150
Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Embed Size (px)

Citation preview

Page 1: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information Theory For Data Management

Divesh Srivastava

Suresh Venkatasubramanian

Page 2: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

-- Abstruse Goose (177)

Motivation

Information Theory is relevant to all of humanity...

Page 3: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Background

Many problems in data management need precise reasoning about information content, transfer and loss– Structure Extraction– Privacy preservation– Schema design– Probabilistic data ?

Page 4: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information Theory

First developed by Shannon as a way of quantifying capacity of signal channels.

Entropy, relative entropy and mutual information capture intrinsic informational aspects of a signal

Today:– Information theory provides a domain-independent way to

reason about structure in data– More information = interesting structure– Less information linkage = decoupling of structures

Page 5: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Tutorial Thesis

Information theory provides a mathematical framework for the quantification of information content, linkage and loss.

This framework can be used in the design of data management strategies that rely on probing the structure of information in

data.

Page 6: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Tutorial Goals

Introduce information-theoretic concepts to VLDB audience Give a ‘data-centric’ perspective on information theory Connect these to applications in data management Describe underlying computational primitives

Illuminate when and how information theory might be of use in new areas of data management.

Page 7: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Data Integration

Part 2 Review of Information Theory Basics Application: Database Design Computing Information Theoretic Primitives Open Problems

Page 8: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Histograms And Discrete Distributions

x1

x2

x1

x1

x4

x2

x3

x1

X

Column of data

X f(X)

x1 4

x2 2

x3 1

x4 1

Histogram

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Probability distribution

normalizeaggregate counts

Page 9: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Histograms And Discrete Distributions

x1

x2

x1

x1

x4

x2

x3

x1

X

Column of data

X f(X)

x1 4

x2 2

x3 1

x4 1

Histogram

X p(X)

x1 0.667

x2 0.2

x3 0.067

x4 0.067

Probability distribution

aggregate counts

X f(x)*w(X)

x1 4*5=20

x2 2*3=6

x3 1*2=2

x4 1*2=2

normalizereweight

Page 10: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

From Columns To Random Variables

We can think of a column of data as “represented” by a random variable: – X is a random variable– p(X) is the column of probabilities p(X = x1), p(X = x2), and so on– Also known (in unweighted case) as the empirical distribution

induced by the column X. Notation:

– X (upper case) denotes a random variable (column)– x (lower case) denotes a value taken by X (field in a tuple)– p(x) is the probability p(X = x)

Page 11: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

1111

Joint Distributions

Discrete distribution: probability p(X,Y,Z)

p(Y) = ∑x p(X=x,Y) = ∑x ∑z p(X=x,Y,Z=z)

X Y Z p(X,Y,Z)

x1 y1 z1 0.125

x1 y2 z2 0.125

x1 y1 z2 0.125

x1 y2 z1 0.125

x2 y3 z3 0.125

x2 y3 z4 0.125

x3 y3 z5 0.125

x4 y3 z6 0.125

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

X Y p(X,Y)

x1 y1 0.25

x1 y2 0.25

x2 y3 0.25

x3 y3 0.125

x4 y3 0.125

Page 12: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Entropy Of A Column

Let h(x) = log2 1/p(x) h(X) is column of h(x) values.

H(X) = EX[h(x)] = X p(x) log2 1/p(x)

Two views of entropy It captures uncertainty in data: high entropy, more

unpredictability It captures information content: higher entropy, more

information.

X p(X) h(X)

x1 0.5 1

x2 0.25 2

x3 0.125 3

x4 0.125 3

H(X) = 1.75 < log |X| = 2

Page 13: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Examples

X uniform over [1, ..., 4]. H(X) = 2 Y is 1 with probability 0.5, in [2,3,4] uniformly.

– H(Y) = 0.5 log 2 + 0.5 log 6 ~= 1.8 < 2– Y is more sharply defined, and so has less uncertainty.

Z uniform over [1, ..., 8]. H(Z) = 3 > 2– Z spans a larger range, and captures more information

X Y Z

Page 14: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Comparing Distributions

How do we measure difference between two distributions ? Kullback-Leibler divergence:

– dKL(p, q) = Ep[ h(q) – h(p) ] = i pi log(pi/qi)

Inference mechanism

Prior belief Resulting belief

Page 15: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Comparing Distributions

Kullback-Leibler divergence:– dKL(p, q) = Ep[ h(q) – h(p) ] = i pi log(pi/qi)

– dKL(p, q) >= 0 – Captures extra information needed to capture p given q– Is asymmetric ! dKL(p, q) != dKL(q, p) – Is not a metric (does not satisfy triangle inequality)

There are other measures:– 2-distance, variational distance, f-divergences, …

Page 16: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Conditional Probability

Given a joint distribution on random variables X, Y, how much information about X can we glean from Y ?

Conditional probability: p(X|Y)– p(X = x1 | Y = y1) = p(X = x1, Y = y1)/p(Y = y1)

X Y p(X,Y) p(X|Y) p(Y|X)

x1 y1 0.25 1.0 0.5

x1 y2 0.25 1.0 0.5

x2 y3 0.25 0.5 1.0

x3 y3 0.125 0.25 1.0

x4 y3 0.125 0.25 1.0

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

Page 17: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Conditional Entropy

Let h(x|y) = log2 1/p(x|y)

H(X|Y) = Ex,y[h(x|y)] = x y p(x,y) log2 1/p(x|y) H(X|Y) = H(X,Y) – H(Y)

H(X|Y) = H(X,Y) – H(Y) = 2.25 – 1.5 = 0.75 If X, Y are independent, H(X|Y) = H(X)

X Y p(X,Y) p(X|Y) h(X|Y)

x1 y1 0.25 1.0 0.0

x1 y2 0.25 1.0 0.0

x2 y3 0.25 0.5 1.0

x3 y3 0.125 0.25 2.0

x4 y3 0.125 0.25 2.0

Page 18: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Mutual Information

Mutual information captures the difference between the joint distribution on X and Y, and the marginal distributions on X and Y.

Let i(x;y) = log p(x,y)/p(x)p(y) I(X;Y) = Ex,y[I(X;Y)] = x y p(x,y) log p(x,y)/p(x)p(y)

X Y p(X,Y) h(X,Y) i(X;Y)

x1 y1 0.25 2.0 1.0

x1 y2 0.25 2.0 1.0

x2 y3 0.25 2.0 1.0

x3 y3 0.125 3.0 1.0

x4 y3 0.125 3.0 1.0

X p(X) h(X)

x1 0.5 1.0

x2 0.25 2.0

x3 0.125 3.0

x4 0.125 3.0

Y p(Y) h(Y)

y1 0.25 2.0

y2 0.25 2.0

y3 0.5 1.0

Page 19: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Mutual Information: Strength of linkage I(X;Y) = H(X) + H(Y) – H(X,Y) = H(X) – H(X|Y) = H(Y) – H(Y|X) If X, Y are independent, then I(X;Y) = 0:

– H(X,Y) = H(X) + H(Y), so I(X;Y) = H(X) + H(Y) – H(X,Y) = 0 I(X;Y) <= max (H(X), H(Y))

– Suppose Y = f(X) (deterministically)– Then H(Y|X) = 0, and so I(X;Y) = H(Y) – H(Y|X) = H(Y)

Mutual information captures higher-order interactions:– Covariance captures “linear” interactions only – Two variables can be uncorrelated (covariance = 0) and have

nonzero mutual information:– X R [-1,1], Y = X2. Cov(X,Y) = 0, I(X;Y) = H(X) > 0

Page 20: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information-Theoretic Clustering

Clustering takes a collection of objects and groups them.– Given a distance function between objects– Choice of measure of complexity of clustering– Choice of measure of cost for a cluster

Usually, – Distance function is Euclidean distance– Number of clusters is measure of complexity– Cost measure for cluster is sum-of-squared-distance to center

Goal: minimize complexity and cost – Inherent tradeoff between two

Page 21: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Feature Representation

v1

v2

v1

v1

v4

v2

v3

v1

X

Column of data

X f(X)

v1 4

v2 2

v3 1

v4 1

Histogram

X p(X)

v1 0.5

v2 0.25

v3 0.125

v4 0.125

Probability distribution

normalizeaggregate counts

Let V = {v1, v2, v3, v4}

X is “explained” by distribution over V.

“Feature vector” of X is [0.5, 0.25, 0.125, 0.125]

Page 22: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Feature Representation

V

v1 v2 v3 v4

XX1 0.5 0.25 0.125 0.125

X2 0.5 0.2 0.15 0.15

p(v2|X2) = 0.2

Feature vector

Page 23: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information-Theoretic Clustering

Clustering takes a collection of objects and groups them.– Given a distance function between objects– Choice of measure of complexity of clustering– Choice of measure of cost for a cluster

In information-theoretic setting– What is the distance function ? – How do we measure complexity ? – What is a notion of cost/quality ?

Goal: minimize complexity and maximize quality – Inherent tradeoff between two

Page 24: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Measuring complexity of clustering

Take 1: complexity of a clustering = #clusters– standard model of complexity.

Doesn’t capture the fact that clusters have different sizes.

Page 25: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Measuring complexity of clustering

Take 2: Complexity of clustering = number of bits needed to describe it.

Writing down “k” needs log k bits. In general, let cluster t T have |t| elements.

– set p(t) = |t|/n– #bits to write down cluster sizes = H(T) = pt log 1/pt

H( ) < H( )

Page 26: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information-theoretic Clustering (take I) Given data X = x1, ..., xn explained by variable V, partition X

into clusters (represented by T) such that

H(T) is minimized and quality is maximized

Page 27: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Soft clusterings

In a “hard” clustering, each point is assigned to exactly one cluster.

Characteristic function – p(t|x) = 1 if x t, 0 if not.

Suppose we allow points to partially belong to clusters:– p(T|x) is a distribution.– p(t|x) is the “probability” of assigning x to t

How do we describe the complexity of a clustering ?

Page 28: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Measuring complexity of clustering

Take 1:– p(t) = x p(x) p(t|x)– Compute H(T) as before.

Problem:

H(T1) = H(T2) !!

T1 t1 t2 T2 t1 t2

x1 0.5 0.5 x1 0.99 0.01

x2 0.5 0.5 x2 0.01 0.99

h(T) 0.5 0.5 h(T) 0.5 0.5

Page 29: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Measuring complexity of clustering

By averaging the memberships, we’ve lost useful information. Take II: Compute I(T;X) !

Even better: If T is a hard clustering of X, then I(T;X) = H(T)

X T1 p(X,T) i(X;T)

x1 t1 0.25 0

x1 t2 0.25 0

x2 t1 0.25 0

x2 t2 0.25 0

I(T1;X) = 0

X T2 p(X,T) i(X;T)

x1 t1 0.495 0.99

x1 t2 0.005 -5.64

x2 t1 0.25 0

x2 t2 0.25 0

I(T2;X) = 0.46

Page 30: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information-theoretic Clustering (take II) Given data X = x1, ..., xn explained by variable V, partition X

into clusters (represented by T) such that

I(T,X) is minimized and quality is maximized

Page 31: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Measuring cost of a cluster

Given objects Xt = {X1, X2, …, Xm} in cluster t,

Cost(t) = (1/m)i d(Xi, C) = i p(Xi) dKL(p(V|Xi), C)

where C = (1/m) i p(V|Xi) = i p(Xi) p(V|Xi) = p(V)

Page 32: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Mutual Information = Cost of Cluster

Cost(t) = (1/m)i d(Xi, C) = i p(Xi) dKL(p(V|Xi), p(V))

i p(Xi) KL( p(V|Xi), p(V)) = i p(Xi) j p(vj|Xi) log p(vj|Xi)/p(vj)

= i,j p(Xi, vj) log p(vj, Xi)/p(vj)p(Xi)

= I(Xt, V) !!

Cost of a cluster = I(Xt,V)

Page 33: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Cost of a clustering

If we partition X into k clusters X1, ..., Xk

Cost(clustering) = i pi I(Xi, V)

(pi = |Xi|/|X|)

Page 34: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Cost of a clustering

Each cluster center t can be “explained” in terms of V: – p(V|t) = i p(Xi) p(V|Xi)

Suppose we treat each cluster center itself as a point:

Page 35: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Cost of a clustering

We can write down the “cost” of this “cluster”– Cost(T) = I(T;V)

Key result [BMDG05] : Cost(clustering) = I(X, V) – (T, V)

Minimizing cost(clustering) => maximizing I(T, V)

Page 36: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information-theoretic Clustering (take III) Given data X = x1, ..., xn explained by variable V, partition X

into clusters (represented by T) such that

I(T;X) - I(T;V) is maximized

This is the Information Bottleneck Method [TPB98] Agglomerative techniques exist for the case of ‘hard’

clusterings is the tradeoff parameter between complexity and cost I(T;X) and I(T;V) are in the same units.

Page 37: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information Theory: Summary

We can represent data as discrete distributions (normalized histograms)

Entropy captures uncertainty or information content in a distribution

The Kullback-Leibler distance captures the difference between distributions

Mutual information and conditional entropy capture linkage between variables in a joint distribution

We can formulate information-theoretic clustering problems

Page 38: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

38

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Data Integration

Part 2 Review of Information Theory Basics Application: Database Design Computing Information Theoretic Primitives Open Problems

Page 39: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

3939

Data Anonymization Using Randomization Goal: publish anonymized microdata to enable accurate ad hoc

analyses, but ensure privacy of individuals’ sensitive attributes

Key ideas: – Randomize numerical data: add noise from known distribution– Reconstruct original data distribution using published noisy data

Issues:– How can the original data distribution be reconstructed?– What kinds of randomization preserve privacy of individuals?

Information Theory for Data Management - Divesh & Suresh

Page 40: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4040

Data Anonymization Using Randomization Many randomization strategies proposed [AS00, AA01, EGS03]

Example randomization strategies: X in [0, 10]– R = X + μ (mod 11), μ is uniform in {-1, 0, 1}– R = X + μ (mod 11), μ is in {-1 (p = 0.25), 0 (p = 0.5), 1 (p = 0.25)}– R = X (p = 0.6), R = μ, μ is uniform in [0, 10] (p = 0.4)

Question:– Which randomization strategy has higher privacy preservation?– Quantify loss of privacy due to publication of randomized data

Information Theory for Data Management - Divesh & Suresh

Page 41: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4141

Data Anonymization Using Randomization X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

Information Theory for Data Management - Divesh & Suresh

Id X

s1 0

s2 3

s3 5

s4 0

s5 8

s6 0

s7 6

s8 0

Page 42: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4242

Data Anonymization Using Randomization X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

Information Theory for Data Management - Divesh & Suresh

Id X μ

s1 0 -1

s2 3 0

s3 5 1

s4 0 0

s5 8 1

s6 0 -1

s7 6 1

s8 0 0

Id R1

s1 10

s2 3

s3 6

s4 0

s5 9

s6 10

s7 7

s8 0

Page 43: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4343

Data Anonymization Using Randomization X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

Information Theory for Data Management - Divesh & Suresh

Id X μ

s1 0 0

s2 3 -1

s3 5 0

s4 0 1

s5 8 1

s6 0 -1

s7 6 -1

s8 0 1

Id R1

s1 0

s2 2

s3 5

s4 1

s5 9

s6 10

s7 5

s8 1

Page 44: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4444

Reconstruction of Original Data Distribution X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

– Reconstruct distribution of X using knowledge of R1 and μ– EM algorithm converges to MLE of original distribution [AA01]

Information Theory for Data Management - Divesh & Suresh

Id X μ

s1 0 0

s2 3 -1

s3 5 0

s4 0 1

s5 8 1

s6 0 -1

s7 6 -1

s8 0 1

Id R1

s1 0

s2 2

s3 5

s4 1

s5 9

s6 10

s7 5

s8 1

Id X | R1

s1 {10, 0, 1}

s2 {1, 2, 3}

s3 {4, 5, 6}

s4 {0, 1, 2}

s5 {8, 9, 10}

s6 {9, 10, 0}

s7 {4, 5, 6}

s8 {0, 1, 2}

Page 45: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4545

Analysis of Privacy [AS00]

X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– If X is uniform in [0, 10], privacy determined by range of μ

Information Theory for Data Management - Divesh & Suresh

Id X μ

s1 0 0

s2 3 -1

s3 5 0

s4 0 1

s5 8 1

s6 0 -1

s7 6 -1

s8 0 1

Id R1

s1 0

s2 2

s3 5

s4 1

s5 9

s6 10

s7 5

s8 1

Id X | R1

s1 {10, 0, 1}

s2 {1, 2, 3}

s3 {4, 5, 6}

s4 {0, 1, 2}

s5 {8, 9, 10}

s6 {9, 10, 0}

s7 {4, 5, 6}

s8 {0, 1, 2}

Page 46: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4646

Analysis of Privacy [AA01]

X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– If X is uniform in [0, 1] [5, 6], privacy smaller than range of μ

Information Theory for Data Management - Divesh & Suresh

Id X μ

s1 0 0

s2 1 -1

s3 5 0

s4 6 1

s5 0 1

s6 1 -1

s7 5 -1

s8 6 1

Id R1

s1 0

s2 0

s3 5

s4 7

s5 1

s6 0

s7 4

s8 7

Id X | R1

s1 {10, 0, 1}

s2 {10, 0, 1}

s3 {4, 5, 6}

s4 {6, 7, 8}

s5 {0, 1, 2}

s6 {10, 0, 1}

s7 {3, 4, 5}

s8 {6, 7, 8}

Page 47: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4747

Analysis of Privacy [AA01]

X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– If X is uniform in [0, 1] [5, 6], privacy smaller than range of μ– In some cases, sensitive value revealed

Information Theory for Data Management - Divesh & Suresh

Id X μ

s1 0 0

s2 1 -1

s3 5 0

s4 6 1

s5 0 1

s6 1 -1

s7 5 -1

s8 6 1

Id R1

s1 0

s2 0

s3 5

s4 7

s5 1

s6 0

s7 4

s8 7

Id X | R1

s1 {0, 1}

s2 {0, 1}

s3 {5, 6}

s4 {6}

s5 {0, 1}

s6 {0, 1}

s7 {5}

s8 {6}

Page 48: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4848

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– Smaller H(X|R) more loss of privacy in X by knowledge of R– Larger I(X;R) more loss of privacy in X by knowledge of R– I(X;R) = H(X) – H(X|R)

I(X;R) used to capture correlation between X and R– p(X) is the prior knowledge of sensitive attribute X– p(X, R) is the joint distribution of X and R

Information Theory for Data Management - Divesh & Suresh

Page 49: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

4949

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

Information Theory for Data Management - Divesh & Suresh

X R1 p(X,R1) h(X,R1) i(X;R1)

5 4

5 5

5 6

6 5

6 6

6 7

X p(X) h(X)

5

6

R1 p(R1) h(R1)

4

5

6

7

Page 50: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5050

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

Information Theory for Data Management - Divesh & Suresh

X R1 p(X,R1) h(X,R1) i(X;R1)

5 4 0.17

5 5 0.17

5 6 0.17

6 5 0.17

6 6 0.17

6 7 0.17

X p(X) h(X)

5 0.5

6 0.5

R1 p(R1) h(R1)

4 0.17

5 0.34

6 0.34

7 0.17

Page 51: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5151

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

Information Theory for Data Management - Divesh & Suresh

X R1 p(X,R1) h(X,R1) i(X;R1)

5 4 0.17 2.58

5 5 0.17 2.58

5 6 0.17 2.58

6 5 0.17 2.58

6 6 0.17 2.58

6 7 0.17 2.58

X p(X) h(X)

5 0.5 1.0

6 0.5 1.0

R1 p(R1) h(R1)

4 0.17 2.58

5 0.34 1.58

6 0.34 1.58

7 0.17 2.58

Page 52: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5252

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– I(X;R) = 0.33

Information Theory for Data Management - Divesh & Suresh

X R1 p(X,R1) h(X,R1) i(X;R1)

5 4 0.17 2.58 1.0

5 5 0.17 2.58 0.0

5 6 0.17 2.58 0.0

6 5 0.17 2.58 0.0

6 6 0.17 2.58 0.0

6 7 0.17 2.58 1.0

X p(X) h(X)

5 0.5 1.0

6 0.5 1.0

R1 p(R1) h(R1)

4 0.17 2.58

5 0.34 1.58

6 0.34 1.58

7 0.17 2.58

Page 53: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5353

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R2 = X + μ (mod 11), μ is uniform in {0, 1}– I(X;R1) = 0.33, I(X;R2) = 0.5 R2 is a bigger privacy risk than R1

Information Theory for Data Management - Divesh & Suresh

X R2 p(X,R2) h(X,R2) i(X;R2)

5 5 0.25 2.0 1.0

5 6 0.25 2.0 0.0

6 6 0.25 2.0 0.0

6 7 0.25 2.0 1.0

X p(X) h(X)

5 0.5 1.0

6 0.5 1.0

R2 p(R2) h(R2)

5 0.25 2.0

6 0.5 1.0

7 0.25 2.0

Page 54: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5454

Quantify Loss of Privacy [AA01]

Equivalent goal: quantify loss of privacy based on H(X|R)– X is uniform in [5, 6], R2 = X + μ (mod 11), μ is uniform in {0, 1}– Intuition: we know more about X given R2, than about X given R1– H(X|R1) = 0.67, H(X|R2) = 0.5 R2 is a bigger privacy risk than R1

Information Theory for Data Management - Divesh & Suresh

X R2 p(X,R2) p(X|R2) h(X|R2)

5 5 0.25 1.0 0.0

5 6 0.25 0.5 1.0

6 6 0.25 0.5 1.0

6 7 0.25 1.0 0.0

X R1 p(X,R1) p(X|R1) h(X|R1)

5 4 0.17 1.0 0.0

5 5 0.17 0.5 1.0

5 6 0.17 0.5 1.0

6 5 0.17 0.5 1.0

6 6 0.17 0.5 1.0

6 7 0.17 1.0 0.0

Page 55: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5555

Quantify Loss of Privacy

Example: X is uniform in [0, 1] – R3 = e (p = 0.9999), R3 = X (p = 0.0001)– R4 = X (p = 0.6), R4 = 1 – X (p = 0.4)

Is R3 or R4 a bigger privacy risk?

Information Theory for Data Management - Divesh & Suresh

Page 56: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5656

Worst Case Loss of Privacy [EGS03]

Example: X is uniform in [0, 1] – R3 = e (p = 0.9999), R3 = X (p = 0.0001)– R4 = X (p = 0.6), R4 = 1 – X (p = 0.4)

I(X;R3) = 0.0001 << I(X;R4) = 0.028

Information Theory for Data Management - Divesh & Suresh

X R3 p(X,R3) h(X,R3) i(X;R3)

0 e 0.49995 1.0 0.0

0 0 0.00005 14.29 1.0

1 e 0.49995 1.0 0.0

1 1 0.00005 14.29 1.0

X R4 p(X,R4) h(X,R4) i(X;R4)

0 0 0.3 1.74 0.26

0 1 0.2 2.32 -0.32

1 0 0.2 2.32 -0.32

1 1 0.3 1.74 0.26

Page 57: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5757

Worst Case Loss of Privacy [EGS03]

Example: X is uniform in [0, 1] – R3 = e (p = 0.9999), R3 = X (p = 0.0001)– R4 = X (p = 0.6), R4 = 1 – X (p = 0.4)

I(X;R3) = 0.0001 << I(X;R4) = 0.028– But R3 has a larger worst case risk

Information Theory for Data Management - Divesh & Suresh

X R3 p(X,R3) h(X,R3) i(X;R3)

0 e 0.49995 1.0 0.0

0 0 0.00005 14.29 1.0

1 e 0.49995 1.0 0.0

1 1 0.00005 14.29 1.0

X R4 p(X,R4) h(X,R4) i(X;R4)

0 0 0.3 1.74 0.26

0 1 0.2 2.32 -0.32

1 0 0.2 2.32 -0.32

1 1 0.3 1.74 0.26

Page 58: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5858

Worst Case Loss of Privacy [EGS03]

Goal: quantify worst case loss of privacy in X by knowledge of R– Use max KL divergence, instead of mutual information

Mutual information can be formulated as expected KL divergence– I(X;R) = ∑x ∑r p(x,r)*log2(p(x,r)/p(x)*p(r)) = KL(p(X,R) || p(X)*p(R))

– I(X;R) = ∑r p(r) ∑x p(x|r)*log2(p(x|r)/p(x)) = ER [KL(p(X|r) || p(X))]– [AA01] measure quantifies expected loss of privacy over R

[EGS03] propose a measure based on worst case loss of privacy– IW(X;R) = MAXR [KL(p(X|r) || p(X))]

Information Theory for Data Management - Divesh & Suresh

Page 59: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

5959

Worst Case Loss of Privacy [EGS03]

Example: X is uniform in [0, 1]– R3 = e (p = 0.9999), R3 = X (p = 0.0001)– R4 = X (p = 0.6), R4 = 1 – X (p = 0.4)

IW(X;R3) = max{0.0, 1.0, 1.0} > IW(X;R4) = max{0.028, 0.028}

Information Theory for Data Management - Divesh & Suresh

X R3 p(X,R3) p(X|R3) i(X;R3)

0 e 0.49995 0.5 0.0

0 0 0.00005 1.0 1.0

1 e 0.49995 0.5 0.0

1 1 0.00005 1.0 1.0

X R4 p(X,R4) p(X|R4) i(X;R4)

0 0 0.3 0.6 0.26

0 1 0.2 0.4 -0.32

1 0 0.2 0.4 -0.32

1 1 0.3 0.6 0.26

Page 60: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

6060

Worst Case Loss of Privacy [EGS03]

Example: X is uniform in [5, 6]– R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– R2 = X + μ (mod 11), μ is uniform in {0, 1}

IW(X;R1) = max{1.0, 0.0, 0.0, 1.0} = IW(X;R2) = {1.0, 0.0, 1.0}– Unable to capture that R2 is a bigger privacy risk than R1

Information Theory for Data Management - Divesh & Suresh

X R1 p(X,R1) p(X|R1) i(X;R1)

5 4 0.17 1.0 1.0

5 5 0.17 0.5 0.0

5 6 0.17 0.5 0.0

6 5 0.17 0.5 0.0

6 6 0.17 0.5 0.0

6 7 0.17 1.0 1.0

X R2 p(X,R2) p(X|R2) i(X;R2)

5 5 0.25 1.0 1.0

5 6 0.25 0.5 0.0

6 6 0.25 0.5 0.0

6 7 0.25 1.0 1.0

Page 61: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

6161

Data Anonymization: Summary

Randomization techniques useful for microdata anonymization– Randomization techniques differ in their loss of privacy

Information theoretic measures useful to capture loss of privacy– Expected KL divergence captures expected loss of privacy [AA01]– Maximum KL divergence captures worst case loss of privacy [EGS03]– Both are useful in practice

Information Theory for Data Management - Divesh & Suresh

Page 62: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

62

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Data Integration

Part 2 Review of Information Theory Basics Application: Database Design Computing Information Theoretic Primitives Open Problems

Information Theory for Data Management - Divesh & Suresh

Page 63: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

6363

Schema Matching

Goal: align columns across database tables to be integrated– Fundamental problem in database integration

Early useful approach: textual similarity of column names– False positives: Address ≠ IP_Address– False negatives: Customer_Id = Client_Number

Early useful approach: overlap of values in columns, e.g., Jaccard– False positives: Emp_Id ≠ Project_Id– False negatives: Emp_Id = Personnel_Number

Information Theory for Data Management - Divesh & Suresh

Page 64: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

6464

Opaque Schema Matching [KN03]

Goal: align columns when column names, data values are opaque– Databases belong to different government bureaucracies – Treat column names and data values as uninterpreted (generic)

Example: EMP_PROJ(Emp_Id, Proj_Id, Task_Id, Status_Id)– Likely that all Id fields are from the same domain– Different databases may have different column names

Information Theory for Data Management - Divesh & Suresh

W X Y Z

w2 x1 y1 z2

w4 x2 y3 z3

w3 x3 y3 z1

w1 x2 y1 z2

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

Page 65: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

6565

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)– Perform graph matching between GD1 and GD2, minimizing distance

Intuition:– Entropy H(X) captures distribution of values in database column X– Mutual information I(X;Y) captures correlations between X, Y– Efficiency: graph matching between schema-sized graphs

Information Theory for Data Management - Divesh & Suresh

Page 66: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

6666

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)

Information Theory for Data Management - Divesh & Suresh

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

A p(A)

a1 0.5

a3 0.25

a4 0.25

B p(B)

b1 0.25

b2 0.25

b3 0.25

b4 0.25

C p(C)

c1 0.5

c2 0.5

D p(D)

d1 0.25

d2 0.5

d3 0.25

Page 67: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

6767

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)

H(A) = 1.5, H(B) = 2.0, H(C) = 1.0, H(D) = 1.5

Information Theory for Data Management - Divesh & Suresh

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

A h(A)

a1 1.0

a3 2.0

a4 2.0

B h(B)

b1 2.0

b2 2.0

b3 2.0

b4 2.0

C h(C)

c1 1.0

c2 1.0

D h(D)

d1 2.0

d2 1.0

d3 2.0

Page 68: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

6868

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)

H(A) = 1.5, H(B) = 2.0, H(C) = 1.0, H(D) = 1.5, I(A;B) = 1.5

Information Theory for Data Management - Divesh & Suresh

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

A h(A)

a1 1.0

a3 2.0

a4 2.0

B h(B)

b1 2.0

b2 2.0

b3 2.0

b4 2.0

A B h(A,B) i(A;B)

a1 b2 2.0 1.0

a3 b4 2.0 2.0

a1 b1 2.0 1.0

a4 b3 2.0 2.0

Page 69: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

6969

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)

Information Theory for Data Management - Divesh & Suresh

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

A B

DC

1.5

1.0

2.0

1.5

1.0

1.5

0.5

1.5

1.0

1.0

Page 70: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7070

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)– Perform graph matching between GD1 and GD2, minimizing distance

[KN03] uses euclidean and normal distance metrics

Information Theory for Data Management - Divesh & Suresh

W X

ZY

2.0

1.0

1.5

1.5

1.0

1.5

1.0

1.0

1.5

0.5

A B

DC

1.5

1.0

2.0

1.5

1.0

1.5

0.5

1.5

1.0

1.0

Page 71: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7171

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)– Perform graph matching between GD1 and GD2, minimizing distance

Information Theory for Data Management - Divesh & Suresh

W X

ZY

2.0

1.0

1.5

1.5

1.0

1.5

1.0

1.0

1.5

0.5

A B

DC

1.5

1.0

2.0

1.5

1.0

1.5

0.5

1.5

1.0

1.0

Page 72: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7272

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)– Perform graph matching between GD1 and GD2, minimizing distance

Information Theory for Data Management - Divesh & Suresh

W X

ZY

2.0

1.0

1.5

1.5

1.0

1.5

1.0

1.0

1.5

0.5

A B

DC

1.5

1.0

2.0

1.5

1.0

1.5

0.5

1.5

1.0

1.0

Page 73: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7373

Heterogeneity Identification [DKOSV06] Goal: identify columns with semantically heterogeneous values

– Can arise due to opaque schema matching [KN03]

Key ideas: – Heterogeneity based on distribution, distinguishability of values– Use Information Bottleneck to compute soft clustering of values

Issues:– Which information theoretic measure characterizes heterogeneity?– How to set parameters in the Information Bottleneck method?

Information Theory for Data Management - Divesh & Suresh

Page 74: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7474

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Information Theory for Data Management - Divesh & Suresh

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 75: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7575

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Information Theory for Data Management - Divesh & Suresh

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 76: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7676

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

More semantic types in column greater heterogeneity– Only email versus email + phone

Information Theory for Data Management - Divesh & Suresh

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 77: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7777

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Information Theory for Data Management - Divesh & Suresh

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 78: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7878

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Relative distribution of semantic types impacts heterogeneity– Mainly email + few phone versus balanced email + phone

Information Theory for Data Management - Divesh & Suresh

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 79: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

7979

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Information Theory for Data Management - Divesh & Suresh

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 80: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8080

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Information Theory for Data Management - Divesh & Suresh

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 81: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8181

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

More easily distinguished types greater heterogeneity– Phone + (possibly) SSN versus balanced email + phone

Information Theory for Data Management - Divesh & Suresh

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 82: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8282

Heterogeneity Identification [DKOSV06] Heterogeneity = space complexity of soft clustering of the data

– More, balanced clusters greater heterogeneity– More distinguishable clusters greater heterogeneity

Soft clustering– Soft assign probabilities to membership of values in clusters– How many clusters: tradeoff between space versus quality– Use Information Bottleneck to compute soft clustering of values

Information Theory for Data Management - Divesh & Suresh

Page 83: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8383

Heterogeneity Identification [DKOSV06] Hard clustering

Information Theory for Data Management - Divesh & Suresh

X = Customer_Id T = Cluster_Id

187-65-2468 t1

987-64-6837 t1

789-15-4321 t1

987-65-4321 t1

(908)-555-1234 t2

973-360-0000 t1

360-0007 t3

(877)-807-4596 t2

Page 84: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8484

Heterogeneity Identification [DKOSV06] Soft clustering: cluster membership probabilities

How to compute a good soft clustering?

Information Theory for Data Management - Divesh & Suresh

X = Customer_Id T = Cluster_Id p(T|X)

789-15-4321 t1 0.75

987-65-4321 t1 0.75

789-15-4321 t2 0.25

987-65-4321 t2 0.25

(908)-555-1234 t1 0.25

973-360-0000 t1 0.5

(908)-555-1234 t2 0.75

973-360-0000 t2 0.5

Page 85: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8585

Heterogeneity Identification [DKOSV06] Represent strings as q-gram distributions

Information Theory for Data Management - Divesh & Suresh

X = Customer_Id V = 4-grams p(X,V)

987-65-4321 987- 0.10

987-65-4321 87-6 0.13

987-65-4321 7-65 0.12

987-65-4321 -65- 0.15

987-65-4321 65-4 0.05

987-65-4321 5-43 0.20

987-65-4321 -432 0.15

987-65-4321 4321 0.10

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 86: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8686

Heterogeneity Identification [DKOSV06] iIB: find soft clustering T of X that minimizes I(T;X) – β*I(T;V)

Allow iIB to use arbitrarily many clusters, use β* = H(X)/I(X;V)– Closest to point with minimum space and maximum quality

Information Theory for Data Management - Divesh & Suresh

X = Customer_Id V = 4-grams p(X,V)

987-65-4321 987- 0.10

987-65-4321 87-6 0.13

987-65-4321 7-65 0.12

987-65-4321 -65- 0.15

987-65-4321 65-4 0.05

987-65-4321 5-43 0.20

987-65-4321 -432 0.15

987-65-4321 4321 0.10

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Page 87: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8787

Heterogeneity Identification [DKOSV06] Rate distortion curve: I(T;V)/I(X;V) vs I(T;X)/H(X)

β*

Information Theory for Data Management - Divesh & Suresh

Page 88: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8888

Heterogeneity Identification [DKOSV06] Heterogeneity = mutual information I(T;X) of iIB clustering T at β*

0 ≤I(T;X) (= 0.126) ≤ H(X) (= 2.0), H(T) (= 1.0)– Ideally use iIB with an arbitrarily large number of clusters in T

Information Theory for Data Management - Divesh & Suresh

X = Customer_Id T = Cluster_Id p(T|X) i(T;X)

789-15-4321 t1 0.75 0.41

987-65-4321 t1 0.75 0.41

789-15-4321 t2 0.25 -0.81

987-65-4321 t2 0.25 -0.81

(908)-555-1234 t1 0.25 -1.17

973-360-0000 t1 0.5 -0.17

(908)-555-1234 t2 0.75 0.77

973-360-0000 t2 0.5 0.19

Page 89: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

8989

Heterogeneity Identification [DKOSV06] Heterogeneity = mutual information I(T;X) of iIB clustering T at β*

Information Theory for Data Management - Divesh & Suresh

Page 90: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

9090

Data Integration: Summary

Analyzing database instance critical for effective data integration– Matching and quality assessments are key components

Information theoretic measures useful for schema matching– Align columns when column names, data values are opaque– Mutual information I(X;V) captures correlations between X, V

Information theoretic measures useful for heterogeneity testing– Identify columns with semantically heterogeneous values– I(T;X) of iIB clustering T at β* captures column heterogeneity

Information Theory for Data Management - Divesh & Suresh

Page 91: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

91

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Data Integration

Part 2 Review of Information Theory Basics Application: Database Design Computing Information Theoretic Primitives Open Problems

Information Theory for Data Management - Divesh & Suresh

Page 92: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

9292

Review of Information Theory Basics

Discrete distribution: probability p(X)

p(X,Y) = ∑z p(X,Y,Z=z)

X Y Z p(X,Y,Z)

x1 y1 z1 0.125

x1 y2 z2 0.125

x1 y1 z2 0.125

x1 y2 z1 0.125

x2 y3 z3 0.125

x2 y3 z4 0.125

x3 y3 z5 0.125

x4 y3 z6 0.125

Information Theory for Data Management - Divesh & Suresh

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

X Y p(X,Y)

x1 y1 0.25

x1 y2 0.25

x2 y3 0.25

x3 y3 0.125

x4 y3 0.125

Page 93: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

9393

Review of Information Theory Basics

Discrete distribution: probability p(X)

p(Y) = ∑x p(X=x,Y) = ∑x ∑z p(X=x,Y,Z=z)

X Y Z p(X,Y,Z)

x1 y1 z1 0.125

x1 y2 z2 0.125

x1 y1 z2 0.125

x1 y2 z1 0.125

x2 y3 z3 0.125

x2 y3 z4 0.125

x3 y3 z5 0.125

x4 y3 z6 0.125

Information Theory for Data Management - Divesh & Suresh

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

X Y p(X,Y)

x1 y1 0.25

x1 y2 0.25

x2 y3 0.25

x3 y3 0.125

x4 y3 0.125

Page 94: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

9494

Review of Information Theory Basics

Discrete distribution: conditional probability p(X|Y)

p(X,Y) = p(X|Y)*p(Y) = p(Y|X)*p(X)

X Y p(X,Y) p(X|Y) p(Y|X)

x1 y1 0.25 1.0 0.5

x1 y2 0.25 1.0 0.5

x2 y3 0.25 0.5 1.0

x3 y3 0.125 0.25 1.0

x4 y3 0.125 0.25 1.0

Information Theory for Data Management - Divesh & Suresh

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

Page 95: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

9595

Review of Information Theory Basics

Discrete distribution: entropy H(X)

h(x) = log2(1/p(x))– H(X) = ∑X=x p(x)*h(x) = 1.75

– H(Y) = ∑Y=y p(y)*h(y) = 1.5 (≤ log2(|Y|) = 1.58)

– H(X,Y) = ∑X=x ∑Y=y p(x,y)*h(x,y) = 2.25 (≤ log2(|X,Y|) = 2.32)

X Y p(X,Y) h(X,Y)

x1 y1 0.25 2.0

x1 y2 0.25 2.0

x2 y3 0.25 2.0

x3 y3 0.125 3.0

x4 y3 0.125 3.0

Information Theory for Data Management - Divesh & Suresh

X p(X) h(X)

x1 0.5 1.0

x2 0.25 2.0

x3 0.125 3.0

x4 0.125 3.0

Y p(Y) h(Y)

y1 0.25 2.0

y2 0.25 2.0

y3 0.5 1.0

Page 96: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

9696

Review of Information Theory Basics

Discrete distribution: conditional entropy H(X|Y)

h(x|y) = log2(1/p(x|y))– H(X|Y) = ∑X=x ∑Y=y p(x,y)*h(x|y) = 0.75– H(X|Y) = H(X,Y) – H(Y) = 2.25 – 1.5

X Y p(X,Y) p(X|Y) h(X|Y)

x1 y1 0.25 1.0 0.0

x1 y2 0.25 1.0 0.0

x2 y3 0.25 0.5 1.0

x3 y3 0.125 0.25 2.0

x4 y3 0.125 0.25 2.0

Information Theory for Data Management - Divesh & Suresh

X p(X) h(X)

x1 0.5 1.0

x2 0.25 2.0

x3 0.125 3.0

x4 0.125 3.0

Y p(Y) h(Y)

y1 0.25 2.0

y2 0.25 2.0

y3 0.5 1.0

Page 97: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

9797

Review of Information Theory Basics

Discrete distribution: mutual information I(X;Y)

i(x;y) = log2(p(x,y)/p(x)*p(y))– I(X;Y) = ∑X=x ∑Y=y p(x,y)*i(x;y) = 1.0– I(X;Y) = H(X) + H(Y) – H(X,Y) = 1.75 + 1.5 – 2.25

X Y p(X,Y) h(X,Y) i(X;Y)

x1 y1 0.25 2.0 1.0

x1 y2 0.25 2.0 1.0

x2 y3 0.25 2.0 1.0

x3 y3 0.125 3.0 1.0

x4 y3 0.125 3.0 1.0

Information Theory for Data Management - Divesh & Suresh

X p(X) h(X)

x1 0.5 1.0

x2 0.25 2.0

x3 0.125 3.0

x4 0.125 3.0

Y p(Y) h(Y)

y1 0.25 2.0

y2 0.25 2.0

y3 0.5 1.0

Page 98: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

98

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Data Integration

Part 2 Review of Information Theory Basics Application: Database Design Computing Information Theoretic Primitives Open Problems

Information Theory for Data Management - Divesh & Suresh

Page 99: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

9999

Information Dependencies [DR00]

Goal: use information theory to examine and reason about information content of the attributes in a relation instance

Key ideas: – Novel InD measure between attribute sets X, Y based on H(Y|X)– Identify numeric inequalities between InD measures

Results:– InD measures are a broader class than FDs and MVDs– Armstrong axioms for FDs derivable from InD inequalities– MVD inference rules derivable from InD inequalities

Information Theory for Data Management - Divesh & Suresh

Page 100: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

100100

Information Dependencies [DR00]

Functional dependency: X → Y– FD X → Y holds iff t1, t2 ((t1[X] = t2[X]) (t1[Y] = t2[Y]))

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

Page 101: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

101101

Information Dependencies [DR00]

Functional dependency: X → Y– FD X → Y holds iff t1, t2 ((t1[X] = t2[X]) (t1[Y] = t2[Y]))

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

Page 102: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

102102

Information Dependencies [DR00]

Result: FD X → Y holds iff H(Y|X) = 0– Intuition: once X is known, no remaining uncertainty in Y

H(Y|X) = 0.5

Information Theory for Data Management - Divesh & Suresh

X Y p(X,Y) p(Y|X) h(Y|X)

x1 y1 0.25 0.5 1.0

x1 y2 0.25 0.5 1.0

x2 y3 0.25 1.0 0.0

x3 y3 0.125 1.0 0.0

x4 y3 0.125 1.0 0.0

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

Page 103: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

103103

Information Dependencies [DR00]

Multi-valued dependency: X →→ Y– MVD X →→ Y holds iff R(X,Y,Z) = R(X,Y) R(X,Z)

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

Page 104: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

104104

Information Dependencies [DR00]

Multi-valued dependency: X →→ Y– MVD X →→ Y holds iff R(X,Y,Z) = R(X,Y) R(X,Z)

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

Page 105: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

105105

Information Dependencies [DR00]

Multi-valued dependency: X →→ Y– MVD X →→ Y holds iff R(X,Y,Z) = R(X,Y) R(X,Z)

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

Page 106: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

106106

Information Dependencies [DR00]

Result: MVD X →→ Y holds iff H(Y,Z|X) = H(Y|X) + H(Z|X)– Intuition: once X known, uncertainties in Y and Z are independent

H(Y|X) = 0.5, H(Z|X) = 0.75, H(Y,Z|X) = 1.25Information Theory for Data Management - Divesh & Suresh

=

X Y h(Y|X)

x1 y1 1.0

x1 y2 1.0

x2 y3 0.0

x3 y3 0.0

x4 y3 0.0

X Z h(Z|X)

x1 z1 1.0

x1 z2 1.0

x2 z3 1.0

x2 z4 1.0

x3 z5 0.0

x4 z6 0.0

X Y Z h(Y,Z|X)

x1 y1 z1 2.0

x1 y2 z2 2.0

x1 y1 z2 2.0

x1 y2 z1 2.0

x2 y3 z3 1.0

x2 y3 z4 1.0

x3 y3 z5 0.0

x4 y3 z6 0.0

Page 107: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

107107

Information Dependencies [DR00]

Result: Armstrong axioms for FDs derivable from InD inequalities

Reflexivity: If Y X, then X → Y– H(Y|X) = 0 for Y X

Augmentation: X → Y X,Z → Y,Z– 0 ≤ H(Y,Z|X,Z) = H(Y|X,Z) ≤ H(Y|X) = 0

Transitivity: X → Y & Y → Z X → Z– 0 ≥ H(Y|X) + H(Z|Y) ≥ H(Z|X) ≥ 0

Information Theory for Data Management - Divesh & Suresh

Page 108: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

108108

Database Normal Forms

Goal: eliminate update anomalies by good database design– Need to know the integrity constraints on all database instances

Boyce-Codd normal form:– Input: a set ∑ of functional dependencies– For every (non-trivial) FD R.X → R.Y ∑+, R.X is a key of R

4NF:– Input: a set ∑ of functional and multi-valued dependencies– For every (non-trivial) MVD R.X →→ R.Y ∑+, R.X is a key of R

Information Theory for Data Management - Divesh & Suresh

Page 109: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

109109

Database Normal Forms

Functional dependency: X → Y– Which design is better?

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

X Y

x1 y1

x2 y2

x3 y3

x4 y4

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

Page 110: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

110110

Database Normal Forms

Functional dependency: X → Y– Which design is better?

Decomposition is in BCNF

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

X Y

x1 y1

x2 y2

x3 y3

x4 y4

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

Page 111: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

111111

Database Normal Forms

Multi-valued dependency: X →→ Y– Which design is better?

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

Page 112: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

112112

Database Normal Forms

Multi-valued dependency: X →→ Y– Which design is better?

Decomposition is in 4NF

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

Page 113: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

113113

Well-Designed Databases [AL03]

Goal: use information theory to characterize “goodness” of a database design and reason about normalization algorithms

Key idea: – Information content measure of cell in a DB instance w.r.t. ICs– Redundancy reduces information content measure of cells

Results:– Well-designed DB each cell has information content > 0– Normalization algorithms never decrease information content

Information Theory for Data Management - Divesh & Suresh

Page 114: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

114114

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Uniform distribution p(V) on values for c consistent with D\c and FD– Information content of cell c is entropy H(V)

H(V62) = 2.0

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

V62 p(V62) h(V62)

y1 0.25 2.0

y2 0.25 2.0

y3 0.25 2.0

y4 0.25 2.0

Page 115: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

115115

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Uniform distribution p(V) on values for c consistent with D\c and FD– Information content of cell c is entropy H(V)

H(V22) = 0.0

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

V22 p(V22) h(V22)

y1 1.0 0.0

y2 0.0

y3 0.0

y4 0.0

Page 116: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

116116

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Information content of cell c is entropy H(V)

Schema S is in BCNF iff D S, H(V) > 0, for all cells c in D– Technicalities w.r.t. size of active domain

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

c H(V)

c12 0.0

c22 0.0

c32 0.0

c42 0.0

c52 2.0

c62 2.0

Page 117: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

117117

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Information content of cell c is entropy H(V)

H(V12) = 2.0, H(V42) = 2.0

Information Theory for Data Management - Divesh & Suresh

V42 p(V42) h(V42)

y1 0.25 2.0

y2 0.25 2.0

y3 0.25 2.0

y4 0.25 2.0

X Y

x1 y1

x2 y2

x3 y3

x4 y4

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

V12 p(V12) h(V12)

y1 0.25 2.0

y2 0.25 2.0

y3 0.25 2.0

y4 0.25 2.0

Page 118: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

118118

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Information content of cell c is entropy H(V)

Schema S is in BCNF iff D S, H(V) > 0, for all cells c in D

Information Theory for Data Management - Divesh & Suresh

X Y

x1 y1

x2 y2

x3 y3

x4 y4

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

c H(V)

c12 2.0

c22 2.0

c32 2.0

c42 2.0

Page 119: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

119119

Well-Designed Databases [AL03]

Information content of cell c in DB D satisfying MVD X →→ Y– Information content of cell c is entropy H(V)

H(V52) = 0.0, H(V53) = 2.32

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

V52 p(V52) h(V52)

y3 1.0 0.0

V53 p(V53) h(V53)

z1 0.2 2.32

z2 0.2 2.32

z3 0.2 2.32

z4 0.0

z5 0.2 2.32

z6 0.2 2.32

Page 120: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

120120

Well-Designed Databases [AL03]

Information content of cell c in DB D satisfying MVD X →→ Y– Information content of cell c is entropy H(V)

Schema S is in 4NF iff D S, H(V) > 0, for all cells c in D

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

c H(V)

c12 0.0

c22 0.0

c32 0.0

c42 0.0

c52 0.0

c62 0.0

c72 1.58

c82 1.58

c H(V)

c13 0.0

c23 0.0

c33 0.0

c43 0.0

c53 2.32

c63 2.32

c73 2.58

c83 2.58

Page 121: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

121121

Well-Designed Databases [AL03]

Information content of cell c in DB D satisfying MVD X →→ Y– Information content of cell c is entropy H(V)

H(V32) = 1.58, H(V34) = 2.32

Information Theory for Data Management - Divesh & Suresh

V34 p(V34) h(V34)

z1 0.2 2.32

z2 0.2 2.32

z3 0.2 2.32

z4 0.0

z5 0.2 2.32

z6 0.2 2.32

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

V32 p(V32) h(V32)

y1 0.33 1.58

y2 0.33 1.58

y3 0.33 1.58

Page 122: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

122122

Well-Designed Databases [AL03]

Information content of cell c in DB D satisfying MVD X →→ Y– Information content of cell c is entropy H(V)

Schema S is in 4NF iff D S, H(V) > 0, for all cells c in D

Information Theory for Data Management - Divesh & Suresh

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

c H(V)

c12 1.0

c22 1.0

c32 1.58

c42 1.58

c52 1.58

c H(V)

c14 2.32

c24 2.32

c34 2.32

c44 2.32

c54 2.58

c64 2.58

Page 123: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

123123

Well-Designed Databases [AL03]

Normalization algorithms never decrease information content– Information content of cell c is entropy H(V)

Information Theory for Data Management - Divesh & Suresh

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

c H(V)

c13 0.0

c23 0.0

c33 0.0

c43 0.0

c53 2.32

c63 2.32

c73 2.58

c83 2.58

Page 124: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

124124

Well-Designed Databases [AL03]

Normalization algorithms never decrease information content– Information content of cell c is entropy H(V)

Information Theory for Data Management - Divesh & Suresh

c H(V)

c14 2.32

c24 2.32

c34 2.32

c44 2.32

c54 2.58

c64 2.58

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

c H(V)

c13 0.0

c23 0.0

c33 0.0

c43 0.0

c53 2.32

c63 2.32

c73 2.58

c83 2.58

Page 125: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

125125

Well-Designed Databases [AL03]

Normalization algorithms never decrease information content– Information content of cell c is entropy H(V)

Information Theory for Data Management - Divesh & Suresh

c H(V)

c14 2.32

c24 2.32

c34 2.32

c44 2.32

c54 2.58

c64 2.58

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

c H(V)

c13 0.0

c23 0.0

c33 0.0

c43 0.0

c53 2.32

c63 2.32

c73 2.58

c83 2.58

Page 126: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

126126

Database Design: Summary

Good database design essential for preserving data integrity

Information theoretic measures useful for integrity constraints– FD X → Y holds iff InD measure H(Y|X) = 0– MVD X →→ Y holds iff H(Y,Z|X) = H(Y|X) + H(Z|X)– Information theory to model correlations in specific database

Information theoretic measures useful for normal forms– Schema S is in BCNF/4NF iff D S, H(V) > 0, for all cells c in D– Information theory to model distributions over possible databases

Information Theory for Data Management - Divesh & Suresh

Page 127: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

127

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Data Integration

Part 2 Review of Information Theory Basics Application: Database Design Computing Information Theoretic Primitives Open Problems

Information Theory for Data Management - Divesh & Suresh

Page 128: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Domain size matters

For random variable X, domain size = supp(X) = {xi | p(X = xi) > 0}

Different solutions exist depending on whether domain size is “small” or “large”

Probability vectors usually very sparse

Page 129: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Entropy: Case I - Small domain size

Suppose the #unique values for a random variable X is small (i.e fits in memory)

Maximum likelihood estimator: – p(x) = #times x is encountered/total number of items in set.

1

21

4

2

51

1 2 3 4 5

Page 130: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Entropy: Case I - Small domain size

HMLE = x p(x) log 1/p(x) This is a biased estimate:

– E[HMLE] < H

Miller-Madow correction:– H’ = HMLE + (m’ – 1)/2n

m’ is an estimate of number of non-empty bins n = number of samples

Bad news: ALL estimators for H are biased. Good news: we can quantify bias and variance of MLE:

– Bias <= log(1 + m/N)– Var(HMLE) <= (log n)2/N

Page 131: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Entropy: Case II - Large domain size

|X| is too large to fit in main memory, so we can’t maintain explicit counts.

Streaming algorithms for H(X):– Long history of work on this problem– Bottomline:

(1+)-relative-approximation for H(X) that allows for updates to frequencies, and requires “almost constant”, and optimal space [HNO08].

Page 132: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Streaming Entropy [CCM07]

High level idea: sample randomly from the stream, and track counts of elements picked [AMS]

PROBLEM: skewed distribution prevents us from sampling lower-frequency elements (and entropy is small)

Idea: estimate largest frequency, and distribution of what’s left (higher entropy)

Page 133: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Streaming Entropy [CCM07]

Maintain set of samples from original distribution and distribution without most frequent element.

In parallel, maintain estimator for frequency of most frequent element– normally this is hard– but if frequency is very large, then simple estimator exists

[MG81] (Google interview puzzle!)

At the end, compute function of these two estimates Memory usage: roughly 1/2 log(1/) ( is the error)

Page 134: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Entropy and MI are related

I(X;Y) = H(X,Y) – H(X) – H(Y) Suppose we can c-approximate H(X) for any c > 0:

Find H’(X) s.t |H(X) – H’(X)| <= c Then we can 3c-approximate I(X;Y):

– I(X;Y) = H(X,Y) – H(X) – H(Y) <= H’(X,Y)+c – (H’(X)-c) – (H’(Y)-c) <= H’(X,Y) – H’(X) – H’(Y) + 3c

<= I’(X,Y) + 3c Similarly, we can 2c-approximate H(Y|X) = H(X,Y) – H(X) Estimating entropy allows us to estimate I(X;Y) and H(Y|X)

Page 135: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Computing KL-divergence: Small Domains

“easy algorithm”: maintain counts for each of p and q, normalize, and compute KL-divergence.

PROBLEM ! Suppose qi = 0:– pi log pi/qi is undefined !

General problem with ML estimators: all events not seen have probability zero !!– Laplace correction: add one to counts for each seen element– Slightly better: add 0.5 to counts for each seen element [KT81]– Even better, more involved: use Good-Turing estimator [GT53]

YIeld non-zero probability for “things not seen”.

Page 136: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Computing KL-divergence: Large Domains

Bad news: No good relative-approximations exist in small space.

(Partial) good news: additive approximations in small space under certain technical conditions (no pi is too small).

(Partial) good news: additive approximations for symmetric variant of KL-divergence, via sampling.

For details, see [GMV08,GIM08]

Page 137: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Information-theoretic Clustering

Given a collection of random variables X, each “explained” by a random variable Y, we wish to find a (hard or soft) clustering T such that

I(T,X) – I(T, Y)is minimized.

Features of solutions thus far:– heuristic (general problem is NP-hard)– address both small-domain and large-domain scenarios.

Page 138: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Agglomerative Clustering (aIB) [ST00] Fix number of clusters k1. While number of clusters < k

1. Determine two clusters whose merge loses the least information

2. Combine these two clusters

2. Output clustering Merge Criterion:

– merge the two clusters so that change in I(T;V) is minimized Note: no consideration of (number of clusters is fixed)

Page 139: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Agglomerative Clustering (aIB) [S]

Elegant way of finding the two clusters to be merged:

Let dJS(p,q) = (1/2)(dKL(p,m) + dKL(q,m)), m = (p+q)/2

dJS(p,q) is a symmetric distance between p, q (Jensen-Shannon distance)

We merge clusters that have smallest dJS(p,q), (weighted by cluster mass)

p qm

Page 140: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Iterative Information Bottleneck (iIB) [S] aIB yields a hard clustering with k clusters. If you want a soft clustering, use iIB (variant of EM)

– Step 1: p(t|x) ← exp(-dKL(p(V|x),p(V|t)) assign elements to clusters in proportion (exponentially) to

distance from cluster center !– Step 2: Compute new cluster centers by computing weighted

centroids: p(t) = x p(t|x) p(x) p(V|t) = x p(V|t) p(t|x) p(x)/p(t)

– Choose according to [DKOSV06]

Page 141: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Dealing with massive data sets

Clustering on massive data sets is a problem Two main heuristics:

– Sampling [DKOSV06]: pick a small sample of the data, cluster it, and (if necessary)

assign remaining points to clusters using soft assignment. How many points to sample to get good bounds ?

– Streaming: Scan the data in one pass, performing clustering on the fly How much memory needed to get reasonable quality

solution ?

Page 142: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

LIMBO (for aIB) [ATMS04]

BIRCH-like idea:– Maintain (sparse) summary for each cluster (p(t), p(V|t))– As data streams in, build clusters on groups of objects– Build next-level clusters on cluster summaries from lower level

Page 143: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

143

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Data Integration

Part 2 Review of Information Theory Basics Application: Database Design Computing Information Theoretic Primitives Open Problems

Information Theory for Data Management - Divesh & Suresh

Page 144: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

Open Problems

Data exploration and mining – information theory as first-pass filter

Relation to nonparametric generative models in machine learning (LDA, PPCA, ...)

Engineering and stability: finding right knobs to make systems reliable and scalable

Other information-theoretic concepts ? (rate distortion, higher-order entropy, ...)

THANK YOU !

Page 145: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

145145

References: Information Theory

[CT] Tom Cover and Joy Thomas: Information Theory.

[BMDG05] Arindam Banerjee, Srujana Merugu, Inderjit Dhillon, Joydeep Ghosh. Learning with Bregman Divergences, JMLR 2005.

[TPB98] Naftali Tishby, Fernando Pereira, William Bialek. The Information Bottleneck Method. Proc. 37th Annual Allerton Conference, 1998

Information Theory for Data Management - Divesh & Suresh

Page 146: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

146146

References: Data Anonymization

[AA01] Dakshi Agrawal, Charu C. Aggarwal: On the design and quantification of privacy preserving data mining algorithms. PODS 2001.

[AS00] Rakesh Agrawal, Ramakrishnan Srikant: Privacy preserving data mining. SIGMOD 2000.

[EGS03] Alexandre Evfimievski, Johannes Gehrke, Ramakrishnan Srikant: Limiting privacy breaches in privacy preserving data mining. PODS 2003.

Information Theory for Data Management - Divesh & Suresh

Page 147: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

147147

References: Data Integration

[AMT04] Periklis Andritsos, Renee J. Miller, Panayiotis Tsaparas: Information-theoretic tools for mining database structure from large data sets. SIGMOD 2004.

[DKOSV06] Bing Tian Dai, Nick Koudas, Beng Chin Ooi, Divesh Srivastava, Suresh Venkatasubramanian: Rapid identification of column heterogeneity. ICDM 2006.

[DKSTV08] Bing Tian Dai, Nick Koudas, Divesh Srivastava, Anthony K. H. Tung, Suresh Venkatasubramanian: Validating multi-column schema matchings by type. ICDE 2008.

[KN03] Jaewoo Kang, Jeffrey F. Naughton: On schema matching with opaque column names and data values. SIGMOD 2003.

[PPH05] Patrick Pantel, Andrew Philpot, Eduard Hovy: An information theoretic model for database alignment. SSDBM 2005.

Information Theory for Data Management - Divesh & Suresh

Page 148: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

148148

References: Database Design

[AL03] Marcelo Arenas, Leonid Libkin: An information theoretic approach to normal forms for relational and XML data. PODS 2003.

[AL05] Marcelo Arenas, Leonid Libkin: An information theoretic approach to normal forms for relational and XML data. JACM 52(2), 246-283, 2005.

[DR00] Mehmet M. Dalkilic, Edward L. Robertson: Information dependencies. PODS 2000.

[KL06] Solmaz Kolahi, Leonid Libkin: On redundancy vs dependency preservation in normalization: an information-theoretic study of XML. PODS 2006.

Information Theory for Data Management - Divesh & Suresh

Page 149: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

149149

References: Computing IT quantities

[P03] Liam Panninski. Estimation of entropy and mutual information. Neural Computation 15: 1191-1254

[GT53] I. J. Good. Turing’s anticipation of Empirical Bayes in connection with the cryptanalysis of the Naval Enigma. Journal of Statistical Computation and Simulation, 66(2), 2000.

[KT81] R. E. Krichevsky and V. K. Trofimov. The performance of universal encoding. IEEE Trans. Inform. Th. 27 (1981), 199--207.

[CCM07] Amit Chakrabarti, Graham Cormode and Andrew McGregor. A near-optimal algorithm for computing the entropy of a stream. Proc. SODA 2007.

[HNO] Nich Harvey, Jelani Nelson, Krzysztof Onak. Sketching and Streaming Entropy via Approximation Theory. FOCS 2008

[ATMS04] Periklis Andritsos, Panayiotis Tsaparas, Renée J. Miller and Kenneth C. Sevcik. LIMBO: Scalable Clustering of Categorical Data. EDBT 2004

Information Theory for Data Management - Divesh & Suresh

Page 150: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian

150150

References: Computing IT quantities

[S] Noam Slonim. The Information Bottleneck: theory and applications. Ph.D Thesis. Hebrew University, 2000.

[GMV08] Sudipto Guha, Andrew McGregor, Suresh Venkatasubramanian. Streaming and sublinear approximations for information distances. ACM Trans Alg. 2008

[GIM08] Sudipto Guha, Piotr Indyk, Andrew McGregor. Sketching Information Distances. JMLR, 2008.

Information Theory for Data Management - Divesh & Suresh