42
Mapua Institute of Technology School of Mechanical Engineering LECTURE ON INTERNAL COMBUSTION ENGINE

internal cumbustion engine

Embed Size (px)

Citation preview

Page 1: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 1/42

Mapua Institute of Technology

School of Mechanical Engineering

LECTURE

ON

INTERNAL COMBUSTION ENGINE

Page 2: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 2/42

 OTTO CYCLE

I. Diagrams

II. PVT Relations

Process 1-2: isentropic compression 

021

1221

1

12

1

1

2

1

1

1

2

1

2

  

  

  

  

Q

T T mC W 

r T T 

r V V 

PP

T T 

v

k k 

k k 

 

Process 2-3: isometric heat addition 

2332

32

1

123

1

12

2

3

2

3

0

T T mC Q

r r T r T T 

r T T 

r P

P

v

k  p p

 p

 

Process 3-4: isentropic expansion 

0

1

1

43

3443

1134

1

123

11

4

3

1

3

4

3

4

 

 

 

 

 

  

 

 

  

 

 

  

 

Q

T T mC W 

r T r 

T T 

r r T r T T 

r V 

P

P

v

 pk 

k  p p

k k 

 

Process 4-1: isometric heat rejection 

Page 3: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 3/42

ansionV 

V r 

 pressureP

Pr 

ncompressioV 

V r 

ratio

T T mC Q

P

P

 p

v

exp

:

0

3

4

2

3

2

1

4114

14

4

1

4

1

 

clearanceV V V C  32  

Where: c is the percent clearance

 DC  V cV   

…since 21 V V V  D  

 

  

 

2

21

1

V V V V  D  

…then

1 k 

 D

 D r V c

V  

Therefore,

c

cr k 

1

 

III. Heat Added, Q A 

11

1

1

1

1

1

23

32

 p

k v

k  pv

v

 A

r r T mC 

r T r r T mC 

T T mC 

QQ

 

IV. Heat Rejected, QR 

 pv

 pv

v

 R

r T mC 

r T T mC 

T T mC 

QQ

11

11

41

14

 

V. Work net, WKnet 

111

1

k  pv

 R A

r r T mC 

QQWknet  

VI. Thermal Efficiency, th   

%1001

1

%100

1

 A

th

Q

Wknet  

 

VII. Mean Effective Pressure, PMEP 

11

111

1

k  pk 

 MEP

r k 

r r r P

Wknet P

 

Page 4: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 4/42

Sample Problem: An air std. Otto cycle uses 0.1 kg of air andhas a 17% clearance. The initial conditionsare 98 kPa and 37˚ C, and the energyrelease during combustion is 1600 KJ/kg.Determine the (a) compression ratio, r k, (b)pressure, volume and temperature, PVT atthe four cycle state points, (c)displacement volume, Vd and meaneffective pressure, PMEP, (d) Work net,

WKnet, and (e) cycle efficiency, th  .

(a) compression ratio, r k 

8824.6

17.0

17.01

1

c

cr 

 

(b) PVT at the four cycle state points

3

3

1

23

0132.0

8824.6

0908.0

m

m

V V 

 

r T T k 

6.397

6.670

8824.631014.1

1

12

 

…since Q A = Cv (T3-T2)

K kg

KJ 

kg

KJ 

T C 

qT 

v

 A

25.2900

6.670

7176.0

1600

23

 

325.4

6.670

25.2900

2

3

T r P

 

3

1

1

14

0908.0

98

27337287.01.0

m

kPa

K K kg

KJ kg

P

mRT 

V V 

 

  

 

Page 5: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 5/42

Page 6: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 6/42

DIESEL CYCLE

I. Diagrams

II. PVT Relations

Process 1-2: isentropic compression 

021

1221

1

12

1

1

2

1

1

1

2

1

2

 

 

 

 

 

 

 

 

Q

T T mC W 

r T T 

P

P

v

k k 

 

Process 2-3: isobaric heat addition 

2332

232332

1

123

1

12

2

3

2

3

T T mC Q

T T mRV V PW 

r r T r T T 

r T T 

r V 

 p

k cc

c

 

Process 3-4: isentropic expansion 

043

3443

14

1

123

1

1

2

1

4

3

1

3

4

3

4

  

  

  

  

  

  

  

  

Q

T T mC W 

r T T 

r r T r T T 

r r 

V V r 

V V 

PP

T T 

v

c

k cc

k

c

c

 

Process 4-1: isometric heat rejection 

ansionV 

V r 

of f cut V 

V r 

ncompressioV 

V r 

ratio

T T mC Q

P

P

c

v

exp

:

0

3

1

3

4

2

3

2

4

2

1

4114

14

4

1

4

1

 

Page 7: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 7/42

III. Heat Added, Q A 

11

1

23

32

c

k  p

 p

 A

r r T mC 

T T mC 

QQ

 

IV. Heat Rejected, QR 

cv

cv

v

 R

r T mC 

r T T mC 

T T mC 

QQ

11

11

41

14

 

V. Work net, Wknet

111

1

cc

k v

 R A

r r kr T mC 

QQWknet  

VI. Thermal Efficiency, th   

%100

1

111

%100

1

 

 

 

 

c

c

 A

th

r k 

Q

Wknet  

 

VII. Mean Effective Pressure, PMEP 

11

111

1

cc

k k 

 MEP

r k 

r r kr r P

Wknet P

 

Sample Problem: 

 A one cylinder Diesel engine operates on

the air-standard cycle and receives 27

Btu/rev. The inlet pressure is 14.7 psia, the

inlet temperature is 90°F, and the volume

at the bottom dead center is 1.5 ft3. At the

end of compression the pressure is 500

psia.

Determine:

(a) the cycle efficiency

(b) the power if the engine runs at 300RPM

(c) the mean effective pressure

Solution:

(a) the cycle efficiency

3

4111 5.1,550,7.14 ft V V  RT  psiaP  

rev BTU Qand  psiaP  A 275002  

4176.127.14

500 4.1

11

1

2

2

1  

 

 

 

 

 

 

 

k  P

P

r   

lb

 R Rlb

lb ft 

 ft  ft 

in

in

lb

 RT 

V Pm 1082.0

55034.53

5.11447.143

2

2

2

1

11

 

  

 

 

Rr T T 

53.15064176.12550 14.11

12

 

53.1506

24.01082.0

2723

 

  

 

 Rlb

 Btulb

 BtuT 

mC 

QT 

P

 A

 

 RT  27.25463  

Page 8: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 8/42

6902.153.1506

27.2546

2

3

2

3

V r C 

 

%100

1

111

1

 

  

 

TH r k 

r    

%59%100

16902.14.1

16902.1

4176.12

11

4.1

14.1

 

 

 

 

TH  

 

(b) the power if the engine runs at 300RPM

rev

lb ft or rev

 Btu

rev

 BtuQW  TH  A NET  09.396,1293.1559.027 

 

 

  

 

 

  

 

lb ft 

 HPrev

rev

lb ft  N W Power   NET 

000,33

min

min30009.396,12

 

 HPPower  7.112  

(c) the mean effective pressure

11

111

1

C C 

k k 

 MEPr k 

r r kr r PP  

142.1214.1

169.1169.142.124.142.127.14

4.114.1

 psiaP MEP

 

 psiP MEP 4.62  

DUAL COMBUSTION CYCLE

I. Diagrams

II. PVT Relations

Process 1-2: isentropic compression 

k k 

r V 

P

P

 

  

 

 

  

 

2

11

1

1

2

1

1

2  

Process 2-3: isometric heat addition 

 pr P

P

2

3

2

3  

Process 3-4: isobaric heat addition 

cr V 

3

4

3

4  

Page 9: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 9/42

Process 4-5: isentropic expansion 

5

41

1

4

5

1

4

5

P

P k k 

 

  

 

 

  

 

 

Process 5-1: isometric heat rejection 

5

1

5

1

P

P

T   

III. Heat Added, Q A 

3423

3423

4332

T T k T T mC 

T T mC T T mC 

QQQ

v

 pv

 A

 

IV. Heat Rejected, QR 

51

15

T T mC 

QQ

v

 R

 

V. Work net, Wknet

513423 T T T T k T T mC 

QQWknet 

v

 R A

 

VI. Thermal Efficiency, th   

3423

513423

%100

T T k T T mC 

T T T T k T T mC 

Q

Wknet 

v

v

 A

th

 

 

1

4

5

45

1

134

1123

1

12

3423

15

:

%1001

 

  

 

c p

k c

 pk 

k  p

T T 

r r r T r T T 

r r T r T T 

r T T 

where

T T k T T 

T T 

 

but,

3

4

4

5

3

5

V   

then,c

c r 

V V 

V V 

V V 

V  2

1

3

4

4

5

3

5  

so that… 

15 T r r T   pk 

c  

and… 

%10011

111

1

 

 

 

 

 

 

 

 

c p p

 p

c

thr kr r 

r r 

r    

VII. Mean Effective Pressure, PMEP 

 MEPV 

Wknet P  

Page 10: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 10/42

Sample Problem

Given :P1 = 100kPaT1 = 300Kr k = 13T4 = 2750KP4 = 6894kPaCv (air) = 0.7174

Required: WKnet 

Solution:

34 6894 PkPaP  

So… 

9.178.3626

6894

2

3 kPa

kPa

P

Pr  p  

 Also,

3

4

r c ; 32 V V   

Then… 

73.1

133006894

275078.362614.1

2

4

4

2

2

2

4

4

3

4 \ 

K kPa

K kPa

P

P

P

mRT 

P

mRT 

V r c

 

833.1227300

202.1590049.27514.1

948.836202.1590

833.122773.19.13005

049.275173.1202.15904

202.15909.1948.8363

948.83613300

300

14.1

2

1

vmC Wknet 

K K T 

K K T 

K K T 

K K T 

K T 

 

Page 11: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 11/42

ENGINE TYPES IN TERMS OF CHARGING 

4-stroke engine

1st stroke (Intake):

The piston sucks in the fuel-air-

mixture from the carburetor into

the cylinder.

2nd stroke (Compression): 

The piston compresses the

mixture.

3rd stroke (Combustion): 

The spark from the spark plug

inflames the mixture. The

following explosion presses the

piston to the bottom, the gas is

operating on the piston.

4th stroke (Exhaust): The

piston presses the exhaust out

of the cylinder.

 

By means of a crank shaft the up and down motion is convertedinto a rotational motion.

2-stroke engine

1st stroke 

The compressed fuel-air mixture ignites and

thereby the piston is pressed down. At the same

time the intake port I is covered by the piston.

Now the new mixture in the crankcase becomes

pre-compressed. Shortly before the piston

approaches the lower dead centre, the exhaust

port and the overflow conduit are uncovered.

Being pressurized in the crankcase the mixture

rushes into the cylinder displacing the consumed

mixture (exhaust now).

2nd stroke 

The piston is moving up. The overflow conduit

and the exhaust port are covered, the mixture in

the cylinder is compressed. At the same time

new fuel-air mixture is sucked into the crankcase.

Page 12: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 12/42

COMPARISON OF GASOLINE AND DIESEL ENGINES

Diesel Engine

 Advantages

Lower fuel cost

Higher efficiency

Readily available for a wide range of sizes and application

Lower running speed

Disadvantages

Maintenance is more expensive

Heavier and bulkier for a given power 

Higher capital cost

Pollution

Gasoline Engine

 Advantages

Light – hence more portable

Lower capital costs

Cheaper to maintain

Higher running speeds

Disadvantages

Not so durable – especially under continuous long term usage

Lower efficiency for equivalent power  Fuel is more expensive

Narrow range of off-the-shelf engines available – smaller engines more readilyavailable

Pollution

Page 13: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 13/42

COMBUSTION

A chemical reaction in which fuel combines with oxygen; liberation of a large amount of heat energy.

Combustion of Solid Fuel 

Facts:- when C is burned, it becomes flue gas- mole (a unit of volume)- all products of combustion should be released ion the stock

- hot molecules are lighter 

a. combustion of Carbon, C 

121)443212(

443212

4412161121

111

22

22

22

22

22

lbCOlbOlbC 

lbCOlbOlbC 

COmole

lbmoleO

mole

lbmoleC 

mole

lbmole

moleCOmoleOmoleC 

COOC 

 

1 lb of C requires3

22 lbs of O2 to produce

3

23 lbs of CO2

b. combustion of Hydrogen, H 2  

41)36324(

36324

1822161212

212

22

222

222

222

222

222

OlbH lbOlbH 

OlbH lbOlbH 

O H mole

lbmoleO

mole

lbmole H 

mole

lbmoles

OmolesH moleOmolesH 

O H O H 

 

1 lb of H2 requires 8 lbs of O2 to produce 9 lbs of H2O

C

S

H2 

O2 

N2 

Page 14: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 14/42

c. combustion of Sulfur, S 

321)643232(

643232

6412161121

111

22

22

22

22

22

lbCOlbOlbS 

lbCOlbOlbS 

SOmole

lbmoleO

mole

lbmoleS 

mole

lbmole

moleSOmoleOmoleS 

SOOS 

 

1 lb of S requires 1 lb of O2 to produce 2 lbs of SO2

Generalization:

O(oxygen-fuel ratio) =

lbS 

lbO

lbH 

lbO

lbC 

lbO 2

2

22 183

22  

…for a given gravimetric analysis of coal

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

lbfuel

lbOS 

lbfuel

lbOO H 

lbfuel

lbOC 

lbfuel

lbS S 

lbS 

lbO

lbfuel

lbH  H 

lbH 

lbO

lbfuel

lbC C 

lbC 

lbO

O

2222

2

222

2

22

18

83

22

183

22

 

…instead of supplying pure O2, supply air 

<gravimetric> Air = 23.1% O2 + 76.9% N2 

<volumetric> Air = 21% O2 + 79% N2

 …then 

 

 

 

 

 

  

 

 

  

 

 

  

 

 

 

 

 

lbair 

lbOlbfuel

lbOS 

lbfuel

lbOO H 

lbfuel

lbOC 

lbair 

lbOlbfuel

lbO

O

 A

2

2222

2

2

2

231.0

11

88

3

22

231.0

1

 

lbfuel

lbair S 

lbfuel

lbair O H 

lbfuel

lbair C  33.4

863.345.11 2

2  

  

   

Page 15: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 15/42

 Problem: Given the ultimate/gravimetric analysis of coal as follows:

S = 4.79%; H2 = 5.39%; C = 62.36%; N2 = 1.28%; O2 = 15.5%

Calculate the following:(a) Theoretical oxygen-fuel ratio(b) Actual air-fuel ratio at 20% excess(c) Gravimetric analysis of dry and wet flue gas

Solution:

(a) theoretical oxygen-fuel ratio,F 

lbfuel

lbO

lbfuel

lbS 

lbS 

lbO

lbfuel

lbH 

lbH 

lbO

lbfuel

lbC 

lbC 

lbO

O

2

22

2

22

988.1

0479.018

155.00539.086236.0

3

22

 

 

 

 

 

  

 

 

 

 

 

 

(b) actual air-fuel ratio,aF 

 A 

lbfuel

lbair 

lbair 

lbO

lbfuel

lbO

lbair 

lbOF 

O

 Awhere

 A

eF 

 A

 A

t a

606.8

231.0

998.1

231.0

1:

2.01

1

2

2

2

 

 

 

 

 

…then,

lbfuel

lbair 

lbfuel

lbair 

eF 

 A

 A

t a

338.10

20.1606.8

1

 

Page 16: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 16/42

 

(c) gravimetric analysis of dry gas

O H dgwg

O N SOCOdg

mmm

mmmmm

2

2222

 

lbfuel

lbdgm

lbfuellbO

lbfuellbOexcess

F Om

lbfuel

lbN 

lbair 

lbN 

lbfuel

lbair 

lbfuel

lbN m

lbfuel

lbSO

lbfuel

lbS 

lbS 

lbSOm

lbfuel

lbCO

lbfuel

lbC 

lbC 

lbCOm

dg

O

 N 

SO

CO

73.103976.09564.70958.0287.2

3976.02.0988.1

9564.7769.033.100128.0

0958.00479.02

287.26236.03

23

22

222

22

22

2

2

2

2

 

  

 

 

  

 

 

  

 

 

%705.3%10073.10

3976.0%

%1509.74%10073.10

9564.7%

%8928.0%10073.10

0958.0%

%3141.21%10073.10

287.2%

2

2

2

2

O

 N 

SO

CO

G

G

G

G

 

…for wet flue gas 

lbfuel

lbwgm

lbfuel

OlbH 

lbfuel

lbH 

lbH 

OlbH m

wg

O H 

2151.114851.073.10

4851.00539.09 22

2

2

2

 

  

 

 

Page 17: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 17/42

 

%3259.4%1002151.11

4851.0%

%5452.3%1002151.11

3976.0%

%9436.70%1002151.11

9564.7%

%8542.0%1002151.11

0958.0%

%3921.20%1002151.11

287.2%

2

2

2

2

2

O H 

O

 N 

SO

CO

G

G

G

G

G

 

 Assignment: Given the ultimate/gravimetric analysis of coal as follows:

S = 0.55%; H2 = 4.5%; C = 84.02%; N2 = 1.17%; O2 = 6.03%

Calculate : (a)Theoretical oxygen-fuel ratio(b) Actual air-fuel ratio at 20% excess(c) Gravimetric analysis of wet flue gas

Solution:

(a) theoretical oxygen-fuel ratio,F 

lbfuel

lbO

lbfuel

lbS 

lbS 

lbO

lbfuel

lbH 

lbH 

lbO

lbfuel

lbC 

lbC 

lbO

O

2

22

2

22

546.2

0055.018

0603.0045.088402.0

3

22

 

  

 

 

  

 

 

  

 

 

(b) actual air-fuel ratio,aF 

 A 

lbfuel

lbair 

lbair 

lbO

lbfuel

lbO

lbair 

lbOF 

O

 Awhere

 A

eF  A

F  A

t a

0216.11

231.0

546.2

231.0

1:

2.01

1

2

2

2

 

 

 

 

 

Page 18: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 18/42

…then,

lbfuel

lbair 

lbfuel

lbair 

eF 

 A

 A

t a

2260.13

20.10216.11

1

 

(c) gravimetric analysis of wet gas

O H O N SOCOwg mmmmmm22222

 

lbfuel

lbwgm

lbfuelOlbH 

lbfuellbH 

lbH OlbH m

lbfuel

lbO

lbfuel

lbOexcess

Om

lbfuel

lbN 

lbair 

lbN 

lbfuel

lbair 

lbfuel

lbN m

lbfuel

lbSO

lbfuel

lbS 

lbS 

lbSOm

lbfuel

lbCO

lbfuel

lbC 

lbC 

lbCOm

wg

O H 

O

 N 

SO

CO

1882.14405.05092.0182.10011.0081.3

4851.00539.09

5092.02.0546.2

182.10769.026.130117.0

011.00055.02

081.38402.03

23

22

2

2

22

222

22

22

2

2

2

2

2

  

  

 

  

 

 

  

 

 

  

 

 

%8571.2%854.2%1001882.14

405.0%

%5908.3%589.3%1001882.14

5092.0%

%7827.71%764.71%1001882.14

182.10%

%0776.0%0775.0%1001882.14011.0%

%7354.21%715.21%1001882.14

081.3%

2

2

2

2

2

O H 

O

 N 

SO

CO

G

G

G

G

G

 

Page 19: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 19/42

Calculating for the volumetric analysis of wet flue gas 

solution:wg

CO

wg

CO

COn

n

V V  22

2% ;

2

2

2

CO

CO

CO MW 

mn  

 

 

 

 

2

2

2

2

2%

CO

wg

CO

wg

wg

CO

CO

CO MW 

 MW G

 MW 

m

 MW 

m

V   

where:

lbmole

lb MW 

 MW 

G

 MW 

G

 MW 

G

 MW 

G

 MW 

G

 MW m

m

 MW m

m

 MW m

m

 MW m

m

 MW m

m

 MW 

m

 MW 

m

 MW 

m

 MW 

m

 MW 

m

m

n

m MW 

wg

O H 

O H 

O

O

 N 

 N 

SO

SO

CO

CO

O H wg

O H 

Owg

O

 N wg

 N 

SOwg

SO

COwg

CO

O H 

O H 

O

O

 N 

 N 

SO

SO

CO

CO

wg

wg

wg

wg

6113.29

18

028571.0

32

035908.0

28

717827.0

64

000776.0

44

217354.0

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Page 20: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 20/42

 

%7001.418

6113.298571.2%

%3327.332

6113.295908.3%

%9135.75

28

6113.297827.71%

%034.064

6113.290776.0%

%6276.1444

6113.297354.21%

2

2

2

2

2

 

  

 

 

  

 

 

 

 

 

 

  

 

 

  

 

O H 

O

 N 

SO

CO

 

Heating Value  – quantity of heat produced by the combustion of fuel under specified condition per

unit weight or unit of volume.

HHV (Higher Heating Value)  –  accounts for the energy carried by the superheated watervapor. The products of combustion of fuel with H2 content producing vapor insuperheated state and will usually leaves the system, thus carrying with it the energy

represented by the superheated water vapor.

LHV (Lower Heating Value)  –  is found by deducting the heat needed to vaporize themechanical moisture and the moisture found when fuel burns from HHV.

HHV for Coal: Dulong’s Formula 

HHV = 14,600 C + 62, 000 (H2  – O2 /8) + 4050 S BTU/lb

HHV = 33,820 C + 144,212 (H2  – O2 /8) + 9,304 S kJ/kg

Page 21: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 21/42

Properties of Liquid Fuels

1. Specific Gravity

5.131

60

60

@..

5.141

0

0

0

GS 

 API 

 

130

60

60@..

140

0

0

0

GS 

 BAUME   

2. Calorific or Heating Value

HHV = 18,440 + 40 (0 API - 10) BTU/lb for kerosene

HHV = 18,650 + 40 (0 API – 10) BTU/lb for gas fuels, oil or distillate light oils

Faragher Marrel & Essax Equation:

HHV = 17,645 + 54 (0

API ) BTU/lb for heavy cracked fuel oil.

Naval Boiler Laboratory Formula:

HHV = 18,250 + 40 (0

Be – 10) BTU/lb for all petroleum products.

Bureau of Standard

HHV = 22,230 – 3,780 (S.G.)2

BTU/lb

3. Viscosity – the measure of the resistance of oil to flow.

4. Flash Point – the maximum temperature of which an oil emit vapor that will ignite.

5. Pour Point – the lowest temperature at which the fuel will flow when it is chilled without

disturbance.

6. Fire point – the temperature at which oil burns.

7. Ignition Quality – the ability of a fuel to ignite spontaneously

Page 22: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 22/42

Combustion of Liquid Fuel 

a. if Chemical composition is given:

   

air CH 4

products of combustion 

where:  air = 21% O2 + 79% N2 = 1 volume of O2 + 3.76 volume of N2 

222224 76.376.3 N  xO zH  yCO N O xCH       

Carbon balance:  y1  

Hydrogen balance: 2

24

 z

 z

 

Oxygen balance: 2

2

12

22

 z x

 z y x

 

1 vol. CH4 + 2 vol. [O2 + 3.76N2] 1 vol. CO2 + 2 vol. H2O + 2 [3.76N2]

1 mol CH4 + 2 mol [O2 + 3.76N2] 1 mol CO2 + 2 mol H2O + 2 mol [3.76N2]

Weight of fuel, CH4  lblbmol

lbmol 16161

 

Weight of air  lblbmol

lb

lbmol

lbmol 56.2742876.3322

 

Therefore… 

lbfuel

lbair 

lb

lb

Fuel

 Air 16.17

16

56.274  

Page 23: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 23/42

Combustion of Gaseous Fuel 

Given the volumetric analysis of a gaseous fuel is given:

%7.31

%1.64

%8.1

%4.2

22

4

2

2

 H C 

CH 

 N 

CO

 

2222222422 76.376.37.311.648.14.2 N O zH  yCO N O x H C CH  N CO  

Carbon balance: 9.1297.3121.644.2 y y  

Hydrogen balance: 9.15927.3121.644 z z  

Oxygen balance: 45.2079.1599.129224.22 x x  

Weight of fuel  8.20052247.314121.64288.132124.2  

Weight of air   44.478,282876.33245.207  

Therefore… 

kgfuel

kgair or 

lbfuel

lbair 

lbmol

lblbmol

lb

Fuel

 Air 2.14

8.2005

44.478,28

 

Page 24: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 24/42

 

INCOMPLETE COMBUSTION

Given the volumetric analysis of fuel:

assumption: CO = 20% of CO 2  

Solution:

2222222422 76.32.076.37.311.648.14.2 N O zH  yCO yCO N O x H C CH  N CO  

Carbon balance:

COmoles y

molesCO y

 y y

65.212.0

25.108

2.07.3121.644.2

2  

Hydrogen balance:

9.159

27.3121.644

 z

 z 

Oxygen balance:

625.196

9.15925.1082.025.108224.22

 x

 x 

Weight of fuel  8.20052247.314121.64288.132124.2  

Weight of air   68.992,262876.332625.196  

Therefore… 

%7.31

%1.64

%8.1

%4.2

22

4

2

2

 H C 

CH 

 N 

CO

Page 25: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 25/42

kgfuel

kgair or 

lbfuel

lbair 

lbmol

lblbmol

lb

Fuel

 Air 4573.13

8.2005

68.992,26

 

…if gravimetric analysis of the products of combustion is required  

2005.8 lbs fuel requires 26,992.68 lbs air to produce (108.25 x MW CO2) + (21.65 x MWCO) +(159.9 x MWH2O) + { 196.625 [3.76(MWN2)+1.8(MWN2)] }

Thus, 1 lb fuel requires 13.4573 lbs air to produce 2.3856lbfuel

lbCO2  

lbfuel

lbCOmCO

23856.22  

m products of combustion, PC m = O H OCOCO mmmm222

 

%100% 2

2

PC 

CO

CO

m

mG  

CHEMICAL FORMULA OF SOME LIQUID AND GASEOUS FUEL

Gaseous Fuel1) Methane, CH4 2) Ethane, C2H6 3) Propane, C3H8 4) Butane, C4H20 

Liquid Fuel5) Gasoline, C8H18 6) Dodecane, C12H26 7) Diesoline, C16H32 

Page 26: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 26/42

 

ENGINE PERFORMANCESource of Energy:

Ec = mf x HV

ma/f  mexhaust

IP

FP

BP

where:  EC = energy chargeablemf = mass flow rate of fuelIP = indicated power BP = brake power 

EP = electrical power 

A. Indicated Power   power done in the cylinder; measured by an indicator.

so that,

m

mkPassm A

PC 

m I  ,

.,., 2

 

where:  AC = area of the indicator cards.s. = scale of indicator springℓ = length of indicator card

therefore, S m N  L AP IP  I  in KW

where:  A = area of the bore cylinder, m2 =4

2 D 

 

L = length of stroke

Ns = power cycles per second =

s

nac 2

60 

  

 

 

c – no. of cylinders

Page 27: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 27/42

a – no. actingn – rpms – stroke

 I mP = indicated mean effective pressure

B. Brake Power / Shaft Power / Developed Power   power delivered to the shaft

*measured by (a) for low speed  – prony brake, and (b) for high speed -dynamometer 

Standard Prony Brake Arrangement 

A. Toledo Sca

B. Hydraulic S

C. Arm

where: Brake Tare (Tare wt.) is the effective weight of the brake arm when brake band in loose  

so that, Torque(T) = net scale x arm, KN-m

LTW GW  LPn  

Therefore,

S m N  L AP

TnTn BP

 B

3060

2   

, in kW

where:   BmP = brake mean effective pressure

Page 28: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 28/42

 

C. Mechanical Efficiency 

%100

%100

%100

 I 

 B

 I 

 B

m

m

S m

S m

m

P

P

 N  L AP

 N  L AP

 IP

 BP 

 

so, IP = FP + BPBP = IP – FP

now,

%1001

%100

 

  

 

 IP

FP

 IP

FP IPm 

 

Mechanical Loss1-ηm=%

D. Generator Efficiency 

%100 BP

 EPg   

E. Combined Mechanical and Electrical Efficiency 

mm ME       

Example 1: An engine has 14 cylinders, with a 13.6cm bore, and a 15.2cm stroke, anddevelops 2850KW at 250 rpm. The clearance volume of each cylinder is 350cm 3. Determine(a) compression ratio, and (b) brake mean effective pressure.

Given:c = 14D = 13.6cmL = 15.2cm

BP = 2850KWn = 250rpmV2 = 380cm3 

Required:

Page 29: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 29/42

(a) compression ratio, r k 

(b) brake mean effective pressure, BmP  

Solution:

S m

 Dm

 N  L AP BPV PWknet 

 B

 B

 

(a) compression ratio, r k 

2

1

V r k  ;  DV V V  21  

3

2

062.2208

2.1546.13

cm

 N  L AV  S  D

   

then… 

81.6380

062.2588

062.2588062.2208380

3

3

3

1

cm

cm

cmV 

 

(b) brake mean effective pressure, BmP  

S mN  L  AP BP

 B

 

thus,  S m  N  L A

 BP

P  B

 

Page 30: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 30/42

kPa

mm

s

mKN 

P Bm

41.253,44

4

260

250114

4

136.0152.0

2850

2

 

 

 

 

 

  

 

 

 

Example 2: Calculate the bore and stroke of a six cylinder engine that delivers 22.4KW at1800rpm with a ratio of bore to stroke of 0.71. Assume the mean effective pressure in thecylinder is 620kPa, and the mechanical efficiency is 85%

Given:

c = 6D/L = 0.71BP = 22.4 KW

n = 1800 rpmPmi = 620 kPaMech. Eff. = 85 %

Solution:

S m N  L AP BP B

 

where:  %100

 I 

 B

m

m

mP

Pn  

kPakPaP Bm 52762085.0  

 Also,S m N P

 BP A L

 B

 

32

0004722.04

4

260

180016

527

4.22

m D

 L

kPa

KW 

 

  

 

 

 

But,71.0

 D L  

Page 31: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 31/42

  Therefore… 

cmm L

cmm Dm D

m D D

61.1010606.0

53.70753.00004722.00619.1

0004722.0471.0

33

32

 

  

  

  

   

 

F. Specific Fuel Consumption   amount of fuel needed to perform a unit of power 

SFC = amount of fuelPower 

hr KW kg

KW Phr 

kgm f 

,,  

(1) Indicated Specific fuel Consumption, ISFC

 IP

m ISFC 

f   

(2) Brake Specific fuel Consumption, BSFC

m

 f  f 

 IP

m

 BP

m BSFC 

   

(3) Combined Specific fuel Consumption, CSFC

 ME 

 f 

gm

 f 

g

 f  f 

 IP

m

 IP

m

 BP

m

 EP

mCSFC 

    

 

G. Heat Rate   is the amount of heat needed to perform a unit of power.

HR = Energy ChangeablePower 

Page 32: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 32/42

 hr KW 

KJ 

KW P

hr KJ  E C 

,

(1) Indicated Heat Rate, IHR

 HV  ISFC  IP

 HV m

 IP

 E 

 IHRf C 

 

(2) Brake Heat Rate, BHR

mm

 f C  IHR HV  ISFC  HV  BSFC 

 BP

 HV m

 BP

 E  BHR

  

 

(3) Combined Heat Rate, CHR

 HV CSFC  HV  ISFC  HV  BSFC 

 IP

 HV m

 BP

 HV m

 EP

 HV m

 EP

 E CHR

mg

gm

 f 

g

 f  f C 

  

   

 

H. Thermal Efficiency   ratio of heat converted to useful power and heat supplied.

th  = Power x 100%

Energy Changeable

%100

,

3600,

hr 

KJ  E 

hr KW 

KJ KW P

 

(1) Indicated Thermal Efficiency, I th   

Page 33: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 33/42

%1003600

%1003600

%1003600

%1003600

 IHR

 HV  ISFC 

 HV m

 IP

 E 

 IP

 f 

 I th 

 

(2) Brake Thermal Efficiency, Bth

   

%1003600

%1003600

%1003600

%1003600

 BHR HV  BSFC 

 HV m

 BP

 E 

 BP

 f 

 Bth 

 

(3) Combined Thermal Efficiency,C th

   

%1003600

%1003600

%1003600

%1003600

CHR HV CSFC 

 HV m

 EP

 E 

 EP

 f 

C th 

 

I. Engine Efficiency   ratio of the actual performance of the engine to the ideal.

e = Actual Power x 100%Ideal Power 

Page 34: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 34/42

 

(1) Indicated Engine Efficiency,  I e  

%100i

 I P

 IPe  

(2) Brake Engine Efficiency,  Be  

%100i

 BP

 BPe  

(3) Combined Engine Efficiency, C e  

%100i

C P

 EPe  

Example: Given c = 6

s = 4r k = 9.5IP = 67.1KWT = 194 N-m

m  = 78%

mBP = 550 kPa

P1 = 101 kPaT1 = 308 Kk = 1.32

ISFC = 0.353 hr KW kg  

D = 1.1L

Required: a. bore and stroke

b. thermal efficiency, I th   

c. engine efficiency,  Be  

Solution:

(a) L and D = ?

2.60

2

1.

eqTn

 BP

eq N  L AP BP S m B

   

…equate equation 1 to equation 2 

Page 35: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 35/42

 

1.1:

19.90919.0

11.101011.0

4

216550

100011942

41.1

4

2

2

60

2

2

 D

 Lwhere

cmm L

cmm D

kPa

 N KN m N  D D

acP

T  A L

Tn N  L AP

 B

 B

m

S m

 

  

  

  

 

  

 

 

 

(b)  I th  = ?

%19.23

%100970,43353.0

3600

%1003600

%1003600

%1003600

 HV  ISFC 

 HV m

 IP

 E 

 IP

 f 

 I th 

 

(c) me = ?

%100i

mP

 BPe  

where:  %100 IP

 BPm

   

KW KW  BP 338.521.6778.0  

Page 36: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 36/42

 

 Also, %100C 

i

th E 

Pideal

    ; EC = mf x HV

From, IP

m ISFC 

f  ; mf = IP x ISFC

 Also,

%345.51

%1005.911

%1001

1

132.1

1

thr 

ideal 

 

Therefore,

KW 

shr 

kgKJ 

hr KW kg

KW 

 HV  ISFC  IPPi

54.148

36001970,43353.01.6751345.0

51345.0

  

  

  

  

 

Finally,

%23.35

%10054.148

338.52

KW 

KW em  

J. Volumetric Efficiency 

V   Actual amount of air taken in, m3/s %100  

Volumetric or piston displacement, m3/s

%100 D

a

V  

Where: 

Page 37: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 37/42

if wet bulb temperature,tw is not given, then use the general gas law equation:

s

m

P

T  RmV 

T  RmV P

a

aaaa

aaaaa

3

;

 

if dry bulb temperature,ta and wet bulb temperature, tw, or relative humidity, RHare given, then use the psychrometric chart

aaa vvolspecmV  ,.  

S  DN  L AV   

K. Effect on Engines when operated on Higher Altitudes

(1) SAE correction formula:

For spark-ignition engines(otto/gasoline)

 

  

 

5.0

O

O

OS T 

P

P BP BP  

For compression-ignition engines(diesel)

  

  

7.0

O

O

S OS 

T T 

PP BP BP  

*temperature=kelvin

where:  S S S  T P BP ,, std. rating of engine (sea level or standard condition)

OOO T P BP ,, Rating at observed conditions (certain conditions)

FPs=FPo=μN=weight of the piston IPs≠IPo mfs=mfo fuel pumpmas≠mao BSFCs or ISFCs≠ BSFCs or ISFCo 

Approximations to be used as temperature and pressure changes at a given altitude: 

Pressure: barometric pressure decreases by 1”Hg absolute (83.3mmHg abs) for every 1000 ft (1000 m) increase in altitude based on 29.92”Hg absolute(760mmHg abs) sea level.

Temperature: temperature decreases by 3.57˚F (6.5˚C) for every 1000 ft (1000m) increase in altitude based on a standard temperature of 60˚F (15˚C).

Page 38: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 38/42

 

(2) DEMA standard rating

2.1) Rated power may not be corrected for altitude up to 1500ft (457.5m).

2.2) For altitudes greater than 1500ft (457.5m), use the following:

Subtract from std. rating 2% for every 1000ft (305m) above 1500ft(457.5m) for supercharged engines.

Subtract from std. rating 4% for every 1000ft (305m) above 1500ft(457.5m) for naturally aspirated engines.

Example: An engine has the following data when operated at an altitude of 1524ft, with atemperature of 15˚C:

BPo = 500KW

BSFCo = 0.28hr KW 

kg

 

m  = 84.86%

 A:Fo = 23

…when the engine is brought to sea level having a pressure of 101.325kPa, and temperature

of 20˚C. Calculate (a) BPs, (b) BSFCs, and (c)s I 

mP (Assume the volumetric efficiency=75%)

GivenBPo = 500KW

BSFCo = 0.28hr KW 

kg

 

m  = 84.86%

To = 15˚C + 273 = 288 KTS = 20˚C + 273 = 293 KPS = 101.325kPa

 A:Fo = 23

Required:(a) BPs (b) BSFCs 

(c)s I 

mP  

Solution:

(a) BPS = ?

kPa ft 

 f t 

mmHg

kPammHgkPaPO 39.84

1000

1524

760

325.1013.83325.101

 

  

   

Page 39: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 39/42

Then,

KW 

kPa

kPaKW  BPS 

147.593

293

288

39.84

325.101500

7.0

 

  

 

 

(b) BSFCS

= ?

 BP

m BSFC 

S  ;os f  f  f  mmm  

Therefore, ssOO BSFC  BP BSFC  BP  

hr KW 

kg

KW 

KW  BSFC S 

236.0

147.593

50028.0

 

(c)s I 

mP = ?

 D

S m

 IPP

s I  ;  IPV P  Dm

s I   

where:   KW KW  BP

 IPm

S S  97.698

8486.0

147.593

  

 Also, ? S  D N  L AV   

But, D

av

V V     assuming:   v  75% (usually 70-80%)

Then,75.0

a

v

a

 D

V V V 

 ; PaVa = mRTa

 A : Fo  23m

m

o f 

oa  

BSFCS S 

 f 

 BP

mS   

s

kg

s

hr m

s f  0389.03600

1236.0147.593

 

  

   

So, s

kg8947 .0230389.0ma  

Thus,

Page 40: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 40/42

 

smsmV 

s

mV 

PkPa

K K kg

KJ skg

 D

a

o

a

o

o

3

3

3

168.175.0

8759.0

8759.0

39.84

288287.08947.0

  

  

 

Finally…

kPa

sm

 IPKW P s

ms I 

38.598

1689.1

97.6983

 

TYPICAL HEAT BALANCE IN ENGINES

Energy Balance 

 A. Input

Energy Changeable, EC 

EC = mf x HV 100%

B. Outputs

1. Useful power, BP 30-32% ( Bth

  )

2. Heat carried by exhaust gas, QH 24-26% (%QE)3. Heat carried by jacket or cooling water, QC 30-32% (%QE)4. Friction, Radiation and unaccounted losses 10-16%

Page 41: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 41/42

Summary 

Percent Cooling Loss 

%Q j = Heat carried by the jacket or cooling water x 100%Energy Changeable

%100

 HV m

t t C m

 f 

ab p j w 

…if EC is not given

%1003600

%1003600

 HV m

 BP

 E 

 BP

 f 

 Bth 

  Bth

 f 

 BP HV m

 

3600  

Now...

%100

3600

%1003600

%Q j

 BP

t t C m

 BP

t t C m

ab p j Bth

 Bth

ab p j

w

w

 

   

Solving for the mass of jacket or cooling water, let: %Qj = 32% and  Bth

  =30%  

EC (100%)

QC (24-26%)

QH (30-32%)

others (10-16%)

BP (30-32%)

Page 42: internal cumbustion engine

7/29/2019 internal cumbustion engine

http://slidepdf.com/reader/full/internal-cumbustion-engine 42/42

 

s

kg

t t 

 BP

hr 

kg

t t 

 BP

t t 

 BP

t t C 

 BPm

ababab

ab p Bth

 j

w

;2548.0;124.917

187.43.0

36000.32

3600%Q j

 

 

Solving the volume of jacket or cooling water, let   = 1000kg/m3 

 j

 j

m   ; 

  

 j j

mV