lymphoma  

5%   19-­‐40%  

Single-­‐target  therapy  

Trastuzumab   HER2   Breast   4%   2-­‐27%  

LapaDnib   HER2   Breast   <  1%   1%  

Bevacizumab   VEGF   Solid  tumors   2%   3%   30%  

MulT-­‐target  therapy  

SuniDnib   VEGF,  PDGF,  etc.  

RCC,  GIST   4%   28%   47%  

Sorafenib   RCC,  HCC   3%   17-­‐43%  

How  serious  is  the  problem?  Incidence  of  CV  complications  -­‐  Radiation  therapy  

Darby,  et  al.  NEJM  2013  

Decreased  Cardiovascular  Reserve  

Cytotoxic  chemotherapy  Signaling  inhibitors  

RadiaTon    Direct  Effects  

Indirect  Effects  

Aging  Co-­‐morbid  condiTons  (HTN)  

Modifiable  Lifestyle  Risk  Factors  (decondiToning,  obesity)  

↑  Baseline  Cardiovascular  Risk  Factors  

 Cancer    Diagnosis  

 Cardiotoxicity    (↓ LVEF  /  HF)  

Adapted  from  Jones,  et  al.  J  Am  Coll  Cardiol  2007  

Why  is  there  a  problem?  The  ‘mulDple-­‐hit’  hypothesis  

p53

Apoptosis Protein Synthesis Suppression

Ultrastructural Changes

Energy Metabolism Alteration

Anthracycline-Induced Oxidative Stress

GATA-4 CPC Calcium Overload AMPK

Myocardial Dysfunction

Heart Failure

 

Khouri,  et  al.  Circula9on  2012  

Direct  Toxicity  Anthracyclines  

Direct  Toxicity  Anti-­‐HER2  Agents  

 Adapted  from  Khouri,  et  al.  Circula9on  2012  

HER1/3/4

Cardiac Stress Anthracyclines

Ischemia Hypertension

Protein Synthesis

Protein Degradation

 

Protein Hypertrophy

Cell Survival

HER2 (ErbB2)

↑Neuregulin-1 Trastuzumab Pertuzumab

Lapatinib

Myocardial Dysfunction / Heart Failure

Direct  Toxicity  Interplay  of  Anthracycline  and  Anti-­‐HER2  Agents  

 Adapted  from  ToccheD,  et  al.  Eur  J  Heart  Fail  2012  

Direct  Toxicity  Angiogenesis  (VSP)  Inhibitors    

Adapted  from  Khouri,  et  al.  Circula9on  2012  

↑VEGF Ischemia Hypertension

VEGFR (1/2/3)

Sunitinib Sorafenib Pazopanib

Axitinib Vandetanib

Bevacizumab

C-Kit PDGFR

HIFα ↑PDGF

Cell survival Vasodilation (NO production)

Angiogenesis Prostaglandin production

Hypertension Thromboembolism (VTE, ATE)

Myocardial Dysfunction / Heart Failure

Why  is  there  a  problem?  Cancer  drug  development  

Clinical  trial  phase  

Kinase  inhibitors  in  clinical  trials  (2011)  

Small  molecule  kinase  inhibitors  

Adapted  from  T.  Force   chemspot.com  

Summary  I  •  Advancements  in  diagnosDc  tools  and  therapies  have  dramaDcally  improved  cancer-­‐specific  survival  

•  Adverse  cardiac  effects  of  convenDonal  therapies  remain  •  Newer  adjuvant  therapies  interfere  with  molecular  pathways  crucial  to  normal  cardiovascular  health  •  Numerous  more  drugs  are  in  the  pipeline  

•  The  cancer  survivor  populaDon  is  aging  with  a  higher  prevalence  of  tradiDonal  CVD  risk  factors  

•  If  these  current  trends  conDnue,  further  improvements  in  cancer-­‐specific  and  overall  survival  may  be  offset  by  increased  therapy-­‐associated  CV  mortality    

What  can  we  do  about  the  problem?  

Yoon,  et  al.  JACC  2010  

Smiseth,  et  al.  JACC  2013  

What  can  we  do  about  the  problem?  

Areas  of  InvesDgaDon  /  Improvement  I.  Defining  Cardiotoxicity  II.  DetecDon  III.  PrevenDon  /  Treatment  

DeLinitions  of  Cardiotoxicity  ClassificaTon  System  

                                                                                                                                                                                                                                                     Severity  

                     Low                                                              High      

    Grade  1  (mild)   Grade  2  (moderate)   Grade  3  (severe)     Grade  4  (life-­‐threatening)   Grade  5    

CTCAE,  v4.03  Heart  failure    

AsymptomaTc  with  laboratory  (e.g.,  BNP)  or  cardiac  imaging  abnormaliTes  

Symptoms  with  mild  to  moderate  acTvity  or  exerTon  

Severe  with  symptoms  at  rest  or  with  minimal  acTvity  or  exerTon;  IntervenTon  indicated  

Life-­‐threatening;  Urgent  intervenTon  (e.g.,  conTnuous  IV  therapy  or  MCS)  required  

Death  

CTCAE,  v4.03  EF  decline        

-­‐  ResTng  EF  50-­‐40%;    10-­‐19%  ↓  from  baseline  

ResTng  EF  39-­‐20%;    >  20%  ↓  from  baseline   ResTng  EF  <  20%   -­‐  

Cardiac  Review  and  EvaluaTon  Commigee  (CREC)    

Any  of  4  criteria  confirms  cardiotoxicity:  (1)  Cardiomyopathy  –  reduced  LVEF  (global  or  more  severe  in  the  septum)  (2)  Symptoms  of  HF  (3)  Signs  associated  with  HF  (S3  gallop  and  /  or  tachycardia)  (4)  Decrease  in  LVEF  from  baseline  ≥  5%  to  <  55%  with  accompanying  signs  or  symptoms  of  HF,  or                  decline  in  LVEF  ≥10%  to  <  55%  without  accompanying  signs  or  symptoms  of  HF      

Drug  conTnuaTon:  LVEF  criteria  in  clinical  trials    and  pracTce  

(1) >  10%  LVEF  declines  from  baseline,  to  <  55%,  (2) ≥  10%  LVEF  decline  from  baseline,  to  <  50%,  (3) ≥  20%  or  >  15%  LVEF  decline  from  baseline,  but  remains  ≥  50%,  or  (4) Any  LVEF  decline  to  <  50%     Adapted  from  Khouri,  et  al.  Circula9on  2012  

Implications  of  current  deLinitions  

• Differing  LVEF  parameters  hinder  accurate  assessment  of  the  frequency  and  magnitude  of  drug-­‐induced  LV  dysfuncDon  

• Clinical  importance  of  current  definiDons  of  cardiotoxicity  remains  unknown  

• Long-­‐term  natural  history  of  LVEF  during  and  post-­‐  therapy  remains  unknown  • What  degree  of  LVEF  decline  is  important?      

Detection  of  Cardiotoxicity  •  ResDng  LVEF  =  Standard  of  Care  

•  2D  Echo  or  MUGA    •  LimitaDons  of  LVEF  

•  InsensiDve  measure  of  subclinical  cardiac  injury  •  CompensaDon  masks  chemo-­‐induced  early  myocyte  damage    

•  Decline  evident  only  once  significant  damage  has  occurred  •  Too  late  to  avert  irreversible  cardiomyopathy  

•  LimitaDons  of  current  detecDon  approaches  •  No  evidence-­‐based  guidelines  of  Dming  /  frequency  •  Unchanged  LVEF  oPen  equated  to  a  lack  of  cardiotoxicity  

Diagnostic testing  

 

Emerging Biomarkers  •  Biochemical markers  •  Strain echo (tissue Doppler/speckle tracking)  •  Cardiac magnetic resonance imaging  •  Targeted nuclear cardiology  •  Functional capacity testing  

Surveillance  

Traditional Imaging •  Echocardiography  •  Nuclear cardiology  

   

Diagnosis   Guide treatment  

Baseline  CV health  

&  Risk factors  

Cancer  

Diagnosis  

Cytotoxic  

Therapy  (“CV insult”)  

Cardiac toxicity  

(↓LVEF)  (ACC/AHA  Stage B)  

Heart failure

(ACC/AHA  

Stage C & D)    

CV disease  

&  

Premature death  

Disease  Progression  

Detection  New  Approaches  

Khouri,  et  al.    Circula9on  2012  

Early  detection  Biochemical  markers  

Cardinale,  et  al.  Circula9on  2004  

(495)  

(145)  

(63)  

Early  detection  Novel  cardiac  imaging  –  3-­‐Dimensional  Echo  LVEF    

Walker,  et  al.  J  Clin  Oncol  2010  

Early  detection  Novel  cardiac  imaging  –  Speckle-­‐tracking  Strain  Echo  

Hare,  et  al.    Am  Heart  J  2009  

Controls  

PaDents  

Early  detection  Novel  cardiac  imaging  –  Cardiac  MRI  

Chaosuwannakit,  et  al.  J  Clin  Oncol  2010  

Pulmonary  funcDon    (Chemotherapy,  RT)  

Cardiac  funcDon    (DOX,  Trastuzumab,  RT,  anD-­‐

VEGF)  

Vascular  compliance    (DOX,  RT,  anD-­‐VEGF)  

Skeletal  muscle  funcDon  (Decadron,  HT,  chemo?,  anD-­‐

VEGF?)  

 CV  reserve    

+  

+  

+  

=  

Jones,  et  al.  Nat  Rev  Clin  Oncol  2012  

Adverse  effects  of  adjuvant  therapy  on  CV  system  

Koelwyn,  et  al.  J  Clin  Oncol,  2012  

CV  late-­‐effects  in  cancer:  Running  on  empty  

Cancer  

Normal  age-­‐related  decline  

Early  detection  Cardiopulmonary  testing    

Breast  cancer  

Age-­‐matched  sedentary  women  

Jones,  et  al.  J  Clin  Oncol  2012  

50  

55  

60  

65  

PaDents   Controls  

p=0.37  

%  

ResDng  2D  Echo  LVEF  

Maximal  exercise  stress  test  

55  

60  

65  

70  

75  

PaDents   Controls  

Post-­‐Peak  SV  

mL  

p<0.05  ↓  8  mL  (13%)    

15  

20  

25  

30  

35  

PaDents   Controls  

VO2peak  

mL.kg.m

in  

p<0.05  ↓  6.5  mL.kg.min  (25%)  

Early  detection  Cardiac  exercise  testing    

Khouri,  et  al.  SubmiAed  2013  

Baseline  CV health  

&  Risk factors  

Cancer  

Diagnosis  

Cytotoxic  

Therapy  (“CV insult”)  

Cardiac toxicity  

(↓LVEF)  (ACC/AHA  Stage B)  

Heart failure

(ACC/AHA  

Stage C & D)    

CV disease  

&  

Premature death  

Diagnostic testing  

 

Disease  Progression  

Emerging Biomarkers  •  Biochemical markers  •  Strain echo (tissue Doppler/speckle tracking)  •  Cardiac magnetic resonance imaging  •  Targeted nuclear cardiology  •  Functional capacity testing  

Surveillance  

Traditional Imaging •  Echocardiography  •  Nuclear cardiology  

   

Diagnosis   Guide treatment  

Prevention and Treatment  

•  ACE inhibitors  •  Beta blockers  •  Angiotensin Receptor Blockers  •  Statins  •  Exercise  

Primordial prevention  

Primary prevention  

Secondary prevention   Treatment  

Prevention  and  Treatment  

Khouri,  et  al.  Circula9on  2012  

Primordial  Prevention  

Kalay,  et  al.  J  Am  Coll  Cardiol  2006  

Primordial  Prevention  

Bosch,  et  al.  J  Am  Coll  Cardiol  2013  

Primordial  Prevention  

p=0.03  

Seicean,  et  al.  J  Am  Coll  Cardiol  2013  

LVEF  (%

)  

Controls   ACEI-­‐group  

Primary  Prevention  

Cardinale,  et  al.  Circula9on  2006  

Secondary  Prevention  

Cardinale,  et  al.  J  Am  Coll  Cardiol  2010  

Respon

ders  (%

)  

(n  =  130)   (n  =  71)  

Symptomatic  Heart  Failure  

Therapy   N  Digitalis  +  DiureDcs   46  

ACE  Inhibitors   21  

Beta  Blockers   6  

ACE  Inhibitors  +  Beta  Blockers   39  

Total  paTents   112  

Treatment  of  Cancer-­‐Therapy  Induced  Heart  Failure  Clinical  Studies:  1973  -­‐  Present  

Summary  II  •  Lack  of  a  universal  definiDon  of  cardiotoxicity  

•  Limits  understanding  of  true  incidence    •  DetecDon  

•  Troponin  (I,  T,  hs)  has  promising  predicDve  abiliDes    •  Small  trials  and  variable  Dming  of  assessments  limit  applicaDon  

•  Strain  and  strain  rate  imaging  may  detect  subclinical  cardiac  dysfuncDon  •  PredicDve  value  remains  uncertain  

•  Abnormal  cardiorespiratory  fitness  may  be  early  mortality  risk  predictor    •  CPET  may  be  limited  by  availability  

•  Treatment  /  PrevenDon  •  Current  state  of  the  art  therapies  –  ACE  inhibitors  and  Beta  blockers  •  Evidence  limited  in  CA  paDents;  based  mostly  on  general  HF  guidelines  •  OpDmal  Dming  and  duraDon  of  medical  therapies  uncertain  •  Studies  ongoing  to  evaluate  exercise  as  intervenDon    

Clinical  Cardio-­‐Onc  at  DUMC  Therapy       Prior  to  Therapy  

        Aler  Therapy  IniTaTon       Adverse  Event       IntervenTon  

VSP  inhibitors       Aggressive  BP  management  (JNC  7  guidelines)  

    Weekly  BP  checks  (6  weeks)       Hypertension       Aggressive  BP  control:  1)  ACE-­‐I  2)  Dihydropyridine  CCB’s  

        UA  for  proteinuria       UA  for  proteinuria               TitraDon  of  BP  meds  during  chemo  “holidays”  

        Ensure  no  acDve  angina/symptomaDc  CAD  

    Ensure  no  acDve  angina  or  symptomaDc  CAD  

    MI;  CVA       Stop  VSP  inhibitor  Start  guideline  based  management  

        IniDate  anD-­‐platelet  therapy  for  prior  CAD  or  PAD  

                       

        Baseline  2D  TTE  +/-­‐:  3D  LVEF  Strain  

    Repeat  TTE  (as  necessary)  for  signs/symptoms  of  LVSD  

    LVSD;  HF       Stop  VSP  inhibitor  Start  ACE-­‐I    +  B-­‐Bl  

        Aggressive  management  of  cardiac  risk  factors  (especially  HTN)  

                       

                                   

Anthracyclines      

    Baseline  2D  TTE  +/-­‐:  3D  LVEF  Strain  

    Consider  Troponin  evaluaDon  at  each  cycle  during  therapy  

    Troponin  (+)       ACE-­‐I  

        Aggressive  management  of  cardiac  risk  factors  (especially  HTN)  

    TTE  at  end  of  chemo         LVSD;  HF       ACE-­‐I  +  B-­‐Bl  

                TTE  Q3  months  for  1st  year;  TTE  annually  

    LVSD;  HF       ACE-­‐I  +  B-­‐Bl  

                                   

Trastuzumab       Baseline  2D  TTE  +/-­‐:  3D  LVEF  Strain  

    TTE  Q3  months  for  1st  year         LVSD;  HF       Hold  Trastuzumab  for  1  month  Start  ACE-­‐I  +  B-­‐Bl  Re-­‐measure  LVEF  in  1  month  

        Aggressive  management  of  cardiac  risk  factors  (especially  HTN)  

            LVEF,  HF  normalized       Resume  Trastuzumab  ConDnue  ACE-­‐I  +  B-­‐Bl  

                        LVSD;  HF  remains       ConDnue  holding  Trastuzumab  Intensify  ACE-­‐I  +B-­‐Bl  Re-­‐measure  LVEF  aPer  “holiday”  

                        Persistent  LVSD;  HF       Stop  Trastuzumab  Individualize  decision  if  Trastuzumab  only  opDon  

                Post-­‐compleDon       Normal  LVEF;  no  HF       No  cardiac  monitoring                           LVSD;  HF       ConDnue  ACE-­‐I  +  B-­‐Bl