37
Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas

Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 1PRH 6/18/02

MIT Lincoln Laboratory

Introduction to Radar Systems

Radar Antennas

Page 2: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 2PRH 6/18/02

MIT Lincoln Laboratory

Disclaimer of Endorsement and Liability

• The video courseware and accompanying viewgraphs presented on this server were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor the Massachusetts Institute of Technology and its Lincoln Laboratory, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, products, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors or the Massachusetts Institute of Technology and its Lincoln Laboratory.

• The views and opinions expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or any of their contractors or subcontractors

Page 3: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 3PRH 6/18/02

MIT Lincoln Laboratory

Focus

Pt G2 λ2 σ

(4 π )3 R4 k Ts Bn LS / N =

TrackRadar

Equation

Pav Ae ts σ

4 π Ω

R4 k Ts LS / N =

SearchRadar

Equation

G = Gain

Ae = Effective Area

Ts = System NoiseTemperature

L = Losses

ThisLecture

RadarEquationLecture

Antenna

PropagationMedium

TargetCross

Section

Transmitter

PulseCompression

Recording

Receiver

Tracking &ParameterEstimation

Console /Display

DopplerProcessingA / D

WaveformGenerator

Detection

Signal Processor

Main Computer

Page 4: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 4PRH 6/18/02

MIT Lincoln Laboratory

Antenna Definition

* IEEE Standard Definitions of Terms for Antennas (IEEE STD 145-1983)

• “Means for radiating or receiving radio waves”*– A radiated electromagnetic wave consists of electric and

magnetic fields which jointly satisfy Maxwell’s Equations

• Transitional structure between guiding device and free space

Figure by MIT OCW.

Page 5: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 5PRH 6/18/02

MIT Lincoln Laboratory

Antenna Characteristics

• Accentuates radiation in some directions, suppresses in others• Designed for both directionality and maximum energy transfer

Courtesy of Raytheon. Used with permission.

Courtesy of Raytheon. Courtesy of Raytheon. Used with permission.Used with permission.

Courtesy of U. S. Navy.

Page 6: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 6PRH 6/18/02

MIT Lincoln Laboratory

Outline

• Introduction

• Fundamental antenna concepts

• Reflector antennas

• Phased array antennas

• Summary

Page 7: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 7PRH 6/18/02

MIT Lincoln Laboratory

Radiation

Horizontal Distance (m)

Dipole*

Vert

ical

Dis

tanc

e (m

)

*driven by oscillating

source0 0.5 1 1.5 2

-1

0

-0.5

0.5

1

Presenter�
Presentation Notes�
The first is radiation. How is radiation caused? Well, it is caused by a time-varying current, or an acceleration/deceleration of charge. I hook up a voltage source to my antenna. If I drive the source then I can get the electrons on the metal of the antenna to accelerate and decelerate. This is what causes the radiation! Let’s take an example of a simple dipole (hold it up) which is perhaps the simplest antenna that can be made. It consists of a single wire a half-wavelength long. I can take an oscillating voltage source and hook it up to my dipole. As the source oscillates, it causes electrons on the dipole to accelerate and decelerate which creates radiation (start movie). Point out: Electromagnetic waves propagating with time Similar to dropping a stone in a lake to create water waves. Spherical wavefronts - the separation between the wavefronts is determined by the frequency of the oscillating source (slower oscillation, separated more). Unlike water waves, the power is not radiated out in all directions equally. Some is concentrated broadside to the dipole, shown in red. The dipole is a directional antenna. The enhancement in power in this region is called gain which we’ll discuss next.�
Page 8: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 8PRH 6/18/02

MIT Lincoln Laboratory

Antenna Gain

Isotropic Antenna

G = Gain

.

Directional Antenna

• Same power is radiated• Radiation intensity is power density over sphere (watt/steradian)• Gain is radiation intensity over that of an isotropic source

RadiationIntensity

RadiationIntensity

Page 9: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 9PRH 6/18/02

MIT Lincoln Laboratory

Antenna Pattern

• Pattern is a plot of gain versus angle

• Dipole example

0 30 60 90 120 150 180-35

-30

-25

-20

-15

-10

-5

0

5

Gai

n (d

Bi)

Theta θ

(deg)

0.5

1

1.5

2

60

120

30

150

0

180

30

150

60

120

90 90

Theta θ

(deg)

Polar Plot Linear Plot

( )⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛

θπ

θ 2

2

sin

cos2

cos643.1 G

Gmax = 1.64 = 2.15 dBiFigure by MIT OCW.

Presenter�
Presentation Notes�
Antenna pattern is simply a plot of gain versus angle. There are different ways to plot: 3D first, then polar, then linear. Then, explain the meaning of units of gain, or dBi.�
Page 10: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 10PRH 6/18/02

MIT Lincoln Laboratory

Aperture diameter D: 5 mFrequency: 300 MHzWavelength: 1 m

Gain: 24 dBiIsotropic Sidelobe Level: 6 dBi Sidelobe Level: 18 dB Half-Power Beamwidth: 12 deg

Antenna Pattern Characteristics

Figure by MIT OCW.

Page 11: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 11PRH 6/18/02

MIT Lincoln Laboratory

Effect of Aperture Size on Gain

Parabolic ReflectorAntenna

DFeed

Dish

Gain vs Diameter

Gain

1 2 3 4 5 6 7 8 9 105

10

15

20

25

30

35

40

45

50

Max

imum

Gai

n (d

Bi)

λ

= 100 cm (300 MHz)λ

= 30 cm (1 GHz)λ

= 10 cm (3 GHz)

Aperture Diameter D (m)

FrequencyIncreases

EffectiveArea

Rule of Thumb(Best Case)

2

⎟⎠⎞

⎜⎝⎛=

λπD

24λπA

2eA4

λπ

=

Gain increases as aperture becomes electrically larger(diameter is a larger number of wavelengths)

Gain increases as aperture becomes electrically larger(diameter is a larger number of wavelengths)

Page 12: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 12PRH 6/18/02

MIT Lincoln Laboratory

Reflector Comparison Kwajalein Missile Range Example

Operating frequency: 162 MHz (VHF)Wavelength λ: 1.85 mDiameter electrical size: 25 λGain: 34 dBBeamwidth: 2.8 deg

Operating frequency: 35 GHz (Ka)Wavelength λ: 0.0086 mDiameter electrical size: 1598 λGain: 70 dBBeamwidth: 0.00076 deg

ALTAIR45.7 m diameter

MMW13.7 m diameter

scale by1/3

Page 13: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 13PRH 6/18/02

MIT Lincoln Laboratory

Polarization

E

HorizontalLinear

(with respectto Earth)

• Defined by behavior of the electric field vector as it propagates in time

(For air surveillance looking upward)

E

(For over-water surveillance)

VerticalLinear

(with respectto Earth)

ElectromagneticWave Electric Field

Magnetic Field

Presenter�
Presentation Notes�
Polarization is another important radar property. -Definition -Applications... H: air surveillance to ping off horizontal wings V: better for propagation (multi-path) problem. Give example. Lead out: Horizontal and linear polarization can be combined to form circular polarization...�
Page 14: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 14PRH 6/18/02

MIT Lincoln Laboratory

Circular Polarization (CP)

• “Handed-ness” is defined by observation of electric field along propagation direction

• Used for discrimination, polarization diversity, rain mitigation

Right-Hand(RHCP)

Propagation DirectionInto Paper

Left-Hand(LHCP)

Figure by MIT OCW.

ElectricField

Presenter�
Presentation Notes�
Again, you are watching the position of the electric field with time, which in the case of circular polarization, is cork-screwing as it propagates forward. Go through the exercise of defining LHCP vs. RHCP and actually show them the right-hand rule with your hand. Talk about the application of discrimination (spheres).�
Page 15: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 15PRH 6/18/02

MIT Lincoln Laboratory

Circular Polarization (CP)

• “Handed-ness” is defined by observation of electric field along propagation direction

• Used for discrimination, polarization diversity, rain mitigation

Right-Hand(RHCP)

Propagation DirectionInto Paper

Left-Hand(LHCP)

Electric Field

Figure by MIT OCW.

Presenter�
Presentation Notes�
Again, you are watching the position of the electric field with time, which in the case of circular polarization, is cork-screwing as it propagates forward. Go through the exercise of defining LHCP vs. RHCP and actually show them the right-hand rule with your hand. Talk about the application of discrimination (spheres).�
Page 16: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 16PRH 6/18/02

MIT Lincoln Laboratory

Field Regions

• All power is radiated out • Radiated wave is a plane wave• Far-field antenna quantities

– Pattern– Gain and directivity– Polarization– Radar cross section (RCS)

• Energy is stored in vicinity of antenna• Near-field antenna quantities

– Input impedance– Mutual coupling

λ3D620R .<

Reactive Near-Field Region Far-field (Fraunhofer) Region

λ2D2R >

Far-Field (Fraunhofer)Region

D

R

Reactive Near-FieldRegion

Radiating Near-Field(Fresnel) Region

Wave Fronts

Wave PropagationDirection

Page 17: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 17PRH 6/18/02

MIT Lincoln Laboratory

Antenna Input Impedance

• Antenna can be modeled as an impedance– Ratio of voltage to current at feed port

• Design antenna to maximize power transfer from transmission line– Reflection of incident power sets up standing wave

• Input impedance usually defines antenna bandwidth

TransmissionLine

Antenna

Γ

Standing Wave

feed

Incident Poweris Deliveredto Antenna

All IncidentPower isReflected

Γ

= 0

Γ

= 1

Page 18: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 18PRH 6/18/02

MIT Lincoln Laboratory

Outline

• Introduction

• Fundamental antenna concepts

• Reflector antennas

• Phased array antennas

• Summary

Page 19: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 19PRH 6/18/02

MIT Lincoln Laboratory

Parabolic Reflector Antenna

• Design is a tradeoff between maximizing dish illumination and limiting spillover

• Feed antenna choice is critical

Feed Antennaat Focus

Beam Axis

Parabolic Surface

Wavefront

FD

Figure by MIT OCW.

Page 20: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 20PRH 6/18/02

MIT Lincoln Laboratory

Cassegrain Reflector Antenna

Ray Trace of Cassegrain Antenna

Geometry of Cassegrain Antenna

Figure by MIT OCW.

Page 21: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 21PRH 6/18/02

MIT Lincoln Laboratory

ALTAIR

Dual frequency

VHF Parabolic

UHF Cassegrain

FSS (Frequency Selective Surface) used for reflector

Page 22: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 22PRH 6/18/02

MIT Lincoln Laboratory

Outline

• Introduction

• Fundamental antenna concepts

• Reflector antennas

• Phased array antennas

• Summary

Page 23: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 23PRH 6/18/02

MIT Lincoln Laboratory

• Multiple antennas combined to enhance radiation and shape pattern

Arrays

Array Phased ArrayIsotropicElement

PhaseShifter

Σ

CombinerΣ Σ

Direction

Res

pons

e

Direction

Res

pons

e

Direction

Res

pons

e

Direction

Res

pons

e

Array

Page 24: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 24PRH 6/18/02

MIT Lincoln Laboratory

Two Antennas Radiating

Horizontal Distance (m)

Vert

ical

Dis

tanc

e (m

)

0 0.5 1 1.5 2-1

0

-0.5

0.5

1

Dipole1*

Dipole2*

*driven by oscillatingsources

(in phase)

Page 25: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 25PRH 6/18/02

MIT Lincoln Laboratory

Array Controls

• Geometrical configuration– Linear, rectangular,

triangular, circular grids

• Element separation

• Phase shifts

• Excitation amplitudes– For sidelobe control

• Pattern of individual elements

– Isotropic, dipoles, etc.

Page 26: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 26PRH 6/18/02

MIT Lincoln Laboratory

Increasing Array Size byAdding Elements

• Gain ~ 2N(d / λ) for long broadside array

N = 10 Elements N = 20 Elements

Gai

n (d

Bi)

Angle off Array (deg)

Linear Broadside ArrayIsotropic Elements

λ/2 SeparationNo Phase Shifting

0 30 60 90 120 150 1800 30 60 90 120 150 1800 30 60 90 120 150 180-30

-20

-10

0

10

20

N = 40 Elements

10 dBi 13 dBi 16 dBi

Angle off Array (deg) Angle off Array (deg)

Figure by MIT OCW.

Page 27: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 27PRH 6/18/02

MIT Lincoln Laboratory

Increasing Array Size bySeparating Elements

Limit element separation to d < λ

to preventgrating lobes for broadside array

Limit element separation to d < λ

to preventgrating lobes for broadside array

d = λ/4 separation d = λ/2 separation d = λ

separation

• Linear Broadside Array• N = 10 Isotropic Elements• No Phase Shifting

Angle off Array (deg) Angle off Array (deg) Angle off Array (deg)0 30 60 90 120 150 180

Gai

n (d

Bi)

GratingLobes

0 30 60 90 120 150 180-30

-20

-10

0

10

20

0 30 60 90 120 150 180

10 dBi7 dBi

10 dBi

L = (N-1) d

Figure by MIT OCW.

Presenter�
Presentation Notes�
(Explain problem of grating lobes... you get the increase in gain, but you have target position ambiguity!) Lead out: Let’s scan the linear array to the edge of its space, straight up, and repeat this test.�
Page 28: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 28PRH 6/18/02

MIT Lincoln Laboratory

Increasing Array Size of Scanned Arrayby Separating Elements

• No grating lobes for element separation d < λ / 2• Gain ~ 4N(d / λ) ~ 4L / λ for long endfire array without grating lobes

• Linear Endfire Array• N = 10 Isotropic Elements• Phase Shifted to Point Up

0 30 60 90 120 150 1800 30 60 90 120 150 180

Gai

n (d

Bi)

GratingLobe

GratingLobes

Angle off Array (deg) Angle off Array (deg) Angle off Array (deg)0 30 60 90 120 150 180-30

-20

-10

0

10

20d = λ/4 separation d = λ/2 separation d = λ

separation

10 dBi 10 dBi 10 dBi

Figure by MIT OCW.

L = (N-1) d

Presenter�
Presentation Notes�
Grating lobes pop up earlier!! Emphasize half-wavelength spacing. Now, what if I scanned between those two limits?�
Page 29: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 29PRH 6/18/02

MIT Lincoln Laboratory

Linear Phased ArrayScanned every 30 deg, N = 15, d = λ/4

To scan over all space without grating lobes, keep element separation d < λ / 2

To scan over all space without grating lobes, keep element separation d < λ / 2

Figure by MIT OCW.

Page 30: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 30PRH 6/18/02

MIT Lincoln Laboratory

Planar Arrays

• As scan to θo off broadside:– Beamwidth broadens by 1/cosθo

– Directivity decreases by cosθo

To scan over all space without grating lobes, keep element separation in both directions < λ / 2

To scan over all space without grating lobes, keep element separation in both directions < λ / 2

PatternNo Scanning

Figure by MIT OCW.Figure by MIT OCW.

Page 31: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 31PRH 6/18/02

MIT Lincoln Laboratory

Mutual Coupling

• Effect of one element on another– Near-field quantity– Makes input impedance dependent on

scan angle

• Can greatly complicate array design– Hard to deliver power to antennas for all

scan angles– Can cause scan blindness where no

power is radiated

• Can limit scan volume and array bandwidth

Z Z

~

Antennam

Antennan

~

Drive Both Antennas

But... mutual coupling can sometimes be exploitedto achieve certain performance requirements

Page 32: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 32PRH 6/18/02

MIT Lincoln Laboratory

Phased Arrays vs Reflectors

• Phased arrays provide beam agility and flexibility – Effective radar resource management (multi-function capability) – Near simultaneous tracks over wide field of view

• Phased arrays are significantly more expensive than reflectors for same power-aperture

– Need for 360 deg coverage may require 3 or 4 filled array faces– Larger component costs– Longer design time

Page 33: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 33PRH 6/18/02

MIT Lincoln Laboratory

Outline

• Introduction

• Fundamental antenna parameters

• Reflectors

• Phased arrays

• Summary

Page 34: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 34PRH 6/18/02

MIT Lincoln Laboratory

Summary

• Fundamental antenna parameters and array topics have been discussed

– Radiation– Gain, pattern, sidelobes, beamwidth– Polarization– Far field– Input impedance– Array beamforming– Array mutual coupling

• Reflector antennas offer a relatively inexpensive method of achieving high gain for a radar

– Parabolic reflectors– Cassegrain feeds

• Phased array antennas offer beam agility and flexibility in use– But much more expensive than reflector antennas

Page 35: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 35PRH 6/18/02

MIT Lincoln Laboratory

References

• Balanis, C. A., Antenna Theory: Analysis and design, 2nd

Edition, New York, Wiley, 1997 • Skolnik, M., Introduction to Radar Systems, New York,

McGraw-Hill, 3rd Edition, 2001• Mailloux, R. J., Phased Array Antenna Handbook, Norwood,

Mass., Artech House, 1994

Page 36: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 36PRH 6/18/02

MIT Lincoln Laboratory

Increasing Array Size bySeparating Elements

Limit element separation to d < λ

to preventgrating lobes for broadside array

Limit element separation to d < λ

to preventgrating lobes for broadside array

d = λ/4 separation d = λ/2 separation d = λ

separation

• Linear Broadside Array• N = 10 Isotropic Elements• No Phase Shifting

Angle off Array (deg) Angle off Array (deg) Angle off Array (deg)0 30 60 90 120 150 180

Gai

n (d

Bi)

GratingLobes

0 30 60 90 120 150 180-30

-20

-10

0

10

20

0 30 60 90 120 150 180

10 dBi7 dBi

10 dBi

L = (N-1) d

Presenter�
Presentation Notes�
(Explain problem of grating lobes... you get the increase in gain, but you have target position ambiguity!) Lead out: Let’s scan the linear array to the edge of its space, straight up, and repeat this test.�
Page 37: Introduction to Radar Systems 2002 Radar Antennas · Radar Antennas - 1 PRH 6/18/02 MIT Lincoln Laboratory Introduction to Radar Systems Radar Antennas. Radar Antennas - 2 PRH 6/18/02

Radar Antennas - 37PRH 6/18/02

MIT Lincoln Laboratory

0 30 60 90 120 150 180-30

-20

-10

0

10

20

Beam PointingDirection

Linear Phased ArrayScanned every 30 deg, N = 20, d = λ/4

Angle off Array (deg)

Gai

n (d

Bi)

To scan over all space without grating lobes, keep element separation d < λ / 2

To scan over all space without grating lobes, keep element separation d < λ / 2

Broadside: No Scan Scan 30 deg Scan 60 deg Endfire: Scan 90 deg

10 deg beam 12 deg beam 22 deg beam 49 deg beam

10 dBi 10.3 dBi10 dBi 13 dBi

Presenter�
Presentation Notes�
Take away is very important.�