14
Information dynamics in the Kinouchi-Copelli model T. S. Mosqueiro and Leonardo P. Maia Instituto de F´ ısica de S˜ ao Carlos Universidade de S˜ ao Paulo [email protected] [email protected] May 16, 2012 Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 1 / 13

Information Dynamics in KC model

Embed Size (px)

Citation preview

Information dynamicsin the Kinouchi-Copelli model

T. S. Mosqueiro and Leonardo P. Maia

Instituto de Fısica de Sao CarlosUniversidade de Sao Paulo

[email protected]@ifsc.usp.br

May 16, 2012

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 1 / 13

Neuronal avalanches

* Experiments revealed power-lawdistributions for both durationand size of bursts of activity.

Beggs and Plenz. J. Neuroscience, v. 23 p. 11167 (2003)

Shew et al. J. Neuroscience, v. 31 p. 55 (2011)

Key questions:

Criticality in neurodynamics?Critical optimization of information processing?

(“Edge of chaos”)Psychophysics?

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 2 / 13

Criticality in neural systems

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 3 / 13

Our aim here

• Illustrate connections between neural dynamics and psychophysics• Argue that information efficiency outperforms information capacity• Discuss evidence of criticality w/o power-laws• Preliminary results: quantify information flow leading to psychophysics

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 4 / 13

Kinouchi–Copelli model

Optimal dynamic range → critical optimization

• N neurons as nodes of a weightedundirected random graph

• Weight matrix A

• Average connectivity: K.

• External stimulus r: rate ofPoisson process

Kinouchi and Copelli, Nature Physics, v. 2 p. 348-352 (2006)

* Xj(t) = 0: quiescent state

* Xj(t) = 1: excited state

* 2 ≤ Xj(t) ≤ m− 1: refractorystates

• Mean activity = time average ofexcited fraction of the network

• sj =∑k

Akj : local branching ratio

Average branching ratio: σ := 〈sj〉

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 5 / 13

Kinouchi–Copelli model

Optimal dynamic range → critical optimization

• N neurons as nodes of a weightedundirected random graph

• Weight matrix A

• Average connectivity: K.

• External stimulus r: rate ofPoisson process

Kinouchi and Copelli, Nature Physics, v. 2 p. 348-352 (2006)

* Xj(t) = 0: quiescent state

* Xj(t) = 1: excited state

* 2 ≤ Xj(t) ≤ m− 1: refractorystates

• Mean activity = time average ofexcited fraction of the network

• sj =∑k

Akj : local branching ratio

Average branching ratio: σ := 〈sj〉

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 5 / 13

Optimal channel efficiencyPreprint: arXiv:1204.0751v1 [physics.bio-ph]

Erdos-Renyi topology Barabasi-Albert topology

Dynamic range is optimized concomitantly withinformation efficiency encoded in avalanche lifetimes

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 6 / 13

Order parameter: spontaneous activity

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 7 / 13

No power-laws?

• Dehghani et al : arxiv 1203.0738v2

• Friedman et al: to appear in PRL

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 8 / 13

Local information dynamics

Hamming distance

• Let A = (X1(0), X2(0), X3(0), . . .)

• Define B by flipping a randomly chosen node

• δ =1

N

N∑j=1|Aj − Bj |

Entropy rate

• Let’s define Hk(Xj) =

〈−log [P {Xj(k), Xj(k − 1), . . . , Xj(0)}])〉

• H(X) = limk→∞

Hk(X)

k

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 9 / 13

Preliminary reports

• Performed simulations: N = 104 and K = 10

• Erdos-Renyi and Barabasi-Albert topologies

• Sampling ∼ 5× 103 events with k ∼ 10.

• Criticality vs Local information dynamics?

Erdos-Renyi topology Erdos-Renyi topology

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 10 / 13

Dynamic range and the entropy ratePreliminary reports

Reflects somehow the dynamic range optimization

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 11 / 13

Hamming distance and a transitionPreliminary reports

Erdos-Renyi topology Barabasi-Albert topology

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 12 / 13

The end?

Lots of work to characterize what optimizes information efficiency!

• This work is under financial support of CAPES and FAPESP.• Acknowledgements to John Beggs.

Mosqueiro and Maia (IFSC - USP) Information dynamics in KC model 12th ECC – Ann Arbor, 2012 13 / 13