1
3. Interior models for water planets [4], with water oceans with NH 3 neglect effects of dissolved species (salts). 5M C Interior Structure And Habitability Of Super-Europas And Super-Ganymedes Steve Vance 1,2* , R. Barnes 4 , J. Michael Brown 2 , Olivier Bollengier 2 , Baptiste Journaux 3 , Christophe Sotin 1 , and Mathieu Choukroun 1 . *[email protected] 1 Jet Propulsion Laboratory, California Institute of Technology 2 Department of Earth and Space Sciences, University of Washington, Seattle 3 Laboratoire de Glaciologie et Géophysique de l’Environnement, Université Joseph Fourier, Grenoble, France 4 Department of Astronomy, University of Washington, Seattle A warm Ganymede with a 10 Wt% MgSO 4 (aq) ocean could cause ice VI to float above the seafloor interface, Other high pressure phases can also float [6]. 4. Watery exoplanets will resemble larger icy satellites in the solar system, with high-pressure ices and salty oceans. Application of detailed thermodynamics to icy satellites [5,6] reveals strong density and temperature gradients. How do deep salty oceans affect geodynamic evolution? liquid ocean layers, more saline with depth 1100 km 800 km Ice I Ice V Ice VI Ice III Ganymede 700 km possible water-rock interaction 800 km Ice I Ice V Ice VI Ice II-III 3000 km Ice VII Super Europas 5800 km Titan 1880 km ~0 km 700 km Ice I Ice V Ice VI Ice II Ice snowing upward? ~200 km Ice I Ice III Europa 1350km NH3? break-through to space or atmosphere (plumes)? Current Region of Study Region of Study for Fluids in Super Europas T ( o C) -100 0 100 200 P (GPa) 10 -1 10 0 10 1 Earth Europa Terrestrial “Habitable Zone” Ganymede Earth 0.4 Earth 0.025 Ganymede Kepler 11b 2.0 Kepler 18b 6 3 R/R M/M 1.8 model values: Zeng and Sasselov 2014 10 km 100 km 800 km 300 5. Pressures in exoplanet oceans span the multi-GPa range of pressures where liquids are possible. Pressure (GPa), temperature ( o C) profiles in upper mantles of selected objects [as per Ref. 7], beginning at presumed seafloor depth. Overlying ocean assumed at a constant temperature. Known exoplanets, albeit very hot ones, modeled as super Europas with seafloor depths like Earth’s (10 km), Europa’s (100 km, and Ganymede’s (800 km; [6]). 1. Confirmed and candidate Kepler planets with . Watery Earth-like planets are probably common around other stars. More small, cool worlds will be discovered as facilities such as TESS come into operation [1]. 6. Recent EOS and phase measurements for NaCl (aq) indicate ice VII floats at P >5 GPa. 1 2 3 4 900 1000 1100 1200 1300 1400 1500 1600 Pressure (GPa) Density (kg m ï ) 18 Wt % 6 Wt % T = 293 K T = 373 K T = 473 K T = 573 K T = 673 K ice VI ice VII (1 mol kg -1 ) 530 model planets [2]. curves separate wet (upper) and dry (lower) worlds. Jupiter’s moon Europa at the same position as the Moon. Known exoplanets [3] of relevant size. Constant density curves (Neptune in blue and Earth in green). R 2.5R C 7. Modern computer processing allows us to apply geophysical methods of regularization to construct optimized “local” fits of thermodynamic properties that easily accommodate new data. We constructed Gibbs free energies for water [13, 14, Brown et al., in prep.; left]. We are using G to develop general thermodynamics of aqueous solutions: G = G water + G ex Pressure (MPa) 0 200 400 600 800 1000 1200 Temperature (K) 240 250 260 270 280 290 300 310 320 1.59 2.10 2.23 1.83 1.83 2.30 1.83 1.83 2.67 2.37 1.83 2.28 2.05 2.57 3.92 3.58 4.24 aqueous solution ice VI ice V ice III ice II ice Ih 2.75 m 1.75 m 2.00 m 2.25 m 2.50 m 1.25 m 1.50 m 1.00 m 0.75 m 0.25 m 0.50 m 1.47 0.70 solidus [Hogenboom et al., 1995] solidus [Grasset et al., 2001] solidus [Dougherty et al., 2007] new solidus data new liquidus data unary system equilibria [Choukroun and Grasset, 2010] binary system equilibria, thermodyamic approach binary system equilibria, extrapolated Gibbs free energies of MgSO 4 allow computation of ice equilibrium under super Earth pressures. (Bollengier et al., in prep) 2.5 2 Pressure (GPa) 1.5 1 0.5 0 500 400 Temperature (K) 300 200 0.8 0.9 1.4 1.3 1.2 1.1 1 100 Density gm/cc Density (g/cc) C P ˆ B 2 G B T 2 ˙ P,n ˆ B G B P ˙ ´1 T,n Pressure (GPa) Pitzer formulation[15] (contours: temperature in Kelvin). 3.5 3 0.5 0 600 200 T (K) 1000 0 10 20 30 We gratefully acknowledge support from NASA’s Outer Planets Research Program. and Astrobiology Institute. A part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. [1]Ricker, G. R., et al. (2014). SPIE Astronomical Telescopes+ Instrumentation, 914320– 914320. [2]Barae, I., et al. (2014). arXiv preprint arXiv:1401.4738. [3] Howe, A. R., et al. (2014). Astrophys. J., 787(2):173. [4] Fu, R., et al. (2010). Astrophys. J., 708:1326. [5] Vance S. and Brown J. M. (2013) Geochim Cosmochim Acta, 90, 1151–1154. [6] Vance S. et al. (2014) Plan. Space Sci 96, 62-70. [7] Vance et al. (2007) Astrobiology, 7, 987-1005. [8] Mantegazzi, D. et al. (2013). Geochim. Cosmochim Acta, 121:263–290. [9] Reimers, J. and Watts, R. (1984). Chem Phys, 91(2):201–223. [10] Vega, C., et al. (2005). Phys. Chem. Chem. Phys., 7(7):1450–1456. [11] Choukroun M. and Grasset O. (2010) J. Chem. Phys. 133, 144, 502. [12] Journaux, B., et al. (2013). Icarus, 226:355–363. [13] Vance S. and Brown J. M. (2010) JASA 127, 174–180. [14] Abramson, E. and Brown, J. (2004). Geochim. Cosmochim. Acta, 68(8):1827–1835 [15] Pitzer, K. (1991) CRC Press. REFERENCES SUMMARY Fluid-rock interactions in super Earth oceans are regarded as limited by negatively buoyant high pressure ices V, VI, VII, and VIII. •Analogous assumption made for large icy worlds Ganymede and Titan: ocean depths up to 800 km create >GPa pressures (>10katm). Applying accurate uid thermodynamics to planetary interiors challenges these assumptions. •Increased density in highly saline oceans implies possible oceans perched under and between high pressure ices. •In some model oceans, high-pressure ices become buoyant, implying frazil-like upward snows, interlayered liquids and uids in direct contact with rock. 10 Wt % MgSO4 (aq) 250 260 270 280 290 300 310 320 330 0 100 200 300 400 500 600 700 800 900 1000 Temperature (K) Depth (km) T b :250.00 K, q b :4 mW m ï2 , z b :148 km T b :252.50 K, q b :4 mW m ï2 , z b :129 km T b :255.00 K, q b :5 mW m ï2 , z b :114 km T b :260.00 K, q b :6 mW m ï2 , z b :84 km T b :265.00 K, q b :11 mW m ï2 , z b :50 km T b :270.00 K, q b :44 mW m ï2 , z b :13 km V VI III I Density (g m L Density (g m ï ) 0 200 400 600 800 1000 1200 1400 1600 1800 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 Pressure (MPa) ï2 5 wt % 10 wt % 15 wt % III V VI liquid I silicate Aqueous chemistry separable by contributions from: water (G°) interaction of water with ions interaction of ions with each other interaction of ions with each other and water Mostly unavailable and unimportant at low concentration We are beginning to estimate Pitzer parameters under planetary conditions. 2. Mass-radius, planet density vs composition, etc., provide information about internal structure related to habitability. Potentially habitable super Europas are notionally in the shaded regions. Increasing numbers anticipated from TESS

Interior Structure And Habitability Of Super-Europas And ... · PDF fileInterior Structure And Habitability Of Super-Europas And Super-Ganymedes Steve Vance1,2*, R. Barnes4, J. Michael

Embed Size (px)

Citation preview

Page 1: Interior Structure And Habitability Of Super-Europas And ... · PDF fileInterior Structure And Habitability Of Super-Europas And Super-Ganymedes Steve Vance1,2*, R. Barnes4, J. Michael

3. Interior models for w a t e r planets [4], with water oceans with NH3 neglect effects of dissolved species (salts).

5MC

Interior Structure And Habitability Of Super-Europas And Super-Ganymedes Steve Vance1,2*, R. Barnes4, J. Michael Brown2, Olivier Bollengier2, Baptiste Journaux3, Christophe Sotin1, and Mathieu Choukroun1. *[email protected] 1Jet Propulsion Laboratory, California Institute of Technology 2Department of Earth and Space Sciences, University of Washington, Seattle 3Laboratoire de Glaciologie et Géophysique de l’Environnement, Université Joseph Fourier, Grenoble, France 4Department of Astronomy, University of Washington, Seattle

A warm Ganymede with a 10 Wt% MgSO4(aq) ocean could cause ice VI to float above the seafloor interface, Other high pressure phases can also float [6].

4. Watery exoplanets will resemble larger icy satellites in the solar system, with high-pressure ices and salty oceans. !Application of detailed thermodynamics to icy satellites [5,6] reveals strong density and temperature gradients. How do deep salty oceans affect geodynamic evolution?

liquid ocean layers, more saline with depth

1100 km

800 kmIce I

Ice VIce VI

Ice III

Ganymede

700 km

possible water-rock interaction

800 km

Ice I

Ice VIce VI

Ice II-III

3000 km

Ice VII

Super Europas

5800 km

Titan

1880 km

~0 km

700 km

Ice I

Ice VIce VI

Ice II

Ice snowing upward?

~200 kmIce I

Ice III

Europa

1350km

NH3?

break-through to space or atmosphere (plumes)?

Current Region of Study

Region of Study for Fluids in Super Europas

T (oC)-100 0 100 200

P (G

Pa)

10-1

100

101

Earth

Europa

Terrestrial“Habitable Zone”

Ganymede Earth 0.4

Earth0.025

Ganymede

Kepler 11b

2.0 Kepler 18b 63

R/R M/M

1.8model values: Zeng and Sasselov 2014

10 km

100 km

800 km

300

5. Pressures in exoplanet oceans span the multi-GPa range of pressures where liquids are possible. Pressure (GPa), temperature (oC) profiles in upper mantles of selected objects [as per Ref. 7], beginning at presumed seafloor depth. !Overlying ocean assumed at a constant temperature. !Known exoplanets, albeit very hot ones, modeled as super Europas with seafloor depths like Earth’s (10 km), Europa’s (100 km, and Ganymede’s (800 km; [6]).

1. Confirmed and candidate Kepler planets with .

àWatery Earth-like planets are probably common around other stars. !

More small, cool worlds will be discovered as facilities such as TESS come into operation [1].

6. Recent EOS and phase measurements for NaCl (aq) indicate ice VII floats at P >5 GPa.

1 2 3 4900

1000

1100

1200

1300

1400

1500

1600

Pressure (GPa)

Den

sity

(kg

mï�

)

18 Wt %

6 Wt %T = 293 KT = 373 KT = 473 KT = 573 KT = 673 K

ice VI

ice VII

(1 mol kg-1)530 model planets [2]. curves separate wet (upper) and dry (lower) worlds. Jupiter’s moon Europa at the same position as the Moon.

Known exoplanets [3] of relevant size. Constant density curves (Neptune in blue and Earth in green).

R † 2.5RC

7. Modern computer processing allows us to apply geophysical methods of regularization to construct optimized “local” fits of thermodynamic properties that easily accommodate new data. !!!!!We constructed Gibbs free energies for water [13, 14, Brown et al., in prep.; left]. We are using G to develop general thermodynamics of aqueous solutions:

G = Gwater + Gex

Pressure (MPa)0 200 400 600 800 1000 1200

Tem

pera

ture

(K)

240

250

260

270

280

290

300

310

320

1.59

2.10

2.23

1.83

1.83

2.30

1.831.83

2.67

2.37

1.83

2.28

2.05

2.57

3.92

3.58

4.24

aqueoussolution

ice VI

ice V

ice IIIice II

ice Ih

2.75 m

1.75 m

2.00 m

2.25 m

2.50 m

1.25 m

1.50 m

1.00 m0.75 m0.25 m

0.50 m

1.47

0.70

solidus [Hogenboom et al., 1995]solidus [Grasset et al., 2001]solidus [Dougherty et al., 2007]new solidus datanew liquidus dataunary system equilibria [Choukroun and Grasset, 2010]binary system equilibria, thermodyamic approachbinary system equilibria, extrapolated

Gibbs free energies o f MgSO4 a l low computation of ice equilibrium under s u p e r E a r t h pressures. (Bollengier et al., in prep)

2.52

Pressure (GPa)

1.51

0.50500

400Temperature (K)

300200

0.8

0.9

1.4

1.3

1.2

1.1

1

100

Den

sity

gm

/ccDen

sity

(g/c

c)

CP “ˆB2G

BT 2

˙

P,n

⇢ “ˆBG

BP

˙´1

T,nà

Pressure (GPa)

Pitzer formulation[15]

àà

(contours: temperature in Kelvin).

3.5!! 3

0.5 0

600200

T (K) 1000 0 10 20 30

We gratefully acknowledge support from NASA’s Outer Planets Research Program. and Astrobiology Institute. A part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

[1]Ricker, G. R., et al. (2014). SPIE Astronomical Telescopes+ Instrumentation, 914320– 914320. [2]Baraffe, I., et al. (2014). arXiv preprint arXiv:1401.4738. [3] Howe, A. R., et al. (2014). Astrophys. J., 787(2):173. [4] Fu, R., et al. (2010). Astrophys. J., 708:1326. [5] Vance S. and Brown J. M. (2013) Geochim Cosmochim Acta, 90, 1151–1154. [6] Vance S. et al. (2014) Plan. Space Sci 96, 62-70. [7] Vance et al. (2007) Astrobiology, 7, 987-1005. [8] Mantegazzi, D. et al. (2013). Geochim. Cosmochim Acta, 121:263–290. [9] Reimers, J. and Watts, R. (1984). Chem Phys, 91(2):201–223. [10] Vega, C., et al. (2005). Phys. Chem. Chem. Phys., 7(7):1450–1456. [11] Choukroun M. and Grasset O. (2010) J. Chem. Phys. 133, 144, 502. [12] Journaux, B., et al. (2013). Icarus, 226:355–363. [13] Vance S. and Brown J. M. (2010) JASA 127, 174–180. [14] Abramson, E. and Brown, J. (2004). Geochim. Cosmochim. Acta, 68(8):1827–1835 [15] Pitzer, K. (1991) CRC Press.

REFERENCES

SUMMARY •Fluid-rock interactions in super Earth oceans are regarded as limited by

negatively buoyant high pressure ices V, VI, VII, and VIII. •Analogous assumption made for large icy worlds Ganymede and Titan: ocean

depths up to 800 km create >GPa pressures (>10katm). Applying accurate fluid thermodynamics to planetary interiors challenges these assumptions.

•Increased density in highly saline oceans implies possible oceans perched under and between high pressure ices.

•In some model oceans, high-pressure ices become buoyant, implying frazil-like upward snows, interlayered liquids and fluids in direct contact with rock.

Tb:255.00 K, qb:4 mW mï2, zb:134 km

Tb:260.00 K, qb:5 mW mï2, zb:104 km

Tb:265.00 K, qb:8 mW mï2, zb:70 km

Tb:270.00 K, qb:18 mW mï2, zb:32 km

250 260 270 280 290 300 310 320 330

01002003004005006007008009001000

Temperature (K)

Dep

th (k

m)

V

VI

III

I

0 Wt % MgSO4 (aq) 10 Wt % MgSO4 (aq)

250 260 270 280 290 300 310 320 330

01002003004005006007008009001000

Temperature (K)

Dep

th (k

m)

Tb:250.00 K, qb:4 mW mï2, zb:148 km

Tb:252.50 K, qb:4 mW mï2, zb:129 km

Tb:255.00 K, qb:5 mW mï2, zb:114 km

Tb:260.00 K, qb:6 mW mï2, zb:84 km

Tb:265.00 K, qb:11 mW mï2, zb:50 km

Tb:270.00 K, qb:44 mW mï2, zb:13 km

V

VI

III

I

0 200 400 600 800 1000 1200 1400 1600 18000.95

1

1.05

1. 1

1.15

1. 2

1.25

1. 3

1.35

1. 4

1.45

Pressure (MPa)

Den

sity

(g m

Lï� )

Tb:255.00 K, qb:4 mW mï�, zb:134 km

Tb:260.00 K, qb:5 mW mï�, zb:104 km

Tb:265.00 K, qb:8 mW mï�, zb:70 km

Tb:270.00 K, qb:18 mW mï�, zb:32 km

5 wt%10 wt%15 wt %

V

VI

liquid

I

Den

sity

(g m

LD

ensi

ty (g

mï�

)

0 200 400 600 800 1000 1200 1400 1600 18000.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Pressure (MPa)

Tb:250.00 K, qb:4 mW mï2, zb:148 km

Tb:252.50 K, qb:4 mW mï2, zb:129 km

Tb:255.00 K, qb:5 mW mï2, zb:114 km

Tb:260.00 K, qb:6 mW mï2, zb:84 km

Tb:265.00 K, qb:11 mW mï2, zb:50 km

Tb:270.00 K, qb:44 mW mï2, zb:13 km

5 wt%10 wt%15 wt%

III

V

VI

liquid

I

silicatesilicate

Aqueous chemistry separable by contributions from: • water (G°) • interaction of water with ions • interaction of ions with each other • interaction of ions with each other and water

Mostly unavailable and unimportant at low concentration

We are beginning to estimate Pitzer parameters under planetary conditions.

!

2. Mass-radius, planet density vs composition, etc., provide information about internal structure related to habitability. Potentially habitable super Europas are notionally in the shaded regions.

Increasing numbers

anticipated from TESS