24
Ink-jet printing of polymer solar cells Plastic Optoelectronics workshop June 25 th 2010 Ton Offermans, Jürg Schleuniger, Giovanni Nisato Section Polymer Optoelectronics, CSEM Basel, Switzerland

Ink-jet printing of polymer solar cells · Ink-jet printing of polymer solar cells Plastic Optoelectronics workshop June 25th 2010 Ton Offermans, Jürg Schleuniger, Giovanni Nisato

Embed Size (px)

Citation preview

Ink-jet printing of polymer solar cells

Plastic Optoelectronics workshop

June 25th 2010

Ton Offermans, Jürg Schleuniger, Giovanni Nisato

Section Polymer Optoelectronics, CSEM Basel, Switzerland

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 1

Outline

• CSEM

o Group Polymer Optoelectronics

• Inkjet printing polymer solar cells

o Novel low bandgap polymer

o Solvent mixtures

o Obtaining good uniformity

o Efficient inkjet printed devices

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 2

Role of CSEM in organic electronics

Electronics

Inks

Base

Chemicals

OEM

Devices

Process

Development

Academia

Industry

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 3

Division Thin Film Optics

Polymer Optoelectronics

• Material & Device Optimization

Solution-processed

o OLED

o OFET

o OPV

• Integrated Organic Optoelectronic Systems

oLEDs & oPDs & oFETs

• Additive Print Process Development

o Screen printing

o Gravure printing

o Inkjet printing

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 4

Division Thin Film Optics

Polymer Optoelectronics

Spin-coater

Sample input

Hotplate

Tips

Sample output

Bottles

Robotic arm

Automated device fabrication tool

• High throughput fabrication

• Combinatorial testing

Automated OLED and OPV

characterisation tool

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 5

Automated OFET

characterization tool

Division Thin Film Optics

Polymer Optoelectronics

Integrated optoelectronic

biosensors

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 6

Inkjet Printed OPV

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 7

Why inkjet printing

• Why inkjet printing?

o established technology,

o printability in ambient conditions,

o output (up to 150 m2/h),

o low cost,

o flexibility,

o digital patterning,

o mass customization

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 8

POLYMOL project APOLLO

Materials Ink formulation Printing process Devices &

Basic charact.• solvents

• wetting

• uniformity

• solubility

• uniformity

• thickness

• morphology

• simulations

• photoCELIV

• impedance

spectroscopy

Advanced

charact.

• Project goal: Inkjet printed solar cells with efficiency >5%.

• Role of CSEM in APOLLO:

BASF ZHAW

TU Eindhoven Universitat Jaume I

• Project partners :

• encapsulation

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 9

Materials

N

N

O

O

S

S

S

S

hex

hex

hex

hexhex

hex

S *

n

*

PT5DPP

PT5DPP was made available by BASF

C70PCBM

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 10

Solubility of PT5DPP

Aggregation in oDCB favorable

Chloroform: lower boiling point needed for printing at RT

400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

Abs

orba

nce

Wavelength (nm)

oDCB

CHCl3

oDCB:CHCl3 4:1

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 11

Structural ordering

Structural ordering corresponding to the inter-chain spacing and the -

stacking between the molecules.

PT5DPP on Si from oDCB

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 12

Morphology

1:4 chloroform:oDCB

Best for printing

4:1 chloroform:oDCB

Best for spin coating

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 13

Solvent mixture

Morphology

• solvent mixture ratio

• drying rate/temperature

Solubility

• concentration

• drying rate/temperature

Layer uniformity

• viscosity/concentration

• drying rate/temperature

Choice

of

solvents

Balance between morphology, solubility and layer uniformity

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 14

Inkjet printer

Microdrop single nozzle inkjet printer

• Nozzle diameter 30, 50 and 100 µm

• Heated nozzle tip

• Printing area 200 x 200 mm

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 15

Printing process: parameter exploration

Identified key parameters influencing stable drop formation and layer

uniformity:

• Drop formationo voltage

o pulse length

o vacuum pressure

• Layer uniformity

o dot spacing

o print head temperature

o substrate temperature

o print speed

o uni/bi-directional printing

These parameters depend on both solvent and material!

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 16

Printing process: obtaining layer uniformity

Microscope images (left: 2x2 mm2, right 4x zoom)

1. Dot spacing 0.05 mm

2. Dot spacing 0.07 mm

PEDOT coated ITO substrate

printing direction

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 17

Printed 2x2 mm2 and 10x10 mm2 devices

• Improvement in layer homogeneity

• Uniform 15x15 mm layers obtained by printing

2x2 mm2

Magnification 0.5x0.5 mm2

7 mm

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 18

Optimization

Start

Basis: knowledge from

spin coated cells

Goal:

• stable single drop

(jettable ink)

• homogeneous layer

• the right morphology

Printed CellTesting

• concentration

• solvent mixture

• polymer/PCBM ratio

• layer thickness

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 19

Optimization

• Spin coated cells:

o PCBM:polymer ratio optimal ratio: 1:2

o chloroform:oDCB ratio best results with 80:20

o Layer thickness optimal thickness: ~90 nm

• Printed cells

o Printing of ratios ≥ 40:60 resulted in clogging of nozzle

Best printed cells sofar with 20:80 chloroform:oDCB

o Optimal thickness printed devices : ~140 nm

Deposition method influences morphology

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 20

Best results

2x2 mm2

Spincoated 90 nm

Voc = 0.60 V

Jsc = 14.1 mA/cm2 (uncorrected)

FF = 0.65

mPP = 5.5 mW/cm2

Printed 140 nm

Voc = 0.57 V

Jsc = 12.3 mA/cm2 (uncorrected)

FF = 0.63

mPP = 4.4 mW/cm2

Spincoated 2x2 mm2

Printed 2x2 mm2

-1.0 -0.5 0.0 0.5 1.0-20

-15

-10

-5

0

5

10

15

20

Cu

rre

nt D

en

sity (

mA

/cm

2)

Voltage (V)

Estimated efficiency: 4% benchmark: 3.5% C. N. Hoth, Nano Letters, 8 (2008) 2806

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 21

Best results

10x10 mm2

400 500 600 700 800 9000.0

0.1

0.2

0.3

0.4

0.5

0.6

EQ

E

Wavelength (nm)

-1.0 -0.5 0.0 0.5 1.0-20

-15

-10

-5

0

5

10

15

20

V (V)

J (

mA

/cm

2)

thickness = 150 nm

Voc = 0.55 V

Jsc = 14.0 mA/cm2 (12.1 mA/cm2 corrected)

FF = 0.51

Efficiency: 3.4%

(Measured at BASF)

Jsc = 12.1 mA/cm2

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 22

Acknowledgements

• At CSEM:

• Basel: Jürg Schleuniger, Giovanni Nisato, Marek Chrapa, Guillaume Basset

• Neuchatel: Olha Sereda, Antonia Neels, Nicolas Blondiaux, Véronique Monnier

• APOLLO project partners :

• Funding from Swiss Federal Office of Energy

BASF ZHAW

TU Eindhoven Universitat Jaume I

Plastic Optoelectronics workshop June 25th 2010 | T. Offermans | Page 23

Take home messages

CSEM:

• is an R&D company working with universities and industry

• is developing processes and technologies, also for organic electronics

• has presented ink-jet printed solar cells with 4% efficiency

Thank you for your attention!