29
Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev Jan 29, 2019

Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Integrable Particle Dynamics in Accelerators

Tuesday: Accelerators

Sergei Nagaitsev

Jan 29, 2019

Page 2: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Challenges of modern accelerators (the LHC case)

▪ LHC: 27 km, 7 TeV per beam➢ The total energy stored in the magnets is HUGE: 10 GJ (2,400

kilograms of TNT)

➢ The total energy carried by the two beams reaches 700 MJ (173 kilograms of TNT)

➢ Loss of only one ten-millionth part (10−7) of the beam is sufficient to quench a superconducting magnet

▪ LHC vacuum chamber diameter : ~40 mm

▪ LHC average rms beam size (at 7 TeV): 0.14 mm

▪ LHC average rms beam angle spread: 2 µrad➢ Very large ratio of forward to transverse momentum

▪ LHC typical cycle duration: 10 hrs = 4x108 revolutions

▪ Kinetic energy of a typical semi truck at 60 mph: ~7 MJ

S. Nagaitsev, Jan 29, 20192

Page 3: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

What keeps particles stable in an accelerator?

▪ Particles are confined (focused) by

static magnetic fields in vacuum.

▪ An ideal focusing system in all modern

accelerators is nearly integrable➢ There exist 3 conserved quantities (integrals of

motion); the integrals are “simple” – polynomial in

momentum.

➢ The particle motion is confined by these integrals.

➢ Nonlinear elements destroy the intregrability at large amplitudes (hence particle losses)

S. Nagaitsev, Jan 29, 20193

Page 4: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Strong Focusing

S. Nagaitsev, Jan 29, 20194

Page 5: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

The accelerator Hamiltonian

▪ After some canonical transformations (see R. Ruth) and in a small-angle approximation

S. Nagaitsev, Jan 29, 20195

12 2

2 2 eH c m c

c

= + −

p A

( )2 2 2

2 2 ...2(1 ) 2 2

x yp p x K xH x y

+ = + + − − +

+

where δ is the relative momentum deviation. For δ << 1:

2 2 22 ( )( )

2 2 2

x y yxp p K s yK s x

H+

+ +

For a pure quadrupole magnet: Kx(s) = - Ky(s)

This Hamiltonian is separable!

Page 6: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

S. Nagaitsev, Jan 29, 20196

Strong Focusing – our standard method since 1952

)()(

0)(

0)(

,, sKCsK

ysKy

xsKx

yxyx

y

x

=+

=+

=+

s is “time”

6

-- piecewise constant

alternating-sign functions

Particle undergoes

betatron oscillations

Christofilos (1949); Courant, Livingston and Snyder (1952)

Page 7: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Strong focusing

S. Nagaitsev, Jan 29, 20197

▪ Focusing fields must satisfy Maxwell equations in vacuum

▪ For stationary fields: focusing in one plane while defocusing in another

➢ quadrupole:

➢ However, alternating quadrupoles

results in effective focusing in both planes

( , , ) 0x y z =

2 2( , )x y x y −

Specifics of accelerator focusing:

Page 8: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

S. Nagaitsev, Jan 29, 20198

Courant-Snyder invariant

yxz

zsKz

or

,0)("

=

=+Equation of motion for

betatron oscillations

( )3

1)( where

=+

sK

2

21 ( )( )

2 ( ) 2z

sI z z s z

s

= + −

Invariant (integral)

of motion,

a conserved qty.

Page 9: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Action-angle variables

▪ We can further remove the s-dependence by another canonical transformation.

S. Nagaitsev, Jan 29, 20199

2 2( )

2 2

p K s zH = +

2

1( , ) tan2 2

zF z

= − −

2

21 1 ( )( )

2 ( ) 2z

F sI z z s z

s

= − = + −

11

2 cos

2 / sin cos2

( )

z

z

z

z I

p I

F IH H

s s

=

= − −

= + =

See R. Ruth’s

paper, ref. [2]

Page 10: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Non-linear elements

S. Nagaitsev, Jan 29, 201910

2 22 2

0

( )( )

2 2 2 2

y yx xp K s yp K s x

H = + + +

( )2 3

1 0

( )3

6

B sH H y x x

B

+ − + sextupole

( )4 2 2 4

2 0

( )6

24

B sH H x y x y

B

+ − + octupole

The addition of these nonlinear elements to accelerator

focusing (almost always) makes it non-integrable.

Page 11: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

S. Nagaitsev, Jan 29, 201911

Non-linear focusing elements

▪ It became obvious very early on (~1960), that the use of nonlinear focusing elements in rings is necessary and some nonlinearities are unavoidable (magnet aberrations, space-charge forces, beam-beam forces)➢ Sexupoles appeared in 1960s for chromaticity corrections

➢ Octupoles were installed in CERN PS in 1959 but not used until 1968. For example, the LHC has ~350 octupoles for Landau damping.

▪ It was also understood at the same time, that nonlinear focusing elements have both beneficial and detrimental effects, such as:➢ They drive nonlinear resonances (resulting in particle losses) and

decrease the dynamic aperture (also particle losses).

Page 12: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

S. Nagaitsev, Jan 29, 201912

KAM theory

▪ Developed by Kolmogorov, Arnold,

Moser (1954-63).

▪ Explains why we can operate

accelerators away from resonances.

▪ The KAM theory states that if the

system is subjected to a weak nonlinear perturbation, some of periodic orbits survive, while others are destroyed. The ones that survive are those that have “sufficiently irrational” frequencies (this is known as the non-resonance condition).

▪ Does not explain how to get rid of resonances➢ Obviously, for accelerators, making ALL nonlinearities to be

ZERO would reduce (or eliminate) resonances

➢ However, nonlinearities are necessary and unavoidable.

KEK-B

Page 13: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

S. Nagaitsev, Jan 29, 201913

Nonlinear Integrable Systems

▪ What we are looking for is a non-linear equivalent of Courant-Snyder invariants, for example something like that,

( )2 2 2 2 4 41 1( ) ( )

2 2 4x yH p p x y x y

= + + + + +

Page 14: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

S. Nagaitsev, Jan 29, 201914

Specifics of accelerator focusing

▪ The transverse focusing system is 2.5D (i.e. time-dependent)➢ In a linear system (strong focusing), the time dependence can be

transformed away by introducing a new “time” variable (the betatron phase advance). Thus, we have the Courant-Snyder invariant.

▪ The focusing elements we use in accelerator must satisfy:➢ The Laplace equation (for static fields in vacuum)

➢ The Poisson equation (for devices based on charge distributions, such as electron lenses or beam-beam effects)

Page 15: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

First example

S. Nagaitsev, Jan 18, 20171515

See: Phys. Rev. ST Accel. Beams 13, 084002 Start with a round axially-symmetric LINEAR

focusing lattice (FOFO) Add a special potential V(x,y,s) such that it satisfies either

the Laplace or the Poisson equation

400

Sun Apr 25 20:48:31 2010 OptiM - MAIN: - C:\Documents and Settings\nsergei\My Documents\Papers\Invariants\Round

20

0

50

BE

TA

_X

&Y

[m]

DIS

P_X

&Y

[m]

BETA_X BETA_Y DISP_X DISP_Y

V(x,y,s) V(x,y,s) V(x,y,s) V(x,y,s)V(x,y,s)

βx = βy

Page 16: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Special time-dependent potential

S. Nagaitsev, Jan 18, 201716

Let’s consider a Hamiltonian of this FOFO system:

where V(x,y,s) satisfies the Laplace or the Poisson equations in 2d:

In normalized variables we will have:

( ) ),,(

2222

2222

syxVyx

sKpp

Hyx +

+++=

( ))(,)(,)()(

22

2222

syxVyxpp

H NN

NNyNxN

N ++

++

=

=

s

0)s(

d)(

ssWhere new “time” variable is

,)(2

)()(

,)(

s

zsspp

s

zz

N

N

−=

=

Page 17: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Axially-symmetric focusing lens:

S. Nagaitsev, Jan 18, 201717

▪ Could be a solenoid (at low energies), or…

▪ Could be an optics insert that has a transfer matrix of a thin axially-symmetric focusing lens:

1 0 0 0

1 0 0

0 0 1 0

0 0 1

k

k

1 0 0 0

1 0 0

0 0 1 0

0 0 1

k

k

− −

1

01

K

or

Page 18: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Fake thin lens inserts

S. Nagaitsev, Jan 18, 201718

110.0240

Tue Feb 22 14:40:15 2011 OptiM - MAIN: - C:\Users\nsergei\Documents\Papers\Invariants\Round lens\quad line1.opt

200

0

50

BE

TA

_X

&Y

[m]

DIS

P_X

&Y

[m]

BETA_X BETA_Y DISP_X DISP_Y

1 0 0 0

1 0 0

0 0 1 0

0 0 1

k

k

− −

1 0 0 0

1 0 0

0 0 1 0

0 0 1

k

k

− −

1 0 0 0

1 0 0

0 0 1 0

0 0 1

k

k

− −

1 0 0 0

1 0 0

0 0 1 0

0 0 1

k

k

− −

V(x,y,s) V(x,y,s) V(x,y,s)

Page 19: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Main Ideas

S. Nagaitsev, Jan 18, 201719

1. Start with a time-dependent Hamiltonian:

2. Chose the potential to be time-independent in new variables

3. Find potentials U(x, y) with the second integral of motion and such that ΔU(x, y) = 0 (for example)

),(

22

2222

NN

NNyNxN

N yxUyxpp

H ++

++

=

( ))(,)(,)()(

22

2222

syxVyxpp

H NN

NNyNxN

N ++

++

=

is a "time" variable

Page 20: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Example 1: quadrupoles

S. Nagaitsev, Jan 18, 201720

▪ This can be made with

10-20 thin quads, each

powered independently

( )

( )( )22

2,, yx

s

qsyxV −=

( )22),( NNNN yxqyxU −=

0 0.2 0.4 0.6 0.80

0.5

1

1.5

2

s( )

q s( )

s

β(s)

quadrupoleamplitude

( )222222

22NN

NNyNxN

N yxqyxpp

H −++

++

=

L

New tunes:)21(

)21(2

0

2

2

0

2

q

q

y

x

−=

+=

Integrable but still linear…

( ))(,)(,)()(

22

2222

syxVyxpp

H NN

NNyNxN

N ++

++

=

Page 21: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

This Hamiltonian is NOT integrable,

Henon-Heiles – like system

▪ 18 Octupoles

▪ We will try to make integrable (on Thursday)

Like that:

Example 2: Octupoles

S. Nagaitsev, Jan 18, 201721

( )

( )

−+=

2

3

44,,

2244

3

yxyx

ssyxV

−+=

2

3

44

2244

NNNN xyyxU

( )22442222 64

)(2

1)(

2

1yxyx

kyxppH yx −+++++=

( ))(,)(,)()(

22

2222

syxVyxpp

H NN

NNyNxN

N ++

++

=

( )2 2 2 2 4 41 1( ) ( )

2 2 4x yH p p x y x y

= + + + + +

Page 22: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Example 2: continued

▪ Contour plot of the octupole potential and the betatron tunes

S. Nagaitsev, Jan 18, 201722

Page 23: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Example 3: polar coordinates

▪ Turns out such a potential exists and the system is separable in polar coordinates

S. Nagaitsev, Jan 18, 201723

( ))(,)(,)()(

22

2222

syxVyxpp

H NN

NNyNxN

N ++

++

=

Obviously, if , the time (ψ) dependence would vanish2 2

kV

x y+

Page 24: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Variables separation in polar coordinates

S. Nagaitsev, Jan 18, 201724

Page 25: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Example 3 continued

S. Nagaitsev, Jan 18, 201725

Page 26: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

S. Nagaitsev, Jan 18, 201726

Page 27: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

S. Nagaitsev, Jan 18, 201727

Page 28: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

S. Nagaitsev, Jan 18, 201728

Page 29: Integrable Particle Dynamics in Accelerators Tuesday ...nsergei/USPAS_W2019/Lecture5_accelerators… · Integrable Particle Dynamics in Accelerators Tuesday: Accelerators Sergei Nagaitsev

Summary

▪ We discussed how to transform the time variable to make the FOFO system “time independent”

▪ We then discussed several examples of how to exploit this time-independence to make the focusing system nonlinear, yet integrable.

S. Nagaitsev, Jan 18, 201729