73
Jeffery-Williams Lecture On the effectiveness of operator-valued free probability theory Roland Speicher Universit¨ at des Saarlandes Saarbr¨ ucken, Germany joint work with Serban Belinschi, Tobias Mai, John Treilhard, Carlos Vargas

Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Jeffery-Williams Lecture

On the effectiveness of operator-valued

free probability theory

Roland Speicher

Universitat des Saarlandes

Saarbrucken, Germany

joint work with Serban Belinschi, Tobias Mai, John Treilhard,

Carlos Vargas

Page 2: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Once Upon a Time ....

... There Were Large Random Matrices

Page 3: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

We are interested in the limiting eigenvalue distribution of an

N ×N random matrix for N →∞.

Typical phenomena for basic random matrix ensembles:

• almost sure convergence to a deterministic limit eigenvalue

distribution

• this limit distribution can be effectively calculated

Page 4: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

We are interested in the limiting eigenvalue distribution of an

N ×N random matrix for N →∞.

Typical phenomena for basic random matrix ensembles:

• almost sure convergence to a deterministic limit eigenvalue

distribution

• this limit distribution can be effectively calculated

Page 5: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

We are interested in the limiting eigenvalue distribution of an

N ×N random matrix for N →∞.

Typical phenomena for basic random matrix ensembles:

• almost sure convergence to a deterministic limit eigen-

value distribution

• this limit distribution can be effectively calculated

Page 6: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Wigner Random Matrix

A Wigner random matrix

X =(xij)Ni,j=1

• is symmetric:

X∗ = X

• {xij | 1 ≤ i ≤ j ≤ N} are independent and identically dis-

tributed

Page 7: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

8 eigenvalues of an 8× 8 matrix with random ±1 entries

−10 −8 −6 −4 −2 0 2 4 6 8 100

1

2

3

4

5

6

7

8

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

Page 8: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

8 eigenvalues of an 8× 8 matrix with random ±1 entries

−10 −8 −6 −4 −2 0 2 4 6 8 100

1

2

3

4

5

6

7

8

−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1

Page 9: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

8 eigenvalues of an 8× 8 matrix with random ±1 entries

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−1 −1 1 1 1 −1 1 −1−1 −1 1 −1 −1 −1 1 −11 1 1 1 −1 −1 1 −11 −1 1 −1 −1 −1 1 11 −1 −1 −1 1 1 −1 −1−1 −1 −1 −1 1 1 −1 11 1 1 1 −1 −1 −1 −1−1 −1 −1 1 −1 1 −1 −1

Page 10: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

8 eigenvalues of an 8× 8 matrix with random ±1 entries

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 −1 −1 1 −1 −1 1 −1−1 1 −1 1 1 −1 1 1−1 −1 −1 −1 1 1 1 −11 1 −1 1 −1 1 1 1−1 1 1 −1 −1 −1 −1 −1−1 −1 1 1 −1 1 −1 −11 1 1 1 −1 −1 −1 −1−1 1 −1 1 −1 −1 −1 −1

Page 11: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

100 eigenvalues of 100× 100 matrix with random ±1√N

entries

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N = 100 realisation 1

Page 12: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

100 eigenvalues of 100× 100 matrix with random ±1√N

entries

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N = 100 realisation 2

Page 13: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

100 eigenvalues of 100× 100 matrix with random ±1√N

entries

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N = 100 realisation 3

Page 14: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

4000 eigenvalues of 4000×4000 matrix with random ±1√N

entries

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N = 4000 realisation 1

Page 15: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

4000 eigenvalues of 4000×4000 matrix with random ±1√N

entries

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N = 4000 realisation 2

Page 16: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

4000 eigenvalues of 4000×4000 matrix with random ±1√N

entries

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N = 4000 realisation 3

Page 17: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Almost Sure Convergence to a Deterministic

Limit Eigenvalue Distribution

For large N , the eigenvalue distribution of X is with very high

probability very close to a deterministic “limit distribution”.

Page 18: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Wishart Random Matrix

A Wishart random matrix X is of the form X = AA∗ where

• A is an N ×M matrix

A =(aij)i=1,...,Nj=1,...,M

• where all entries are independent and identically distributed:

{aij | 1 ≤ i ≤ N,1 ≤ j ≤M} are iid

For N →∞, one keeps the ratio

λ :=N

Mfixed.

Page 19: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

100 eigenvalues of a Wishart matrix, with λ = 0.25

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 100

Page 20: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

1000 eigenvalues of a Wishart matrix, with λ = 0.25

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N = 1000

Page 21: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

3000 eigenvalues of a Wishart matrix, with λ = 0.25

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N = 3000 realisation 1

Page 22: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

3000 eigenvalues of a Wishart matrix, with λ = 0.25

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N = 3000 realisation 2

Page 23: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

3000 eigenvalues of a Wishart matrix, with λ = 0.25

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N = 3000 realisation 3

Page 24: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Almost Sure Convergence to a Deterministic

Limit Eigenvalue Distribution

For large N , the eigenvalue distribution of X is with very high

probability (for generic choices of X) very close to a deterministic

“limit distribution”, which depends on λ.

Page 25: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

We are interested in the limiting eigenvalue distribution of an

N ×N random matrix for N →∞.

Typical phenomena for basic random matrix ensembles:

• almost sure convergence to a deterministic limit eigen-

value distribution

• this limit distribution can be effectively calculated

Page 26: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

We are interested in the limiting eigenvalue distribution of an

N ×N random matrix for N →∞.

Typical phenomena for basic random matrix ensembles:

• almost sure convergence to a deterministic limit eigenvalue

distribution

• this limit distribution can be effectively calculated

Page 27: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The Cauchy (or Stieltjes) Transform

For any probability measure µ on R we define its Cauchy trans-

form

G(z) :=∫R

1

z − tdµ(t)

This is an analytic function G : C+ → C− and we can recover µ

from G by Stieltjes inversion formula

dµ(t) = −1

πlimε→0=G(t+ iε)dt

Page 28: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

For our basic random matrix ensembles one can derive equationsfor the Cauchy transform of the limiting eigenvalue distribution,solve those equations and then get the density via Stieltjes in-version:

Wigner random matrix

G(z)2 + 1 = zG(z),

which can be solved as

G(z) =z −

√z2 − 4

2, thus dµs(t) =

1

√4− t2dt

Page 29: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Wigner random matrix and Wigner’s semicircle

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

Page 30: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

For our basic random matrix ensembles one can derive equations

for the Cauchy transform of the limiting eigenvalue distribution,

solve those equations and then get the density via Stieltjes in-

version:

Wishart random matrix

λ

1−G(z)+

1

G(z)= z

which can be solved as

G(z) =z + 1− λ−

√(z − (1 + λ))2 − 4λ

2zand thus

dµ(t) =1

2πλt

√4λ− (t− (1 + λ))2dt

Page 31: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Wishart random matrix and Marchenko-Pastur distrib.

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Page 32: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The Saga Begins ...

.... Consider Functions of Several Independent

Random Matrices

Page 33: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

We are interested in the limiting eigenvalue distribution of

functions of several N ×N random matrices for N →∞.

Typical phenomena:

• almost sure convergence to a deterministic limit eigenvalue

distribution

• this limit distribution can be effectively calculated

Page 34: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Wigner + Wishart random matrices, N = 3000

−2 −1 0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

realization 1

Page 35: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Wigner + Wishart random matrices, N = 3000

−2 −1 0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

realization 2

Page 36: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Wigner + Wishart random matrices, N = 3000

−2 −1 0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

realization 3

Page 37: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

We are interested in the limiting eigenvalue distribution of

functions of several N ×N random matrices for N →∞.

Typical phenomena:

• almost sure convergence to a deterministic limit eigenvalue

distribution

• this limit distribution can be effectively calculated only in

very simple situations

Page 38: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

For simple situations one can derive equations for the Cauchy

transform of the limiting eigenvalue distribution; those can usu-

ally not be solved explicitly; however, as fixed point equations

they have a good analytic behaviour and can be solved numeri-

cally by iteration algorithms

Wigner + Wishart: For G(z) := GWigner+Wishart(z) one finds

the fixed point equation (in subordination form)

G(z) = GWishart(z −G(z)),

which can be easily solved by iteration.

Page 39: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Wigner + Wishart random matrices, N = 3000

−2 −1 0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Page 40: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Results for Calculations of the Limit Eigenvalue

Distribution

• Marchenko, Pastur 1967: general Wishart matrices ADA∗

• Pastur 1972: deterministic + Wigner (deformed semicircle)

• Speicher, Nica 1998; Vasilchuk 2003: commutator or anti-commutator: X1X2 ±X2X1

• more general models in wireless communications (Tulino,Verdu 2004; Couillet, Debbah, Silverstein 2011):

RADA∗R or∑i

RiAiDiA∗iRi

Page 41: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The Quest:

But What About More Complicated or Even

General Selfadjoint Polynomials

.... something like

P (X,Y ) = XY + Y X +X2

or

P (X1, X2, X3) = X1X2X1 +X2X3X2 +X3X1X3

or even just

P (X1, . . . , Xk) P selfadjoint polynomial

Page 42: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

P (X,Y ) = XY + Y X +X2

for independent X,Y ; X is Wigner, Y is Wishart

−5 0 5 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N = 100

Page 43: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

P (X,Y ) = XY + Y X +X2

for independent X,Y ; X is Wigner, Y is Wishart

−5 0 5 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N = 300

Page 44: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

P (X,Y ) = XY + Y X +X2

for independent X,Y ; X is Wigner, Y is Wishart

−5 0 5 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N = 3000, Realization 1

Page 45: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

P (X,Y ) = XY + Y X +X2

for independent X,Y ; X is Wigner, Y is Wishart

−5 0 5 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N = 3000, Realization 2

Page 46: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The Hero:

Free Probability Theory

Page 47: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Definition of Freeness (Voiculescu 1985)

Let (A, ϕ) be non-commutative probability space, i.e., A isa unital algebra and ϕ : A → C is unital linear functional (i.e.,ϕ(1) = 1)

Unital subalgebras Ai (i ∈ I) are free or freely independent, ifϕ(a1 · · · an) = 0 whenever

• ai ∈ Aj(i), j(i) ∈ I ∀i, j(1) 6= j(2) 6= · · · 6= j(n)

• ϕ(ai) = 0 ∀i

Random variables x1, . . . , xn ∈ A are freely independent, if theirgenerated unital subalgebras Ai := algebra(1, xi) are so.

Page 48: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

What Is Freeness?

Freeness between x and y is an infinite set of equations relating

various moments in x and y:

ϕ

(p1(x)q1(y)p2(x)q2(y) · · ·

)= 0

Basic observation: free independence between x and y is actually

a rule for calculating mixed moments in x and y from the

moments of x and the moments of y:

ϕ

(xm1yn1xm2yn2 · · ·

)= polynomial

(ϕ(xi), ϕ(yj)

)

Page 49: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

If x and y are freely independent, then we have

ϕ(xmyn) = ϕ(xm) · ϕ(yn)

ϕ(xm1ynxm2) = ϕ(xm1+m2) · ϕ(yn)

but also

ϕ(xyxy) = ϕ(x2) · ϕ(y)2 + ϕ(x)2 · ϕ(y2)− ϕ(x)2 · ϕ(y)2

Free independence is a rule for calculating mixed moments,

analogous to the concept of independence for random variables.

Note: free independence is a different rule from classical indepen-

dence; free independence occurs typically for non-commuting

random variables, like operators on Hilbert spaces

Page 50: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Consequence: Distribution of Polynomial in

Freely Independent Variables Is Determined by

Distributions of Their Variables

If x1, . . . , xk are freely independent, and p is a polynomial in k

variables, then the distribution of p(x1, . . . , xk) is determined by

the moments of each of the xi and by the fact that they are

freely independent.

Page 51: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Where Does Free Independence Show Up?

• generators of the free group in the corresponding free group

von Neumann algebras L(Fn)

• creation and annihilation operators on full Fock spaces

• for many classes of random matrices

Page 52: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Where Does Free Independence Show Up?

• generators of the free group in the corresponding free group

von Neumann algebras L(Fn)

• creation and annihilation operators on full Fock spaces

• for many classes of random matrices

Page 53: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Asymptotic Freeness of Random Matrices

Basic result of Voiculescu (1991):

Large classes of independent random matrices (like Wigner or

Wishart matrices) become asymptoticially freely independent,

with respect to ϕ = 1NTr, if N →∞.

Page 54: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Consequence: Reduction of Our random Matrix

Problem to the Problem of Polynomial in Freely

Independent Variables

If the random matrices X1, . . . , Xk are asymptotically freely inde-

pendent, then the distribution of a polynomial p(X1, . . . , Xk) is

asymptotically given by the distribution of p(x1, . . . , xk), where

• x1, . . . , xk are freely independent variables, and

• the distribution of xi is the asymptotic distribution of Xi

Page 55: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Can We Actually Calculate Polynomials in

Freely Independent Variables?

Free probability can deal effectively with simple polynomials

• the sum of variables (Voiculescu 1986, R-transform)

p(x, y) = x+ y

• the product of variables (Voiculescu 1987, S-transform)

p(x, y) = xy (=√xy√x)

• the commutator of variables (Nica, Speicher 1998)

p(x, y) = xy − yx

Page 56: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

There is no hope to calculate effectively more

complicated or general polynomials in freely

independent variables with usual free probability

theory!

Page 57: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The Superhero:

Operator-Valued Extension of Free

Probability

Page 58: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Let B ⊂ A. A linear map

E : A → B

is a conditional expectation if

E[b] = b ∀b ∈ B

and

E[b1ab2] = b1E[a]b2 ∀a ∈ A, ∀b1, b2 ∈ B

An operator-valued probability space consists of B ⊂ A and a

conditional expectation E : A → B

Page 59: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Consider an operator-valued probability space E : A → B.

Random variables xi ∈ A (i ∈ I) are freely independent with

respect to E (or operator-valued freely independent) if

E[a1 · · · an] = 0

whenever ai ∈ B〈xj(i)〉 are polynomials in some xj(i) with coeffi-

cients from B and

E[ai] = 0 ∀i and j(1) 6= j(2) 6= · · · 6= j(n).

Page 60: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Calculation Rule for Mixed Moments

For operator-valued freely independent variables, one has analo-

gous formulas as in scalar-valued case, ...

The formula

ϕ(xyxy) = ϕ(xx)ϕ(y)ϕ(y) +ϕ(x)ϕ(x)ϕ(yy)−ϕ(x)ϕ(y)ϕ(x)ϕ(y)

has now to be written as

E[xyxy] = E[xE[y]x

]·E[y] +E[x] ·E

[yE[x]y

]−E[x]E[y]E[x]E[y]

Page 61: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Can We Actually Calculate Polynomials in

Operator-Valued Freely Independent Variables?

Again, in principle all operator-valued polynomials in freely inde-pendent variables are determined, but effectively we can againonly deal with simple polynomials:

• the sum of variablesVoiculescu 1995Belinschi, Mai, Speicher 2012

• the product of variablesVoiculescu 1995; Dykema 2006Belinschi, Speicher, Treilhard, Vargas 2012

Page 62: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The Miracle:

The Linearization Trick

Page 63: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Operator-Valued Polynomials Are Matrices of

Polynomials

Operator-valued polynomials in variables x1, . . . , xk are matrices

with entries given by polynomials in those random variables:

p11(x1, . . . , xk) · · · p1r(x1, . . . , xk)

... . . . ...

pr1(x1, . . . , xk) . . . prr(x1, . . . , xk)

Page 64: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The Linearization Philosophy:

In order to understand matrices of polynomials it suffices tounderstand (bigger) matrices of linear polynomials.

In particular, in order to understand polynomials in non-commuting variables, it suffices to understand matrices of linearpolynomials in those variables.

• Voiculescu 1987: motivation

• Haagerup, Thorbjørnsen 2005: largest eigenvalue

• Anderson 2012: the selfadjoint version

Page 65: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The selfadjoint linearization of

p = xy + yx+ x2 is p =

0 x y + x

2

x 0 −1

y + x2 −1 0

This means: the Cauchy transform Gp(z) of p = xy + yx + x2

is given as the (1,1)-entry of the operator-valued (3× 3 matrix)

Cauchy transform of p:

Gp(b) = id⊗ϕ[(b− p)−1

]=

Gp(z) ∗ ∗∗ ∗ ∗∗ ∗ ∗

for b =

z 0 00 0 00 0 0

Page 66: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

But

p =

0 x y + x

2

x 0 −1

y + x2 −1 0

= x+ y

with

x =

0 x x

2

x 0 0

x2 0 0

and y =

0 0 y

0 0 −1

y −1 0

.

Page 67: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

So p is just the sum of two operator-valued variables

p =

0 x x

2

x 0 0

x2 0 0

+

0 0 y

0 0 −1

y −1 0

.

where we understand the operator-valued distributions of x and

of y.

Are x and y freely independent?

Page 68: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Another Miracle

Matrices of Freely Independent Variables are matrix-valuedFreely Independent

If x and y are freely independent with respect to ϕ, then for anypolynomials pij in x and any polynomials qkl in y one has:

p11(x) . . . p1r(x)... . . . ...

pr1(x) . . . prr(x)

and

q11(y) . . . q1r(y)... . . . ...

qr1(y) . . . qrr(y)

are free with respect to

id⊗ ϕ

Page 69: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The Final Battle:

Algorithm and Calculation for Arbitrary

Selfadjoint Polynomial in Freely

Independent Variables

Page 70: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

Input: p(x, y), Gx(z), Gy(z)

Linearize p(x, y) to p = x+ y

Gx(b) out of Gx(z) and Gy(b) out of Gy(z)

Get w1(b) as the fixed point of the iterationw 7→ Gy(b+Gx(w)−1 − w)−1 − (Gx(w)−1 − w)

Gp(b) = Gx(ω1(b))

Recover Gp(z) as one entry of Gp(b)

Page 71: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

P (X,Y ) = XY + Y X + X2

for independent X,Y ; X is Wigner and Y is Wishart

−5 0 5 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(x, y) = xy + yx + x2

for free x, y; x is semicircular and y is Marchenko-Pastur

Page 72: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

P (X1, X2, X3) = X1X2X1 + X2X3X2 + X3X1X3for independent X1, X2, X3; X1, X2 Wigner, X3 Wishart

−10 −5 0 5 10 150

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(x1, x2, x3) = x1x2x1 + x2x3x2 + x3x1x3for free x1, x2, x3; x1, x2 semicircular, x3 Marchenko-Pastur

Page 73: Je ery-Williams Lecture fileJe ery-Williams Lecture On the e ectiveness of operator-valued free probability theory Roland Speicher Universit at des Saarlandes Saarbrucken, Germany

The Happy End

Theorem (Belinschi, Mai, Speicher 2012):

Combining the selfadjoint lineaziation trick with our

new analysis of operator-valued free convolution we

can provide an efficient and analytically controllable

algorithm for calculating the asymptotic eigenvalue

distribution of

• any selfadjoint polynomial in asymptotically

free random matrices.