38
J.Tiberghien - VU 09-07- K.Steenhaut & J.Tiberghien - 1 Telecommunicat ions Concepts Chapter 1.5 Communications Media

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB 1 Telecommunications Concepts Chapter 1.5 Communications Media

Embed Size (px)

Citation preview

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB1

TelecommunicationsConcepts

Chapter 1.5

Communications

Media

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB2

Contents

• Optical fibers

• Coaxial cables

• Twisted pairs

• Wireless communications

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB3

Contents

• Optical fibers

• Coaxial cables

• Twisted pairs

• Wireless communications

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB4

Snell’s Law

sin 1

sin 2

=n2

n1

2

1

n2

n1

c

n2

n1

>c

n2

n1

n2 < n1

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB5

Optical Fibers(step index)

n1n2

n2 < n1

Protective coating

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB6

Multimode FiberDiameter : > 50

Low cost but limited bandwidth * distancedue to multimode dispersion

Step index fiber

Graded index fiber

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB7

Multimode Dispersion

Step index fiber : < 50 MHz.KmGraded Index Fiber : < 1000 MHz.Km (1990)

< 5000 MHz.Km (2000)

t t

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB8

Monomode Fiber

Diameter : < 5 Only one propagation mode possible

Higher cost due to end equipmentbut enormous bandwidth*distance product

10 Gb/s over 500 Km optical sections (1995)

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB9

Wave Domain Multiplexing

Each color can carry an independent data flow.

In 2000

40 colors carrying each 10 Gb/s or

80 colors carrying each 2.5 Gb/s

were commercially available

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB10

Optical amplifiers

Pumplaser

Erbium doped fiber

Erbium atoms are pumped into a higher energy state by the light of the pump laser,

they fall back in synchronism with the incoming light, amplifying it.

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB11

Optical Switching

From IEEE Com.Mag.V39,N1, Jan 2001.

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB12

Contents

• Optical fibers

• Coaxial cables

• Twisted pairs

• Wireless communications

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB13

Coaxial Cables

Protective coating

Insulator

Conductor

Conductor

Monomode propagation for all data applicationsTransmission rates up to some Gb/s

Distance limited by electrical attenuation

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB14

Contents

• Optical fibers

• Coaxial cables

• Twisted pairs

• Wireless communications

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB15

Twisted Pairs

Performance highly dependant on cable

qualityTransmission speed up

to several 100 Mb/s for distances of up to

100 m.with better cables

(class 5 or 6)

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB16

Contents

• Optical fibers

• Coaxial cables

• Twisted pairs

• Wireless communications

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB17

Wireless Communications

Why ?

Mobile terminals

Cost of wiring

Why Not ?

Lower data rates

Lower reliability

Potential Lack of Security

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB18

Wireless CommunicationsMain restrictions:

• Limited available bandwidth• Uncontrolled sources of noise

Some solutions:

• Displace some heavy users (TV) • Reuse of frequencies at different locations (Cellular radio, Point to point links, …)

• Sharing of a set of frequencies (spread spectrum radio)

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB19

Reuse of Frequencies

Pr/Sa = Pt/r2

r

transmitter Pr = Power at receiverSa = Area of receiver antennaPt = Power at transmitterr = Distance

At some distance, a transmitter can no longer be received and the same frequency can be reused

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB20

Cellular Radio

Ideally, 3 different frequency sets are sufficient

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB21

The Mobile Access NetworkSecond Generation Handover

When a receiver is between two cells, the receiver has to disconnect from one cell and connect into the next one. Circuit routing has

to be adapted accordingly.

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB22

Cellular Radiok = number available frequencies per cell

S = Area of a cell = *r2

n = Number of simultaneous calls per km2

pt = Power of transmitterP0/Sa= Minimal field strength at receiver input

n = k / S

pt = p0/Sa * r2

With smaller cells, - more antenna sites are needed ...- more simultaneous calls are possible- transmitted power can be reduced

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB23

Cellular Radioin practice

Flanders Ardennes

Propagation conditions depend heavily on geography

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB24

Cellular Radio

In practice, seven or more different sets of frequencies are needed

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB25

Digital Cellular Phones

Name

Freq.(MHz)

# rad.ch.

P.max.(W)

r.max.(Km)

Voicerate (Kb/s)

Capacity (E/Km2)

DECT

1880-1890

12

0.25

0.2

32

10 000

GSM

890-915

935-960

124

2

35

13

1000

DCS

1800

1710-1785

1805-1880

248

1

8

13

2000

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB26

Cellular Radioand frequency

hoppingProblem :

Propagation conditions are extremely variable

in function of location and frequency,

especially in cities

Solution :

Use a set of different frequencies

and switch at a high rate between them.

e.g. In GSM every 20 mS frequencies change.

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB27

Wireless CommunicationsMain restrictions:

• Limited available bandwidth• Uncontrolled sources of noise

Some solutions:

• Displace some heavy users (TV) • Reuse of frequencies at different locations (Cellular radio, Point to point links, …)

• Sharing of a set of frequencies (spread spectrum radio)

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB28

Wireless Interference Margins

Cause considerable loss in transmission capacity

• Considerable room for improvements by controlling interferences

– Signal hardening

– Signal recovery

– Signal expansion

= Third generation mobile networks (UMTS)

Frequency

Space

Time

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB29

The Mobile Access Network

• Data combined with known higher frequency pseudo random sequence

• Resulting modulated radio signal has high bandwidth

• Shannon : low data rate combined with high bandwidth = excellent noise margins!

Fast hopping Spread Spectrum

n b/sData

Pseudo-random sequence

m * n b/s

xor

HF carrier

Modulated signalLarge bandwidth ≈ m times bandwidthneeded for data

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB30

The Mobile Access NetworkSpread Spectrum and CDMA

D1

S1

xor

HF

Tx1

D2

S2

xor

HF

Tx2

D2

S2

HF

Correl-ator

Rx2

D1

S1

HF

Correl-ator

Rx1

For radio link Tx1-Rx1, emission by Tx2 is just another source of noise

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB31

The Mobile Access Network Multi-path Interference

GSM : interference = noiseUMTS : correlator adds similar input signals with appropriate delays so that they reinforce each other

Different paths have different lengths and different delays

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB32

The Mobile Access NetworkThird Generation Handover

When a receiver is between two cells, both transmitters send the same signal. These two signals reinforce each other, as multipath propagation does.

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB33

Multi-path Interference

2nd generation (GSM) : interference = noise3rd generation (UMTS) : add similar input signals with appropriate delays so that they reinforce each other

Different paths have different lengths and different delays

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB34

Wireless Local Loop

Radio is sometimes cheaper than digging the streets !

Used for telephonyand forInternet access (WiMax)

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB35

Microwave Point to Point Links

• Highly directive antennas limit spatial spreading

• High transmission capacity (several Mb/s)

• transmission impaired by heavy rain

• Cost effective for line of sight communications

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB36

Satellite Communications

36000 Km

Geostationary

Round trip Delay = 240 ms

High power ground stations

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB37

Satellite CommunicationsLow Orbit

Short round trip delays Low power ground stations

In fact, a cellular system with mobile base- stations

J.Tiberghien - VUB09-07- K.Steenhaut & J.Tiberghien - VUB38

Introduced concepts• Optical communications are becoming dominant.

– Low cost, high throughput fixed communications.

• Wireless communications are growing:

– For replacing local wiring

– For mobile communications

• Geostationary satellite communications:

–One way broadcasting

– low traffic point to point but high delays

• Low Orbit satellites:

–Cellular system for global mobile application.