28
Introducción a las resinas

Introducción a las resinas

Embed Size (px)

Citation preview

Page 1: Introducción a las resinas

Introducción a las resinas

Page 2: Introducción a las resinas

2

For technical information

Contact our Technical Centre at [email protected]

Telephone +32 3 250 97 33

Fax +32 3 250 97 45

Page 3: Introducción a las resinas

3

Índice de contenido

1. Introducción a las resinas EVAL™ 4

2. Grados de copolímeros EVAL™ 6

3. Propiedades de barrera de gases: información general 8

4. Propiedades de barrera de gases: efecto de las condiciones medioambientales 10

5. Transmisión del vapor de agua y absorción de humedad de las resinas EVAL™ 14

6. Propiedades mecánicas 16

7. Características térmicas 17

8. Procesamiento de las resinas EVAL™ 18

9. Resinas adhesivas 27

10. Utilización de productos reelaborados 27

Page 4: Introducción a las resinas

1. Introducción a las resinas

Kuraray y EVAL Europe

Kuraray Co., Ltd. es desde hace muchos años líder en tecnología y desarrollo para las barreras de gases. Es el primer

productor (y más importante) de resinas de EVOH (copolímero de etileno-alcohol vinílico), que se comercializan como

EVAL™; complementando su línea de productos barrera también es el fabricante de KURARISTER™.

La compañía se fundó en 1926 en la ciudad de Kurashiki, en Japón y su primera actividad fue en la fabricación

industrial de fibras químicas. Desde entonces, ha sacado el máximo provecho de su solidez tecnológica en los campos de

la polimerización y los productos sintéticos. Hoy en día, el grupo Kuraray consta de unas 70 empresas que emplean a más

de 7.000 trabajadores en todo el mundo.

Kuraray lleva fabricando y comercializando resinas de copolímero de etileno-alcohol vinílico (EVOH) desde el año 1972.

Desde entonces, EVAL™, la marca comercial registrada para estas resinas de EVOH, se ha convertido en uno de los

negocios clave de la compañía.

EVAL Europe nv se fundó en 1997 en Amberes como subsidiaria (controlada al 100 por cien por la empresa matriz) para

suministrar EVAL™ al mercado de Europa, Oriente Medio y África. Además, un equipo especializado asiste a los clientes

europeos desde su centro técnico y de desarrollo. El primer emplazamiento de producción de EVOH en Europa duplicó su

capacidad de producción en octubre de 2004, llegando a 24.000 toneladas al año.

Gracias a tres décadas de experiencia en la producción de EVOH, EVAL Europe es hoy en día el principal fabricante de

EVOH en la región.

Tecnología exclusiva de Kuraray

Kuraray Co., Ltd. ha desarrollado elevadas tecnologías de barrera líderes en el sector que son el resultado de la actividad

pionera de investigación y desarrollo que Kuraray ha realizado en este campo.

Las resinas EVAL™ se caracterizan por sus excelentes propiedades de barrera de gases y por su magnífica capacidad de

procesamiento en los procesos de coextrusión, siendo al mismo tiempo totalmente reciclables. La innovación tecnológica

ha permitido desarrollar una amplia gama de diferentes grados de resinas EVAL™ que se utilizan en sectores como el

envasado de alimentos y cosméticos, los equipos de construcción y fabricación, la automoción o diversas

aplicaciones industriales.

Los nuevos grados EVAL™ SP son orientables y permiten mejorar las propiedades y características del termoformado, de

la contracción y de las aplicaciones de barreras de polietileno tereftalato (PET). Manteniendo las elevadas propiedades de

barrera características de EVAL™, ofrecen ventanas de termoformado que se acercan mucho a las del PP o incluso del

PS para formas profundas y complejas. Además, permiten mejorar las propiedades de contracción de la barrera gracias a

una orientación de la coextrusión para películas con el proceso de tensado o de doble burbuja. Por otro lado, aportan a las

botellas de PET una magnífica barrera de gases de CO2 y oxígeno, con una excelente resistencia a la delaminación.

Las resinas EVOH EVAL™ también se encuentran disponibles en forma de película para aplicaciones técnicas y

especialmente exigentes, como en el caso de todos los matraces de plástico y no conductores.

4

Estructura molecular de las resinas EVAL™

La resina EVAL™ es un copolímero aleatorio de etileno-

alcohol vinílico. Se trata de un polímero cristalino que

tiene una estructura molecular representada por la

siguiente fórmula:

CAS n° 26221-27-2

Page 5: Introducción a las resinas

5

C

B

A

D

E

F

G

H

a Propiedades de barrera de gases

Las resinas EVAL™ ofrecen unas magníficas propiedades

de barrera de gases, que son superiores a las que presenta

cualquier otro polímero convencional. La calidad de los

alimentos suele deteriorarse debido a la presencia de oxígeno.

Sin embargo, el uso de copolímeros EVAL™ como material

de envasado ayuda a preservar mejor el sabor y la calidad,

pues evita que entre oxígeno a través del paquete.

Además, en las aplicaciones de envasado con atmósfera

modificada, donde se utilizan gases tales como el nitrógeno

o el dióxido de carbono para proteger el contenido, las

excelentes propiedades de barrera de gases de las resinas

EVAL™ mantienen eficazmente el gas dentro del paquete.

b Resistencia al aceite y a los disolventes orgánicos

La resistencia de los copolímeros EVAL™ a los aceites y a

los disolventes orgánicos es muy buena. Por lo tanto, las

resinas EVAL™ resultan adecuadas para envasar alimentos

aceitosos, aceites comestibles, aceites minerales, pesticidas

agrícolas y disolventes orgánicos.

c Preservación de los aromas y los sabores

Los paquetes que contienen resinas EVAL™ resultan

altamente eficaces en la retención de los olores y en la

preservación del aroma y el sabor del contenido del paquete

durante el período de tiempo deseado. Al mismo tiempo, se

evita que olores no deseados penetren en el paquete.

d Facilidad de impresión

Con un grupo -OH en su cadena molecular, la superficie

de la resina EVAL™ puede imprimirse fácilmente y sin un

tratamiento especial.

e Resistencia a la intemperie

Las resinas EVAL™ presentan una excelente resistencia a la

intemperie. Incluso cuando están expuestas a condiciones

meteorológicas externas, el polímero retiene su color, por

lo que no amarillea ni se vuelve opaco. Los cambios en las

propiedades mecánicas son mínimos, lo que demuestra una

alta resistencia global a los fenómenos atmosféricos.

f Brillo y transparencia

Las resinas EVAL™ otorgan un alto nivel de brillo y un bajo

nivel de opacidad, lo que se traduce en unas características

de claridad extraordinarias. El uso de resinas EVAL™ en

la superficie exterior de los paquetes confiere un toque

muy especial que mejora el aspecto exterior del paquete.

g Capacidad de procesamiento de las resinas EVAL™

Las resinas EVAL™ son polímeros termoplásticos y pueden

procesarse en equipos de fabricación convencionales. Las

resinas EVAL™ resultan adecuadas cuando se utilizan las

técnicas de fabricación siguientes:

• extrusióndepelículamonocapa(sopladaomoldeada)

• coextrusióndepelículamulticapa(sopladaomoldeada)

• coextrusióndeláminas

• moldeoporcoextrusiónysoplado

• coextrusióndetuberíasytubos

• recubrimientoporextrusión

• recubrimientoporcoextrusión

• recubrimientoporcoextrusióndetuberíasytubos

• moldeoporcoinyección

• laminación

Las resinas EVAL™ pueden coextrudirse con muchos

tipos de poliolefinas, poliamidas, poliestirenos y poliésteres.

Los procedimientos línea abajo, como el termoformado,

el moldeo por vacío o por presión y la impresión pueden

realizarse de la forma habitual con estructuras de películas

o láminas que contienen resinas EVAL™.

h Cumplimiento de la regulación sobre alimentos de las

resinas EVAL™

Las resinas EVAL™ cumplen con la Directiva de la UE sobre

el envasado de alimentos y su trasposición en las regulaciones

nacionales de los estados miembros.

Las resinas EVAL™ también están homologadas para su

uso en contacto directo con los alimentos, en contacto

indirecto o multicapa con los alimentos o para aplicaciones de

esterilización en retorta, tal como se expresa en las regulaciones

de la Administración de Fármacos y Alimentos (FDA) de los

Estados Unidos.

En este apartado hemos aludido brevemente a las características

más importantes de las resinas EVAL™. En los apartados

siguientes describiremos con más detalle las propiedades,

el comportamiento y los métodos de procesamiento que se

utilizan para las resinas EVAL™.

Comportamientos característicos de las resinas EVAL™

Page 6: Introducción a las resinas

G

E

H

C

J

T

F

L

M

2. Grados de copolímeros

La gama de grados más amplia

El copolímero de etileno-alcohol vinílico (EVOH) EVAL™ ofrece

unas excelentes propiedades de barrera de gases y una

magnífica capacidad de procesamiento. La clave para este

perfecto equilibrio de características es la adecuada relación

de copolimerización entre el etileno y el alcohol vinílico.

El proceso de fabricación exclusivo y patentado de Kuraray ha

producido la gama de grados de EVOH más amplia existente

en el mundo.

El tipo M de EVAL™ presenta el menor contenido en etileno

existente y ofrece la barrera más alta para aplicaciones flexibles

y del sector de la automoción.

El tipo L de EVAL™ tiene un contenido en etileno muy bajo

y resulta adecuado como grado de barrera ultraalta para

aplicaciones flexibles, de botellas y láminas.

El tipo F de EVAL™ ofrece unas magníficas prestaciones de

barrera con una alta estabilidad a largo plazo y constituye el

grado estándar para aplicaciones flexibles, de automoción, de

botellas y tuberías. También existen versiones específicas para

aplicaciones de recubrimiento y para tubería o tubos.

El tipo T de EVAL™ se desarrolló específicamente para

obtener una distribución de capas fiable en las aplicaciones de

termoformado, y se ha convertido en el estándar industrial para

aplicaciones flexibles de termoformado y de lámina multicapa.

El tipo J de EVAL™ ofrece unos resultados de termoformado

que son incluso superiores a los del tipo T, por lo que puede

utilizarse en aplicaciones de láminas sensibles o de embutición

inusualmente profunda.

El tipo C de EVAL™ puede utilizarse para aplicaciones flexibles

de recubrimiento y moldeo por coextrusión a alta velocidad.

El tipo H de EVAL™ combina las altas propiedades de barrera

con la estabilidad y la capacidad del termoformado a largo

plazo. El mayor contenido en etileno permite un procesamiento

más sencillo y tiempos de ejecución más largos en equipos

de extrusión más antiguos, sobre todo en estructuras flexibles

sopladas.

El tipo E de EVAL™ tiene un mayor contenido en etileno

que permite obtener una mayor flexibilidad e incluso un

procesamiento más sencillo.

El tipo G de EVAL™ presenta el contenido en etileno más

alto, lo que lo convierte en el mejor candidato entre los grados

estándares.

6

Escala de contenido en etileno (mol%)

24 mol%

27 mol%

32 mol%

35 mol%

38 mol%

44 mol%

48 mol%

Page 7: Introducción a las resinas

Grados de las resinas EVAL™ (EVOH)

A continuación se incluye una visión global de los grados de resinas EVAL™ y sus propiedades y aplicaciones típicas,

diferenciados por tipos estándares y especiales:

Tabla 1a: Grados estándares

7

*1 20 °C*2 190 °C, 2.160 g*3 seco*4 índice de transmisión de oxígeno, 20 °C, 65% HR (ISO 14663-2)

Tabla 1b: Versiones específicas de los tipos estándares

Tipo Cont.et.(mol%)

Densidad*1

(g/cm³)MFR *2

(g/10 min)Tm(°C)

Tg *3

(°C)OTR *4

(cc.20 µm/m².d.atm)

Aplicación

F101B 32 1,19 1,6 183 69 0,4 botella, lámina, película, tubo

F171B 32 1,19 1,8 182 57 0,4 botella, lámina, película, tubo

T101B 32 1,17 1,7 183 69 0,5 termoformado, lámina, película

H171B 38 1,17 1,7 172 53 0,7 película

E105B 44 1,14 5,5 165 55 1,5 lámina, película

Tipo Cont.et.(mol%)

Densidad *1

(g/cm³)MFR *2

(g/10 min)Tm(°C)

Tg *3

(°C)OTR *4

(cc.20 µm/m².d.atm)

Aplicación

F101A 32 1,19 1,6 183 69 0,4 F101 sin lubricante externo

F104B 32 1,19 4,5 183 69 0,4 tipo F con alto índice de flujo fundido (MFR)

E171B 44 1,14 1,7 167 54 1,5 tipo F con bajo índice de flujo fundido (MFR)

FP101B 32 1,19 1,6 183 69 0,4 tubo con antioxidante

FP104B 32 1,19 4,5 183 69 0,4 tubo con antioxidante

EP105B 44 1,14 5,5 165 55 1,5 tubo con antioxidante

*1 20 °C*2 190 °C, 2.160 g*3 seco*4 índice de transmisión de oxígeno, 20 °C, 65% HR (ISO 14663-2)

Tabla 1c: Grados especiales

*1 20 °C*2 190 °C, 2.160 g*3 seco*4 índice de transmisión de oxígeno, 20 °C, 65% HR (ISO 14663-2)*5 210 °C, 2.160 g

Tipo Cont.et.(mol%)

Densidad *1

(g/cm³)MFR *2

(g/10 min)Tm(°C)

Tg *3

(°C)OTR *4

(cc.20 µm/m².d.atm)

Aplicación

M100B 24 1,22 2,2*5 195 60 0,05 barrera ultraalta

L171B 27 1,20 4,0*5 190 60 0,2 barrera alta

J102B 32 1,17 2,0 183 69 0,6 termoformado profundo, lámina, película

C109B 35 1,17 9,3 177 53 0,6 revêtement par extrusion

G176B 48 1,12 6,9 159 49 3,2 films thermorétractables, orientés

Page 8: Introducción a las resinas

3. Propiedades de barrera de gases: información general

Las resinas EVAL™ presentan unas magníficas propiedades de barrera de gases que superan las que presentan todos los

demás plásticos que se utilizan hoy en día con objetivo de barrera (Tabla 2).

Tabla 2: Índice de transmisión de oxígeno

8

*P : La permeabilidad de las películas se expresa en cc.20 μm/m2.d.atm a la temperatura T en grados Kelvin (K = 273 + °C))

El grosor de la película de EVAL™ es inversamente proporcional a su índice de transmisión de oxígeno. Como las

propiedades de barrera del polímero varían según su grosor, puede diseñarse un paquete que cumpla los requisitos especí-

ficos seleccionando el grosor de capa de EVAL™ más adecuado.

Fig. 1: Grosor de EVAL™ e índice de transmisión de oxígeno

Índice de transmisión de oxígeno (cm³/m².d.atm)

Grosor de capa de EVAL™ (µm)

PE/EVAL™ F101B/PE co-extruded film35 °C, 0% HR

0,1 0,2 0,5

0,5

Películas Índice de transmisión de oxígeno al 0% HR(cc.20 µm/m².d.atm)

Fórmula al 0% HR *P

5 °C 20 °C 23 °C 35 °C

EVAL™ tipo F 0,06 0,2 0,25 0,6 P = 1,42 109 e-6647/T

EVAL ™ tipo E 0,3 0,8 1,2 2,4 P = 6,75 108 e-5994/T

Extrusión con PVDC de alta barrera 0,74 2,6 3,2 8,1 P = 3,31 1010 e-6822,5/T

PPBO recubierto de PVDC2μm 2,2 10 13 32 P = 2,36 1012 e-7693/T

PAN3 3 - 15,5 39 P = 1,02 1012 e-7389/T

PA 6 orientada 9,7 28 33 64 P = 2,77 109 e-5408/T

PA 6 moldeada 28 - 100 194 P = 1,37 1010 e-5560/T

PET orientado 13 40 46 400 P = 4,65 1015 e-9410/T

PVC rígido - 240 260 370 P = 1,87 106 e-2628/T

PPO - 2.900 3.200 - P = 4,82 107 e-2848/T

PEBD - 10.000 10.900 - P = 4,95 107 e-2493,9/T

Page 9: Introducción a las resinas

Las propiedades de barrera de oxígeno de un copolímero de etileno-alcohol vinílico variarán según el contenido en etileno del

polímero (Fig. 2). Los copolímeros EVAL™ se fabrican con diferentes niveles de contenido en etileno para permitir la selección

de un grado que se ajuste perfectamente a los requisitos de barrera, a las técnicas de procesamiento y a las demandas de

aplicación globales de uso final.

En general, la barrera de oxígeno, así como la barrera para otros gases, se ve afectada por la cristalinidad debida al proceso

de fabricación.

Fig. 2: Contenido en etileno e índice de transmisión de oxígeno

9

Además del oxígeno, las resinas EVAL™ ofrecen también una extraordinaria barrera frente a otros gases. A continuación se

facilitan los datos sobre la transmisión de dióxido de carbono, nitrógeno y helio a través de la película de EVAL™.

Tabla 3: Índices de transmisión de gases de polímeros seleccionados

20 °C

Índice de transmisión de oxígeno (cm³.20 µm/m².d.atm)

Contenido en etileno (mol%)

100 % RH

85 % RH

65 % RH

0 % RH

0,1

Películas Índice de transmisión de gases al 0% HR (cc.20 µm/m².d.atm)

N225 °C

O225 °C

CO225 °C

He25 °C

Ar35 °C

Ar50 °C

Kr35 °C

Kr50 °C

EVAL™ F101B 0,017 0,27 0,81 160 - 0,5 - 0,4

EVAL™ H171B - - - - - 3,5 - 1,0

EVAL™ E105B 0,13 1,23 7,1 410 1,6 7,0 - 1,8

OPA 6 12 38 205 2.000 - - - -

PA 6 moldeada - - - - 60 150 23 68

PET 8 54 110 3.100 - - - -

PPO 730 3.400 9.100 - 8.100 28.000 6.900 23.000

PEBD 3.100 12.000 42.000 28.000 19.000 46.000 25.000 74.000

Page 10: Introducción a las resinas

OTR (cm³.20 µm/m².d.atm)

Tipo G (48% etileno)

Tipo E (44% etileno)

Tipo J (32% etileno)Tipo H (38% etileno)

Tipo T(32% etileno)Tipo L (27% etileno)Tipo F (32% etileno)

Humedad relativa (HR%)

0,1

4. Propiedades de barrera de gases: efecto de las condiciones medioambientales

Las resinas EVAL™, tal como se ha indicado por la presencia de grupos hidroxilos en su estructura molecular, son

hidroscópicas y absorben fácilmente la humedad. La cantidad de humedad absorbida y la velocidad de absorción

dependerán de las condiciones medioambientales presentes. La absorción de la humedad depende de la temperatura y de

la humedad relativa del ambiente.

Humedad

Las propiedades de barrera de oxígeno de las resinas EVAL™ se ven afectadas negativamente por la cantidad de humedad

absorbida (Fig. 3). Por lo tanto, en las aplicaciones que implican prácticamente el 100% de humedad relativa, el grado de

resina EVAL™ menos afectado por la humedad en estas condiciones ofrecerá las mejores propiedades de barrera; en esta

situación, se recomienda el grado E de EVAL™ (44 mol% de contenido en etileno).

Fig. 3: Índice de transmisión de oxígeno a 20 °C frente a humedad relativa en resinas EVAL™

10

Page 11: Introducción a las resinas

11

No obstante, aunque las propiedades de barrera de las resinas EVAL™ disminuyen al aumentar la humedad, incluso a alta

humedad las resinas EVAL™ siguen manteniendo unas magníficas propiedades de barrera en comparación con otros materiales,

como los que se muestran en la figura 4.

Además, al coextrudir la resina EVAL™ entre capas de resinas de alta barrera contra la humedad, como el polietileno o el

polipropileno, se disminuye en gran medida la pérdida de propiedades de barrera de oxígeno. No obstante, es preciso tener en

cuenta las condiciones de humedad a la hora de diseñar elevadas estructuras de barrera.

Fig. 4: Índice de transmisión de oxígeno de varios polímeros frente a humedad relativa a 20 °C

OTR (cm³.20 µm/m².d.atm) ISO 14663-2 standard (65 HR%)

Tipo E (44% etileno)

Tipo F (32% etileno)

EVAL™ FILM (EF-XL)

Humedad relativa (HR%)

10.000

1.000

100

10

1

0,1

0% 20% 40% 60% 80% 100%

Page 12: Introducción a las resinas

Tratando de examinar el comportamiento de películas compuestas que contienen resinas EVAL™, se consideraron los cuatro

casos siguientes:

• 100%dehumedadrelativainterna(correspondienteaunalimentoconaltocontenidoenhumedad).

• 10%dehumedadrelativainterna(correspondienteaalimentoseco).

• 65%dehumedadrelativaexterna(correspondienteaunaatmósferaexternaordinaria).

• 80%dehumedadrelativaexterna(correspondienteaunaaltahumedadexterna).

Para todas estas combinaciones, se calculó el porcentaje de humedad relativa (HR) correspondiente de la capa intermedia de

resina EVAL™ y se obtuvo el índice de transmisión de oxígeno correspondiente al porcentaje de HR obtenido (tabla 4).

Tabla 4: Valores de HR y OTR de la capa central (EVAL™) en varias estructuras sándwich

12

OTR: índice de transmisión de oxígeno (cc.15 μm/m2.d.atm, 20 °C)

Los resultados indican con claridad que, al envasar productos de alta humedad, las propiedades de barrera de la capa de

resina EVAL™ se optimizarán si en el exterior se emplea una película con un elevado índice de transmisión de la humedad,

como puede ser la poliamida.

En el caso de que se envase materia seca, en el exterior debe utilizarse una película con un bajo índice de transmisión de la

humedad, como es el PP o el PE, para optimizar las propiedades de barrera de la capa de resina EVAL™.

La figura 5 demuestra que, incluso cuando se envasan alimentos húmedos, las estructuras multicapa que contienen una capa

de resina EVAL™ pueden diseñarse para ofrecer las propiedades de barrera de oxígeno del PVDC multiplicadas por 10.

Estructura de la película Interior húmedo (100% HR)HR exterior 65% HR exterior 85%

Interior seco (10% HR)HR exterior 65% HR exterior 80%

Exterior20 μm

Centro10 μm

Interior50 μm

HR del centro %

OTR del centro

HR del centro %

OTR del centro

HR del centro %

OTR del centro

HR del centro %

OTR del centro

PP EVAL™ tipo F

PEBD 79 0,7 88 1,8 43 0,2 52 0,2

PP EVAL™ tipo F

PP 75 0,6 86 1,3 49 0,2 60 0,3

PET EVAL™ tipo F

PP 72 0,5 84 1,1 54 0,2 66 0,4

PA (Poliamida)

EVAL™ tipo F

PEBD 67 0,4 81 0,8 62 0,3 77 0,6

PS EVAL™ tipo F

PEBD 68 0,4 82 0,9 61 0,2 75 0,6

PP EVAL™ tipo E

PEBD 79 3,6 88 5,6 43 1,5 51 1,7

PA (Poliamida)

EVAL™ tipo E

PEBD 68 2,5 82 4,2 60 2,1 74 3,1

Page 13: Introducción a las resinas

13

TemperaturaEl índice de transmisión de oxígeno de los copolímeros

EVAL™ también aumenta con la temperatura. Aumenta

en aproximadamente 3,3 veces su valor original

cuando la temperatura aumenta de 20 °C a 35 °C

(Tabla 2, Fig. 6 y 7).

Más específicamente, aumenta de acuerdo con el

aumento de la temperatura y la humedad relativa

(Fig. 7). Así, cuando se diseña una estructura de barrera,

es preciso tener en cuenta la temperatura y la humedad

del ambiente.

Índice de transmisión de oxígeno cm³.20 µm/m².d.atm)

EVAL™ Tipo E

EVAL™ Tipo F

Temperatura (C°)

0% HR

3,2 3,3 3,4 3,5 3,6 3,7

10

5

2

1

0,5

0,2

0,1

0,05

0,02

0,01

(1.000/°K)

Índice de transmisión de oxígeno (cm³.20µm/m².d.atm)

Días

Exterior 65% HRPVDC (2 µm)coated OPP (20 µm)PE (60 µm)Interior 100% HR

Exterior 65% HROPP (20 µm)EVAL™ F101B (15 µm)PE (60 µm)Interior 100% HR

0,2

0,5

Fig. 5: Cambios en el índice de transmisión de

oxígeno para estructuras de películas compuestas

Fig. 6: Efecto de la temperatura sobre el índice

de transmisión de oxígeno de las películas

de EVAL™

Fig. 7: Efecto de la temperatura sobre el índice

de transmisión de oxígeno en varias condiciones

de absorción de humedad

Temperatura (°C)

Índice de transmisión de oxígeno (cm³.20 µm/m².d.atm)

Absorción de humedad 9,6%

Absorción de humedad 4,5%

Absorción de humedad 7,3%

3,20,01

3,3 3,4 3,5 3,6

10050

20

510

21

0,5

0,20,1

0,05

0,02

(1.000/°K)

Page 14: Introducción a las resinas

5. Transmisión del vapor de agua y absorción de humedad de las resinas

Como se ha mencionado en el apartado anterior, las resinas EVAL™ son hidroscópicas y absorben humedad. La cantidad de

humedad absorbida y la velocidad de absorción dependerán de las condiciones medioambientales presentes. La absorción

de la humedad depende de la temperatura y de la humedad relativa del ambiente. A efectos de comparación, la tabla 5

muestra el índice de transmisión de vapor de agua (WVTR) de las películas monocapa de EVAL™ y de las películas de otros

polímeros. La figura 8 muestra la velocidad de absorción de humedad de la película monocapa de EVAL™; por lo general la

resina EVAL™ se coextrude o se lamina con otros materiales, lo que reduce considerablemente la velocidad de absorción

de la humedad en la resina EVAL™.

14

Absorción de humedad (%)

EVAL™ Tipo F 65% HR > 100% HR

EVAL™ Tipo E 65% HR > 100% HR

Días

EVAL™ Tipo F 0% HR > 65% HR

EVAL™ Tipo E 0% HR > 65% HR

Fig. 8: Absorción de humedad de EVAL™ Tabla 5: Índice de transmisión del vapor de agua

(WVTR) de las películas monocapa

Películas WVTR, 40 °C, 0/90% HR(g.30 µm/m².d)

EVAL™ tipo L (27% de etileno) 85

EVAL™ tipo F (32% de etileno) 50

EVAL™ tipo T (32% de etileno) 37

EVAL™ tipo H (38% de etileno) 28

EVAL™ tipo E (44% de etileno) 19

EVAL™ tipo G (48% de etileno) 19

EVAL™ F101 (orientado biaxialmente) 20

PVDC de alta barrera extrudible 3

PP orientado biaxialmente 5

PEAD 5

PP 9

PEBD 15

PET orientado biaxialmente 15

PVC rígido 40

PAN 80

PS 112

PA 6 orientada biaxialmente 134

Page 15: Introducción a las resinas

15

EVAL™ Tipo F

Equilibrio absorción de humedad (%)

EVAL™ Tipo E

Humedad relativa (% HR)

20 °C

Fig. 9: Equilibrio entre la absorción de humedad y

la humedad relativa de EVAL™

Fig. 10: Absorción de humedad de la película

multicapa de EVAL™ como función temporal

Absorción de humedad de la capa de EVAL™ (%)

20 °C, 100% HR

Días

Page 16: Introducción a las resinas

6. Propiedades mecánicas

16

Las resinas EVAL™ tienen una alta resistencia mecánica, así como una alta elasticidad y dureza de superficie y una excelente

resistencia a la abrasión.

Tabla 6: Propiedades mecánicas típicas de los tipos estándares de resina EVAL™

Todas las muestras se acondicionaron y comprobaron a 20 °C y con un 65% HR. La abrasión Tabor y la rigidez se midieron

en muestras moldeadas por presión en caliente. Otros valores se midieron en muestras moldeadas por inyección.

Elemento Unidad Condiciones de medición F101 F104 T101 H171 E105

Contenido en etileno mol% Método Kuraray 32 32 32 38 44

Módulo dúctil kg/cm² ASTM D-638 (10%/min)

2,7x104 2,7x104 2,0x104 - 2,1x104

Resistencia a la tensión (rendimiento)

kg/cm² ASTM D-638 (10%/min)

790 750 720 630/640 600

Alargamiento (rendimiento)

% ASTM D-638 (10%/min)

8 7 6 5 7

Resistencia a la tensión (rotura)

kg/cm² ASTM D-638 (10%/min)

730 590 660 910/390 520

Alargamiento (rotura) % ASTM D-638 (10%/min)

230 270 270 290/160 280

Módulo de flexión kg/cm² ASTM D-790 3,6x104 3,0x104 3,3x104 - 3,0x104

Resistencia a la flexión kg/cm² ASTM D-790 1.220 1.100 1.100 - 1.000

Resistencia al impacto Izod

kg/cm/cm

ASTM D-256 (con muescas)

1,7 1,0 1,6 - 1,0

Dureza de superficie Rockwell

M ASTM D-785 100 97 95 - 88

Resistencia a la abrasión Tabor

mg ASTM D-1175 1.000 ciclos desgaste rueda CS-17: 1 kg carga

1,2 2,2 2,0 - 2,2

Page 17: Introducción a las resinas

17

7. Características térmicas

Tabla 7: Propiedades térmicas típicas de los tipos estándares de resina EVAL™

Fig. 11: Contenido en etileno y punto de fusión, temperatura de cristalización y punto de transición vítrea

Temperatura (°C)

Punto de fusiónTemperatura de cristalización

Punto de transición vítrea

Contenido en etileno (mol%)

Elemento Unidad Condiciones de medición

F101 F104 T101 H171 E105

Contenido en etileno

mol% Método Kuraray 32 32 32 38 44

Punto de fusión °C Pico endotérmico DSC

183 183 183 172 165

Punto de reblandecimiento Vicat

°C Comprobador HDT 173 173 168 158 155

Temp. cristalización °C Pico exotérmico DSC 161 161 161 148 142

Punto de transición vítrea

°C Método de viscoelasticidad dinámica

69 69 69 53 55

Densidad de fusión (g/cm³) a 200 °C 1,06 1,06 1,04 - 1,02

Índice de flujo fundido

g/10 min 190 °C, 2.160 g 1,6 4,4 1,7 1,7 5,5

g/10 min 210 °C, 2.160 g 3,8 10,0 4,3 3,4 13

g/10 min 230 °C, 2.160 g 6,2 18 10 5,9 22

Viscosidad de fusión

Poise 190 °C, γ = 100 s-1 2,7x104 1,8x104 2,2x104 - 1,4x104

Poise 210 °C, γ = 100 s-1 1,6x104 0,95x104 1,4x104 - 0,9x104

Poise 230 °C, γ = 100 s-1 1,2x104 0,69x104 1,0x104 - 0,6x104

Coeficiente de expansión lineal

1/°C Por encima del punto de transición vítrea

11x10-5 11x10-5 12x10-5 - 13x10-5

Por debajo del punto de transición vítrea

5x10-5 5x10-5 6x10-5 - 8x10-5

Page 18: Introducción a las resinas

8. Procesamiento de resinas

Cilindros

•Serecomiendaunonaturaloranurado.

•Comotipodeaceroparaloscilindrosseutilizaaceronitruradooaleacionesespecialesparaconseguirunaaltaresistencia

al desgaste con la superficie interior rectificada.

•Elexteriordelcilindrodebedividirseen4ó5zonasparacontrolarmejorlatemperaturadeextrusión.

•Laparteinferiordelatolvaolagargantadealimentacióndebepoderrefrigerarseconaguaparaevitarunafusiónprematura

de la superficie de las bolitas, pues esto causaría un puenteado o un bloqueo de la tolva.

Tornillos

Las propiedades extrusoras, como el rendimiento, la temperatura de la resina, la consistencia del producto extruido, la estabi-

lidad de rendimiento, la potencia de consumo o similar, se determinan en gran parte en función del diseño de los tornillos.

•Tipodetornillo:serecomiendauntornilloderegulacióndeunaetapa(“roscacompleta”).

•DiseñoL/D:seprefierenlassiguienterelacioneslongitudadiámetro:

o Grado F (32 Et%): se recomiendan relaciones L/D de al menos 26

o Grado E (44 Et%): se recomiendan relaciones L/D de al menos 24

•Relación de compresión: se recomienda una relación de compresión de 3 (relación de compresión calculada como la

relación de volumen de canal de las secciones de alimentación y regulación del tornillo).

•Distribución de zonas: se recomiendan tornillos con un paso constante, sección de alimentación relativamente larga y

una profundidad de canal gradualmente descendente en la zona de compresión que conduce a la zona de regulación.

En la tabla siguiente se incluyen las mejores distribuciones de zona para las resinas EVAL™.

Tabla 8: Distribuciones de zona recomendadas

18

Debe evitarse el uso de tornillos de compresión rápida (4D o menos para la zona de compresión) como los que se utilizan

para procesar la poliamida (PA).

• Zonademezcla:lostornillosconzonasocabezalesdemezclapuedenutilizarseparaextrudirresinasEVAL™,aunqueen

general no es recomendable hacerlo. El uso de un cabezal de mezcla (de alto cizallamiento) puede restringir el flujo de

resina EVAL™, lo que provocará la degradación del polímero con el tiempo o tras la exposición prolongada al calor.

• Puntadeltornillo:serecomiendaunapuntadetornilloconunángulode120°a150°.

• Rosca:serecomiendaunaanchuraderoscaconstantede0,1D.

• Materialdeltornillo:serecomiendautilizaraceroalcromo-molibdeno,normalizadoantesdelrecubrimiento.Paraevitarque

se acumule polímero en el tornillo, se recomienda recubrir la superficie con cromo duro (30 - 50 μm) y realizar un acabado

en pulido, aunque en algunos casos también puede aplicarse un tratamiento de nitración.

• Holguradel tornillo: en lugardeofrecer una recomendación, incluimosel ejemplo siguientepara ilustrar la holguradel

tornillo; el diámetro interno del cilindro oscila entre 60,02 y 60,05 mm, en combinación con un diámetro de tornillo com

prendido entre 59,87 y 59,89 mm. Si como consecuencia del desgaste la holgura del tornillo se hace demasiado grande,

puede producirse un flujo de retorno de fusión, lo que a su vez puede provocar la degradación del material como conse

cuencia de los altos índices de cizallamiento.

L/D Zona de alimentación Distribución de zonasZona de compresión

Zona de regulación

28 8D 10D 10D

26 8D 9D 9D

24 8D 8D 8D

Page 19: Introducción a las resinas

19

Fig. 12: Diseño típico de un tornillo de regulación de una etapa de 60 mm

Dimensiones típicas

Diámetro 60 mm

Longitud de rosca 1 560 mm (26D)

Longitud de la sección de alimentación 480 mm (8D)

Longitud de la sección de compresión 540 mm (9D)

Longitud de la sección de regulación 540 mm (9D)

Relación de compresión 3

Paso constante (paso de rosca) 60 mm (1D)

Sección de alimentación de la profundidad de canal 8,4 mm

Sección de regulación de la profundidad de canal 2,5 mm

Anchura de canal 54 mm (9D)

Anchura de rosca 6 mm (0,1D)

Ángulo de rosca 17,65°

Ángulo de la punta del tornillo 120° ~ 150°

Radio rosca a raíz Secc. de alimentación Secc. de compresión Secc. de regulación

• Radio del borde entrante 8,4 mm 8,4-2,5 mm 2,5 mm

• Radio del borde de salida 5 mm 5-2 mm 2 mm

Drive Shank

Channel depth

Feed section Compression section

Flighted length

Note: screw drawing is not scaled to dimensions

Metering section

Channel depthPitch

Flight Channel Root Trailingedge

Leadingedge

Screwtip

Page 20: Introducción a las resinas

Rendimiento típico

Para un tornillo de regulación de una sola rosca, el rendimiento típico puede calcularse con el siguiente método simplificado,

donde no se tiene en cuenta el arrastre, el flujo, la presión de flujo o similar.

siendo : rendimiento (kg/h)

densidad de fusión (g/cm3)

rotación del tornillo (rpm)

diámetro del tornillo (mm)

profundidad del canal en la zona de regulación (mm)

anchura de canal (mm)

ángulo de rosca (grados)

Si el paso de rosca (P) es igual al diámetro del tornillo

y W = 0,9D, la ecuación anterior se convierte en la siguiente:

que coincide bastante con los resultados experimentales obtenidos con resinas EVAL™ lubricantes mixtas (a una presión de

retroceso de 0 a 20 MPa).

cuando la relación rendimiento real / rendimiento teórico = 0.8 - 1 : extrusión normal

cuando la relación rendimiento real / rendimiento teórico > 1 : sobre envasado

Los índices de cizallamiento generados pueden calcularse con

y deben estar comprendidos en el intervalo de 50 a 100 (1/s).

La tabla 9 muestra rendimientos típicos, que se consiguen utilizando un tornillo de regulación con la configuración

recomendada para las resinas EVAL™.

Tabla 9: Rendimiento calculado para el tornillo de regulación

20

* relación de compresión volumétrica ** intervalo normal *** valores teóricos

Diámetro del tornillo (mm) 25 40 50 60 90

L/D 26 26 26 26 26

Paso constante (mm) 25 40 50 60 90

Zonadealimentación,profundidad 8D, 4,9 mm 8D, 6,1 mm 8D, 6,6 mm 8D, 8,4 mm 8D, 11,6 mm

Zonadecompresión 9D 9D 9D 9D 9D

Zonaderegulación,profundidad 9D, 1,4 mm 9D, 1,8 mm 9D, 2,0 mm 9D, 2,5 mm 9D, 3,5 mm

Relación de compresión* 3 3 3 3 3

Paquete de pantallas (malla) 50/100/50/50 50/100/50/50 50/100/50/50 50/100/50/50 50/100/50/50

Capacidad del motor (kW) 2,2 ~ 3,7 7,5 ~ 11 11 ~ 15 15 ~ 22 37 ~ 55

Rotación del tornillo (rpm)** 30 - 70 30 - 70 30 - 70 30 - 70 30 - 70

Rendimiento (kg/h)** 2,1 - 5,0 7 - 16 12 - 29 22 - 51 69 - 162

Índice de cizallamiento (1/s)*** 28 - 65 35 - 81 39 - 92 38 - 88 40 - 94

~

Page 21: Introducción a las resinas

Important part

recommended not recommended not recommended

straight

long taper

21

Paquete de pantallas y platina perforada

La colocación de un paquete de pantallas y una platina perforada entre el extrusor y la boquilla representa una práctica habitual

en la extrusión industrial de polímeros. Para la extrusión de resinas EVAL™ se recomienda el uso de un paquete de pantallas.

La malla del paquete de pantallas debe elegirse de acuerdo con los conocimientos existentes sobre la extrusión industrial de

polímeros y guiándose siempre por el sentido común. Ejemplos de combinaciones típicas de mallas de acero inoxidable son:

50/100/50/50, 50/100/150/100 ó 80/150/50/50.

La distancia típica entre la punta del tornillo y el paquete de pantallas oscila entre 5 y 10 mm; una distancia más larga sólo

provocará un tiempo de permanencia innecesariamente más largo. Para la platina perforada se recomienda que las perforaciones

tengan un diámetro aproximado de 5 mm y que la fila superior de perforaciones rodee la superficie interior del cilindro.

Ruta de fusión (adaptador, tubo de fusión)

Las resinas EVAL™ son altamente adhesivas en las superficies metálicas. Si el sistema de extrusión de EVOH consta de partes cóncavas y convexas, ángulos agudos o similares, la resina EVAL™ puede retenerse fácilmente en estas zonas muertas. Incluso en un paso de diámetro fijo puede producirse una retención en la pared si el diámetro es demasiado grande para el flujo y, por lo tanto, el índice de cizallamiento es demasiado bajo. Si la resina retenida está expuesta al calor durante un período prolongado de tiempo, puede deteriorarse y formar geles o partículas oxidadas. Una resina degradada se reconoce porque adquiere una consistencia de gel amarillento, marrón o negro.

Al diseñar un equipo de procesamiento para resinas EVAL™, es preciso tener en cuenta los puntos siguientes para la ruta de fusión: • Índicedecizallamientoenlapared:superiora6s-1.• Índicedeflujomedio:superiora1cm/s.• Eliminecualquierángulocóncavo,convexooagudoquehayaenlarutadefusión.• Reduzcaaunmínimoeldiámetrodetodoslosadaptadores.• Aplique un revestimiento de cromo (y un acabado en pulido) a las superficies expuestas a la ruta de fusión de la resina EVAL™.

A continuación se incluyen ejemplos recomendables y no recomendables para el adaptador situado inmediatamente después de la platina perforada.

Fig. 13: Diseño del adaptador

Page 22: Introducción a las resinas

Boquillas Las resinas EVAL™ resultan adecuadas para diseños de boquilla con bloque de alimentación normal. No se necesitan diseños

de boquilla especiales, aunque hay que procurar adaptar lo más posible los canales de flujo, sobre todo en los casos de

diseños de boquilla complicados (por ejemplo, en las líneas de película soplada) que podrían tener un número aumentado de

zonas muertas y un tiempo de permanencia más largo de lo normal. Al igual que sucede con el adaptador y el tubo de fusión,

se recomienda aplicar un revestimiento de cromo a las superficies expuestas a la ruta de fusión de la resina EVAL™.

Resina EVAL™ lubricante mixta

El uso de la resina EVAL™ es aconsejable para mejorar la estabilidad del flujo de resina en la zona de alimentación del tornillo,

lo que da lugar a un índice de rendimiento más constante y un consumo de energía más bajo por parte del motor extrusor.

Temperatura de extrusión

Al procesar cualquier polímero es importante obtener una masa homogénea, completamente fundida y bien mezclada a

una temperatura uniforme. Asimismo, la temperatura debe controlarse de forma minuciosa para reducir a un mínimo la

descomposición térmica del polímero que se está procesando. Las resinas EVAL™ no suponen una excepción a esta regla.

La tabla que se incluye a continuación contiene los límites superiores e inferiores para la temperatura de extrusión:

Tabla 10: Límites superiores e inferiores para la temperatura de extrusión

22

Grado de resina EVAL™ L171 F171 F104 T101 H171 E105

Temperatura máxima °C 240 240 240 240 240 250

Temperatura mínima °C 210 200 200 200 200 185

Punto de fusión °C 191 183 183 183 175 165

Cabe recordar que, si la temperatura de extrusión supera los límites máximos recomendados, el polímero puede descomponerse

y formar geles y huecos en el material extruido. Por otro lado, a bajas temperaturas de extrusión, existe la posibilidad de que

la resina sólo se funda parcialmente, o de que la fusión no se mezcle o presente una mezcla heterogénea, lo que dará lugar a

un mal aspecto del material extruido, a un control anómalo del medidor de malla o a la aparición de puntos no fundidos en el

producto extruido.

La coextrusión con polímeros tales como PET, PA, PC o PP puede hacer que la resina EVAL™ entre en contacto con corrientes

fundidas que presentan una temperatura superior a la máxima recomendada. No obstante, este contacto se produce durante un

breve espacio de tiempo, por lo que no se producen efectos adversos.

La tabla 11 muestra las condiciones de temperaturas típicas de extrusión para diferentes grados de resinas EVAL™.

Page 23: Introducción a las resinas

23

Tabla 11: Diseños de tornillo típicos y condiciones de extrusión para las resinas EVAL™

Diámetro del extrusor 60 mmL/D 26Rosca Rosca completaPaso del tornillo 60 mm, constanteZonadealimentación,profundidad

de canal

8D, 8,4 mm

Zonadecompresión 9DZonaderegulación,profundidaddecanal 9D, 2,5 mmRelación de compresión 3,0Capacidad del motor 22 kWEstructura de la pantalla Malla 50/100/50/50

Grado de resina

EVAL™

M100 L171 F101

FP101

F171 F104

FP104

T101

J102

C109 H171 E105

EP105

E171 G156

Temperatura del cilindro

C1 °C 190 190 180 180 180 180 180 175 170 170 165

C2 °C 210 205 200 200 200 200 200 195 190 190 185

C3 °C 215 210 205 205 205 205 205 205 195 195 190

C4 °C 220 215 215 215 215 215 215 215 205 205 200

C5 °C 220 220 220 220 220 220 220 220 210 210 205

Temperatura del adaptador

AD1 °C 220 215 215 215 215 215 215 210 195 195 190

AD2 °C 220 215 215 215 215 215 215 210 195 195 190

Temperatura de la boquilla

°C 215 215 215 215 215 215 215 210 195 195 190

Page 24: Introducción a las resinas

Puesta en marcha, purga y apagado

Puesta en marcha

A la hora de poner en marcha la extrusión de las resinas EVAL™, se recomienda seguir el procedimiento que se indica

a continuación:

1. Rellene el extrusor con PEBD con MFR bajo (0,7 a 1,0), a fin de evitar la oxidación del material residual.

2. Inicie el proceso en una máquina bien limpia elevando la temperatura hasta el punto de ajuste e introduciendo PEBD con

MFR de 0,7 a 1,0. Asegúrese de que el tornillo no comience a rotar antes de que todo el material PEBD haya alcanzado

las condiciones de procesamiento.

3. Cuando la extrusión alcance un nivel estable, conmute directamente a EVAL™ sin vaciar el extrusor, pues así evitará que se

produzca una oxidación de la resina EVAL™ por la acción del oxígeno contenido en el cilindro calentado.

Purga

A la hora de realizar una purga entre lotes de producción, siga estos pasos:

1. Retire la resina EVAL™ de la tolva del extrusor.

2. Introduzca PEBD con MFR bajo (0,7 - 1,0) y purgue la resina EVAL™ del extrusor, pero manteniendo los mismos ajustes

de temperatura de procesamiento (o con una temperatura ligeramente más baja). Ajuste las condiciones de procesamiento

en el caso de que la extrusión se vuelva inestable. La presión en el extrusor debe ser suficientemente alta para garantizar

una limpieza adecuada.

3. Continúe la purga mediante el uso de PEBD con MFR bajo hasta que la resina EVAL™ residual se haya vaciado por

completo. Si esto no se puede determinar comprobando visualmente el aspecto del producto, configure una prueba de

purga específica para determinar el tiempo o la cantidad de material de purga que se necesita para limpiar el extrusor y el

cabezal de la boquilla.

Apagado

1. Introduzca PEBD con MFR bajo (0,7 - 1,0) y purgue la resina EVAL™ del extrusor, pero manteniendo los mismos ajustes de

temperatura de procesamiento (o con una temperatura ligeramente más baja). Ajuste las condiciones de procesamiento en el

caso de que la extrusión se vuelva inestable. La presión en el extrusor debe ser suficientemente alta para garantizar una

limpieza adecuada.

2. Continúe la purga mediante el uso de PEBD con MFR bajo hasta que la resina EVAL™ residual se haya vaciado por completo y,

después, compruebe el aspecto del producto.

3. La rotación del tornillo puede detenerse cuando el extrusor está completamente lleno de PEBD con MFR bajo, bajando las

temperaturas del extrusor (de este modo, se evita la oxidación del EVOH residual en el extrusor).

Se recomienda encarecidamente no utilizar la PA como material de purga, puesto que la PA reaccionará o se unirá con la resina

EVAL™ residual y formará numerosos geles.

También se recomienda no utilizar PP, PEAD o resinas adhesivas como material de purga, puesto que algunos PP y ciertos grados

de PEAD pueden contener algún catalizador residual que puede deteriorar fuertemente la resina EVAL™.

ETC-103 (MFR: 1,0) es una resina de purga con contenido en PEBD que fue desarrollada por Kuraray para los extrusores de purga

que utilizan resinas EVAL™, así como para mejorar la transición de la extrusión de las resinas EVAL™ a PA o poliolefinas. Dadas

sus propiedades químicas (además de la limpieza mecánica), se utiliza para eliminar los residuos de resina EVAL™ del extrusor y del

cabezal de la boquilla, o bien para mejorar el procedimiento de purga actual.

Si el tiempo de puesta en marcha es importante, puede introducirse un PEBD con MFR más alto (5 – 7) después de realizar la purga

con PEBD con MFR bajo (0,7 – 1,0). El PEBD con MFR más alto (5 – 7) permanece en el extrusor después del apagado y puede

retirarse mucho más rápidamente mediante la resina EVAL™ después de la puesta en marcha.

En el caso de que la aplicación implique una capa de rectificación (incl. EVAL™), se recomienda también purgar este extrusor con el

material original (PEBD, PEAD, PP).

24

Page 25: Introducción a las resinas

25

Apagado provisional del extrusor

Si la operación de extrusión tiene que detenerse temporalmente, pueden seguirse los siguientes procedimientos:

Tenga en cuenta que los tiempos máximos de apagado cuando hay EVAL™ en el extrusor dependen del equipo de

procesamiento, de los ajustes de temperatura y de los tiempos de permanencia.

Cambio a polímero

La tabla siguiente muestra las secuencias de purga recomendadas para un cambio que implique resinas EVAL™.

Tiempo de apagado Procedimiento

Hasta 30 minutos Mantenga los ajustes de temperatura; la rotación del tornillo puede detenerse

Hasta 3 horas Mantenga o disminuya los ajustes de temperaturas en aproximadamente 20 °C y accione el tornillo lentamente

Durante más de 3 horas Purgue la resina EVAL™ tal como se recomienda en el procedimiento de purga del extrusor

Resina antes del cambio Resina después del cambio Secuencia

PEBDL, PEBD EVAL™ Directa

EVAL™ PEBDL, PEBD Directa

PA, PEAD, PP, PS EVAL™ PA, PEAD, PP, PS PEBD EVAL™

EVAL™ PA, PEAD, PP, PS EVAL™ PEBD PA, PEAD, PP, PS

Page 26: Introducción a las resinas

Prevención de la absorción de humedad, secado

Como se ha mencionado en el apartado 4, las resinas EVAL™ son hidrófilas y absorben humedad cuando se exponen a la

atmósfera. Dependiendo del proceso de fabricación que se esté utilizando, un aumento en el contenido en humedad de las

resinas EVAL™ puede causar dificultades en el procesamiento; de este modo se puede producir espumado, huecos y geles

a niveles de humedad aumentados (normalmente por encima de 0,4 wt%).

Después de la producción, las resinas EVAL™ se secan y se envasan en bolsas resistentes a la humedad de 25 kg, o

en octabines de 700 kg. Mientras se realiza el envasado, es preciso controlar que el contenido en humedad sea en todo

momento inferior al 0,3%. Esto significa que las resinas EVAL™ no necesitan secarse cuando se procesan directamente

después de abrir el paquete.

No obstante, es preciso tomar las debidas precauciones para evitar una absorción excesiva de la humedad una vez abierto

el paquete, sobre todo en ambientes calientes y húmedos. Entre dichas precauciones cabe citar las siguientes:

•Vuelvaacerrarherméticamenteelpaquetedespuésdesuuso.

•Siutilizaunsistemadetransporteporaire,eviteunahumedadexcesivaenelairedetransporteutilizandouncaptador

de humedad.

•Siutilizaoctabines,noesnecesarioabrirelrevestimientointernoalinsertarlatuberíadetransporte;bastaconpracticarun

orificio en el revestimiento e insertar a través de él la tubería de transporte.

En condiciones normales de humedad, los paquetes pueden dejarse abiertos varios días mientras se están utilizando; para

condiciones de mayor humedad, consulte la figura 14.

Fig. 14: Reabsorción de humedad vs. tiempo

26

Reabsorción de humedad (D, B, %)

80% HR

65% HR

EVAL™ Tipo F

EVAL™ Tipo E

Tiempo (horas)

0,2

0

0,4

0,6

0,8

1,0 20 °C

En el caso de que el paquete de EVAL™ se haya dejado abierto durante un período prolongado de tiempo o en condiciones

de alta humedad, se recomienda realizar un proceso de resecado, como puede ser el mantenimiento durante 3 ó 4 horas en

un secador de tolva o en un secador de aire caliente de circulación a una temperatura comprendida entre 90 °C y 100 °C.

Asegúrese de que la temperatura del secador no sea superior a 110 °C para evitar la decoloración de la resina EVAL™.

Page 27: Introducción a las resinas

27

9. Resinas adhesivas

Para mejorar las propiedades de los materiales de envasado de plástico, suelen emplearse dos o más capas de polímeros en

una estructura compuesta. Estas estructuras multicapa pueden prepararse mediante recubrimiento, laminación o coextrusión.

No obstante, si se utilizan diferentes capas de polímeros en estructuras multicapa, suele haber una baja adhesión entre las

capas. Para solucionar esta deficiencia, se han desarrollado resinas adhesivas especiales que actúan como sustancia

aglutinante entre las capas de polímeros no adherentes.

En lo que respecta a las resinas EVAL™, es posible conseguir una buena adhesión entre la resina EVAL™ y la PA sin

utilizar una capa adhesiva. Sin embargo, en las coextrusiones con poliolefinas, PET, PS, PC o similar, se necesita una capa

adhesiva entre estos polímeros y las resinas EVAL™. Dependiendo de la resina contratipo, en el mercado existen diversas

resinas adhesivas.

10. Utilización de productos reelaborados

Una de las preocupaciones económicas más importantes que surge durante la coextrusión es la pérdida de recortes o rebabas

de la película multicapa. En las operaciones con película monocapa, estos recortes se reelaboran y reciclan con una pérdida

económica mínima para el procesador. No obstante, el reprocesamiento de las películas multicapa no puede realizarse si los

diferentes polímeros son térmicamente distintos o presentan diferencias esenciales.

Pero éste no es el caso cuando se utilizan resinas EVAL™. Las estructuras multicapa que contienen resina EVAL™ pueden

recuperarse y reutilizarse. Por ejemplo, el recorte de extrusión que contiene resina EVAL™ puede reciclarse de forma eficaz

cuando se están fabricando láminas, botellas o depósitos de combustible.

Cabe destacar, no obstante, que si el producto reelaborado se almacena sin utilizar durante un período prolongado de tiempo,

puede producirse una absorción de humedad en el componente EVAL™, lo que significa que el producto reelaborado deberá

secarse antes de la extrusión. Siempre que sea posible, se recomienda utilizar el producto que contiene EVAL™ lo antes posible

una vez reprocesado, pues así se evitará la aparición de posibles dificultades debido al alto contenido en humedad.

En algunas aplicaciones, Kuraray desarrolla lotes especiales “maestros” de reelaboración, a fin de evitar problemas de

procesamiento durante la extrusión del material reelaborado, aumentar el máximo nivel de contenido en EVOH en el producto

reelaborado y mejorar las propiedades del producto final.

Page 28: Introducción a las resinas

EVAL™, la resina de EVOH más importante del mundo

Europa

EVAL Europe nv (Amberes, Bélgica)

Capacidad: 24.000 toneladas/año

El primer y más grande emplazamiento europeo de

fabricación de EVOH

América

Kuraray America Inc. (Pasadena, Texas, EE.UU.)

Capacidad: 35.000 toneladas/año

El emplazamiento de producción de EVOH más grande en

el mundo

Asia-Pacífico

Kuraray Co., Ltd. (Okayama, Japón)

Capacidad: 10.000 toneladas/año

El primer emplazamiento de producción de EVOH en

el mundo

KURARAY CO., LTD.

KURARAY CO., LTD. (Shanghai)

Building better barriers

Contacto

EVAL Europe nv

Haven 1053

Nieuwe Weg 1 - Bus 10

B-2070Zwijndrecht(Amberes)

Bélgica

Teléfono: +32 3 250 97 33

Fax: +32 3 250 97 45

www.eval.eu

Las resinas EVAL™ se fabrican en todo el mundo

siguiendo las especificaciones de calidad y de

producción homologadas de Kuraray.

NOTA

La información, las especificaciones, los procedimientos, los métodos y las recomendaciones que se incluyen en este documento se presentan de buena fe y son correctos y precisos según nuestro leal saber y entender. No obstante, existe la posibilidad que estén incompletos o no sean aplicables a todas las condiciones y situaciones. No se adopta ninguna representación, garantía o responsabilidad respecto a la integridad de la información, las especificaciones, los procedimientos, los métodos y las recomendaciones que se han mencionado, ni tampoco respecto a que la aplicación o el uso de tales informaciones pueda evitar algún tipo de lesión personal o material, o a que los mismos no puedan infringir patentes de otros o dar los resultados deseados. Así pues, antes de proceder, los usuarios deberán asegurarse de que las informaciones, las especificaciones, los procesos, los métodos y las recomendaciones que aquí se incluyen resulten adecuados para el objetivo de uso.

EU

-TE

C 2

007

© K

urar

ay C

o., L

td.

Las

foto

graf

ías

utiliz

adas

en

este

folle

to s

on s

ólo

mue

stra

s re

pres

enta

tivas

de

las

posi

bles

apl

icac

ione

s de

l pro

duct

o.