36
Introduction to Particle Accelerators Bernhard Holzer, DESY DESY Summer Student Lectures 2007 Introduction historical development & first principles components of a typical accelerator „...the easy part of the story“ The state of the art in high energy machines: The synchrotron: linear beam optics colliding beams, luminosity „... how does it work ?“ „...does it ?“

Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

  • Upload
    others

  • View
    28

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Introduction to Particle AcceleratorsBernhard Holzer, DESY

DESY Summer Student Lectures 2007

Introductionhistorical development & first principlescomponents of a typical accelerator„...the easy part of the story“

The state of the art in high energy machines:The synchrotron: linear beam optics

colliding beams,luminosity„... how does it work ?“„...does it ?“

Page 2: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Introduction to Particle Accelerators

... the first steps in particle physics

)2/(sin1*

Kr)8(entZN(N

4222

0

42

i

θπεθ = )

I.) I.) HistoricalHistorical notenote::

Rutherford Scattering,1906…1913

Using radioactive particle sources:α-particles of some MeV energy

N(θ)Thomson-Model of Atom

θ

Measurement and Rutherford-Model

Prediction

*

Page 3: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Electrostatic MachinesII.) II.) TheThe CockroftCockroft Walton Generator (1928):Walton Generator (1928):

create a high Voltage DC by rectifying an AC Voltage: „cascade generator“

F o rc e : * * UF q E qd

= =r r

2 2

1 1E n e rg y : * *

r r

r rW F d r q E d r q UΔ = = =∫ ∫

r rr r

usefull energy unit: „eV“ ......1 eV = 1.6*10-19 J

Page 4: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Particle source: Hydrogen discharge tube on a 400 kV levelAccelerator: evacuated glas tubeTarget: Li-Foil on earth potential

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Example:Pre-accelerator forProtons at PSI (Villingen)

Page 5: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Electrostatic Machines

III.) (Tandem III.) (Tandem ––) van de ) van de GraaffGraaff AcceleratorAccelerator

creating high voltages by mechanicaltransport of charges

* Terminal Potential: U ≈ 12 ...28 MVusing high pressure gas to suppress discharge ( SF6 )

Problems: * Particle energy limited by high voltage discharges* high voltage can only be applied once per particle ...

... or twice ?

Page 6: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Example for such a „steam engine“: 12 MV-Tandem van de GraaffAccelerator at MPI Heidelberg

* The „Tandem principle“: Apply the accelerating voltage twice ...... by working with negative ions (e.g. H-) and

stripping the electrons in the centre of the structure

Page 7: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

IV.) Linear AcceleratorsIV.) Linear Accelerators1928, Wideroe: how can the acceleration voltage be applied several times

to the particle beam

schematic Layout:

+ + + +-̶ -̶-̶

* acceleration of the proton in the first gap* voltage has to be „flipped“ to get the right sign in the second gap RF voltage

shield the particle in drift tubes during the negative half wave of the RF voltage

Page 8: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Beam Energy: Acceleration in the Wideroe Structure

0* * *sinn sE n q U ψ=

1.) Energy gained after n acceleration gaps

n number of gaps between the drift tubesq charge of the particleU0 Peak voltage of the RF SystemΨS synchronous phase of the particle

2.) kinetic energy of the particles

21 *2n nE m v= valid for non relativistic particles ...

velocity of the particle (from (1) and (2))

02 2* * * *sinn Sn

E n q Uvm m

ψ= =

Page 9: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Length of the n-th drift tube:

1* *2 2RF

n n nRF

l v vτν

= = ! high RF frequencies makesmall accelerators

0* * *sin12

Sn

RF

n q Ulm

ψν

=

length of the n-th drift tube ... or ... distance between two accelerating gaps:

3.) shielding of the particles during the negative half wave of the RF

U0

t

Time span of the negative half wave: τRF /2

Page 10: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Example: DESY Accelerating structure of the Proton Linac

988totalE MeV=

reminder of somerelativistic formula

20 0 938E m c MeV= =

20 0* *E E m cγ γ= =

rest energy

total energy

310 /p MeV c=2 2 2 2 40E c p m c= +momentum

20k in to ta lE E m c= −

50kinE MeV=

Page 11: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

GSI: Unilac, typical Energie ≈ 20 MeV per Nukleon, β ≈ 0.04 … 0.6, Protons/Ions, ν = 110 MHz

Page 12: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

V.) The Cyclotron: (~1930)V.) The Cyclotron: (~1930)

circular accelerator with a constant magnetic field B = const

* ( )F q v B→ → →

= ×

Lorentz force:

condition for a circular particle orbit:

centrifugal force:2*m vF

ρ=

2** * * /m vq v B B p qρρ

= → =

*m

v q Bρ

→ =

Page 13: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

12 * .zz z

q B constT m

π ωω = = → =

time for one revolution: 2 2* z

mTv q Bρπ π= =

revolution frequency

! ω is constant for a given q & B

!! B*ρ = p/qlarge momentum huge magnets

!!!! ω ~ 1/m ≠ const.works properly only for non relativistic particles

Example: cyclotron at PSI

Page 14: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

TheThe statestate of of thethe art in high art in high energyenergy machinesmachines::

The synchrotron: linear beam opticscolliding beams,luminosity„... how does it work ?“„...does it ?“

Page 15: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

TheThe statestate of of thethe art in high art in high energyenergy accelerationacceleration::TheThe SynchrotronSynchrotron

422 s.c. dipole magnets224 s.c. main quads, 400 s.c. correction quads200 s.c. correction dipoles> 1000 n.c. electron magnets

Circumference: 6.3 kmProton Beam: Energy 40 GeV … 920 GeVElectron Beam: Energy 12 GeV … 27.5 GeVMagnetic field: 5.1 Tesla at I=5500 A for 920 GeV

Page 16: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Design Principles of a Synchrotron

... again ... the Lorentz force *( )F q E v B= + ×r r rr

„ ... in the end and after all it should be a kind of circular machine“need transverse deflecting force

typical velocity in high energy machines: 83*10 msv c≈ ≈

old greek dictum of wisdom:if you are clever, you use magnetic fields in an accelerator where everit is possible.

But remember: magn. fields act allways perpendicular to thevelocity of the particle

only bending forces, no „beam acceleration“

I.) I.) thethe bendingbending magnetsmagnets … … guideguide thethe particlesparticles

Page 17: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

In a constant external magnetic field the particle trajectory will be a part of a circle and ... the centrifugal force will be equal to the Lorentz force

2* * m ve v B

ρ=

p = momentum of the particle,ρ = curvature radius

B*ρ is called the “beam rigidity”

* /mve B p ρρ

→ = =

* /B p eρ→ =

Example: heavy ion storage ring: TSR8 dipole magnets of equalbending strength

LatticeLattice Design: Design: PrerequisitesPrerequisites * ( )F q v= × Br r

High energy accelerators circular machinessomewhere in the lattice we need a number of dipole magnets, that are bending the designorbit to a closed ring

Lorentz force

Page 18: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

CircularCircular Orbit:Orbit:

**

s l B lB

α αρ ρ ρ

= ≈ =

2 ... for a full circle*

Bdl

Bα π

ρ= =∫

The angle swept out in one revolutionmust be 2π, so

field map of a storage ring dipole magnet

ρα

ds

The overall length of all dipole magnets multiplied by the dipolefield corresponds to the momentum ( ≈ energy) of the beam !

* 2 * pB Lq

π→ =

Page 19: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Example HERA:920 GeV Proton storage ringnumber of dipole magnets N = 416

l = 8.8mq = +1 e

Tesla.e*m.*

sm**

eV**B

q/pB*l*NBdl

15588103416

109202

2

8

9

≈≈

∫ =≈

π

π

Page 20: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

II.) The Acceleration

Where is the acceleration?Install an RF accelerating structure in the ring:

z

c epB /* =ρ

Bep /

=ρt

Page 21: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Largest storage ring: The Solar System

astronomical unit: average distance earth-sun1AE ≈ 150 *106 kmDistance Pluto-Sun ≈ 40 AE

AE

Page 22: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

classical mechanics:pendulum

there is a restoring force, proportional to the elongation x:

2

2* *d xm c xdt

= −

general solution: free harmonic oszillation ( ) *cos( )x t A tω ϕ= +

Storage Ring: we need a Lorentz force that rises as a function of the distance to ........ ?

................... the design orbit

( ) * * ( )F x q v B x=

III.) Focusing Properties – Transverse Beam Optics

Page 23: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

four iron pole shoesof hyperbolic contour

Quadrupole lenses to focus the beam

linear increasing magnetic field

* , *z xB g x B g z= =

Maxwell‘s equation at the location of the beam... no current, no electr. field

0B∇× =r r

the B field can be expressed as gradient of a scalarpotential V:

, ( , )B V V x z g x z= −∇ =r r

Page 24: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Momentum: p = 920 GeV/c

Bending field: B = 5.5 Tesla

Quadrupol Gradient G= 110 T/m

k = 33.64*10-3 /m2

1/ρ = 1.7 *10-3 /m

FocusingFocusing forcesforces and and particleparticle trajectoriestrajectories::

1/B B

p q Bρ ρ= =

normalise magnet fields to momentum(remember: B*ρ = p / q )

Dipole Magnet Quadrupole Magnet

:/gk

p q=

Example: HERA Ring

Page 25: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Under the influence of the focusing and defocusing forces the differential equation of the particlestrajectory can be developed:

'' * 0x k x+ = horizontal plane

vert. plane: k k⇒ −if we assume ....* linear retrieving force* constant magnetic field* first oder terms of displacement x

... we get the general solution (hor. focusing magnet):

00( ) *cos( ) *sin( )xx s x ks ks

k′

= +

0 0( ) *sin( ) *cos( )x s x k ks x ks′ ′= − +

: dxxds

′ =

x = distance of a single particleto the center of the beam

the focusing properties - Equation of motion

Page 26: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

More elegant description: Matrix formalism

0

*' 's

x xM

x x⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Matrices of lattice elements

⎟⎟⎟

⎜⎜⎜

−=

)l*Kcos()l*Ksin(K

)l*Ksin(K

)l*Kcos(MQF

1

⎟⎟⎟

⎜⎜⎜

⎛=

)l*Kcosh()l*Ksinh(K

)l*Ksinh(K

)l*Kcosh(MQD

1

10 1Drift

lM

⎛ ⎞= ⎜ ⎟

⎝ ⎠

Hor. focusing Quadrupole Magnet

Hor. defocusing Quadrupole Magnet

Drift space

Nota bene:formalism is only valid within onelattice element where k = const

in reality: k = k(s)

Page 27: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

„veni vidi vici ...“ .... or in english .... „we got it !“

* we can calculate the trajectory of a single particle within a singlelattice element

* for any starting conditions x0, x´0* we can combine these piecewise solutions together and get the

trajectory for the complete storage ring.

lat t ice Q F D Q D D Q FM M * M * M * M * M .. . . . .= 1 1 1 2

courtesy: K. Wille

Example: storage ring for beginners

Dipole magnets and QF & QD quadrupole lenses

Page 28: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

tracking one particle through the storage ring

Page 29: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Z X, Y,( )

Contour of a particle bunch given by theexternal focusing fields (arc values)

e p

σx 1.0 mm 0.75 mm

σz 0.2 mm 0.46 mm

σs 10.3 mm 190 mm

Np 3.5*1010 7.3*1010

Example: HERA Proton Bunch3d contour calculated for thedesign parameters

Page 30: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

Astronomer Hill:differential equation for motions with periodicfocusing properties: „Hill‘s equation“

Example: particle motion withperiodic coefficient

equation of motion: ( ) ( ) ( ) 0x s k s x s′′ − =

restoring force ≠ const, we expect a kind of quasi harmonick(s) = depending on the position s oscillation: amplitude & phase will dependk(s+L) = k(s), periodic function on the position s in the ring.

Twiss Parameters

Page 31: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

TheThe Beta Beta FunctionFunction

in this case the solution can be written in the form:

( ) * ( ) *cos( ( ) )x s s sε β ψ φ= +

β(s) given by focusing properties of the lattice ↔ quadrupoles

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely spoken: area covered in transverse x, x´ phase space… and it is constant !!!

Ansatz: ε, Φ = integration constantsdetermined by initial conditions

Page 32: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

βεσ *=

Ensemble of many (...all) possible particle trajectoriesmax. amplitude of all particle trajectories

( ) * ( )x s sε β=

Beam Dimension:determined by two parameters

x

ε = area in phase space

x(s) of a single particle

Page 33: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

p-Bunch

e-BunchIP 2 σ

3*10^10 particles

7*10^10 particles

Luminosity

x yπ σ σ∗ ∗= 0 n b

I I1 e pL *24 e f βεσ *=

Page 34: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

LatticeLattice Design:Design:

Arc: regular (periodic) magnet structure: bending magnets define the energy of the ringmain focusing & tune control, chromaticity correction,multipoles for higher order corrections

Straight sections: drift spaces for injection, dispersion suppressors, low beta insertions, RF cavities, etc....

... and the high energy experiments if they cannot be avoided

Page 35: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

H1 detector: inelasticscattering event of e+/p

.* reactR L= Σ

LuminosityLuminosity

production rate of (scattering) eventsis determined by thecross section Σreactand a parameter L that is given by the design of the accelerator:… the luminosity

** *1

yx

Lσσ

Page 36: Introduction to Particle Accelerators - DESY · Introduction to Particle Accelerators... the first steps in particle physics sin ( / 2 ) 1 * (8 ) r K N ntZ e N(2 2 2 4 0 2 4 i πε

1.) Edmund Wilson: Introd. to Particle Accelerators Oxford Press, 2001

2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992

3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc.School: 5th general acc. phys. course CERN 94-01

4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm

5.) Herni Bruck: Accelerateurs Circulaires des Particules, presse Universitaires de France, Paris 1966 (english / francais)

6.) M.S. Livingston: J.P. Blewett, Particle Accelerators, Mc Graw-Hill, New York,1962

7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997

8.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970

9.) D. Edwards, M. Syphers : An Introduction to the Physics of ParticleAccelerators, SSC Lab 1990

Bibliography