Improved Current Efficiency Equation for the Electrodeposition of Copper

Embed Size (px)

Citation preview

  • 7/30/2019 Improved Current Efficiency Equation for the Electrodeposition of Copper

    1/6

    J O U R N A L O F A P P LIED ELEC TR O C H EM IS TR Y 2 5 (19 95 ) 7 64 -7 69

    Improved current e f f i c iency equat ion for thee l e c tr ode pos i t i on o f c oppe rH . V O G TFachbereich V erfahrens-und U mwelttechnik, Techn& che Faehhochschule Berlin, D-13353 Berlin, GermanyReceived 3 October 1994 ; rev i sed 30 January 1995

    T h e c u r r e n t e f fi c ie n c y o f c o p p e r d e p o s i t i o n i s c o n t r o l l e d b y t h e e x t e n t o f th e c o m p e t i n g h y d r o g e nf o r m a t i o n r e a c t i o n w h i c h a c t s o n m a s s t r a n s f e r o f c o p p e r i o n s t o g e t h e r w i t h f u r t h e r m a s s t r a n s f e rm e c h a n i s m s . A n a v a i l a b l e c u r r e n t e f f i c ie n c y e q u a t i o n t a k i n g a c c o u n t o n l y o f t h e b u b b l e - i n d u c e dm i c r o c o n v e c t i o n f a i l s i n t h e c a s e o f f o r c e d e l e c t r o ly t e f l ow . T h e e q u a t i o n i s n o w e x t e n d e d t o a l l o t h e rm e c h a n i s m s . R e s u l t s ar e c o m p a r e d w i t h e x p e r i m e n t a l d a ta .

    L i s t o f s y m b o l sc c o n c e n t r a t i o n (m o l m 3 )C 1 c o n s t a n t , Eq u a t i o n 1 5 (m2 s -1 A - '5 )d b u b b l e b r e a k -o f f d i a m e t e r (m )D diffusion coefficient (m 2 s -1)dh equ iva len t d iameter (m)F F a ra d a y c o n s t a n t (F = 96 4 8 7 C m o 1 -1 )f~ g a s e v o l u t i o n e f fi ci e nc y ( - )g a c c e l e r a ti o n d u e t o g r a v i t y (m s - e )j to ta l cu r ren t dens i ty (A m -2 )J l p a r t i a l c u r r e n t d e n s i t y o f c o p p e r d e p o s it i o n( A m - z )J 2 p a r t i a l c u r r e n t d e n s i t y o f h y d ro g e n fo rm a t i o n( A m - 2)k overa l l mass t rans fer coeff ic ien t o f copp er ion ,Eq u a t i o n 1 6 (m s -1 )kb microconvec t ion mass t rans fer coeff ic ien t(m s -1 )k n na tu ra l conve c t ion m ass t ran s fer coeff ic ien t( m s - 1 )kv macroconvec t ion mass t rans fer coeff ic ien t( m s - 1 )K1 d imens ion less g roup , Eq uat io n 19K 2 d i m e n s i on l e s s g ro u p , Eq u a t i o n 2 0/3 d imens ion less g roup , Eq uat io n 26K M m i g ra t i o n fa c t o r ( - )L charac te r i s t i c l eng th in na tu ra l conve c t ion (m)1 . I n t r o d u c t i o nIn d u s t r ia l h i g h - ra t e d e p o s i t i o n o f c o p p e r i s c o m -monly opera ted wi th cu rren t e f f i c ienc ies con-s iderab ly smal le r than un i ty . The compet ing lossr e a c t i o n i s t h e fo rm a t i o n o f h y d ro g e n . Th i sreac t ion i s no t s imply de t r imen ta l in tha t i t lowersthe current efficiency. I t is to lerated to gain largeproduct iv i ty ra tes in tha t i t ac t s benef ic ia l ly wi threspec t to the increase in the l imi t ing cu rren td e n s i t y o f c o p p e r d e p o s i t i o n . Th e s e f a c t s c a n b ee luc ida ted on th e bas i s o f the in te r fe r ing m asst r a n s f e r m e c h a n i s m s o f c o p p e r i o n s a n d d i s s o l v e dh y d ro g e n .

    L h channel leng th (m)n c h a rg e n u m b e r ( - )p p ressu re (kg m -1 s -2 )R un iversa l gask g m 2 s - 2 m o l -1 K -1 )T t e m p e ra t u r e (K , C )v f low ve loc i ty (m s -1 )X d i m e n s io n l e ss p a r a m e t e r , Eq u a t i o n 2 2

    cons ta n t (R = 8 .3143

    Greek lettersc~ exp ansio n coefficient (m 3 mo1-1)e curr ent efficiency (- )0 f rac t iona l sh ie ld ing o f the e lec t rode su r face ( - )u s t o i c hi o m e t r i c n u m b e ruL k inem at ic v i scos i ty o f liqu id (m 2 s -~)Transport numbersR e R e y n o l d s n u m b e r , Eq u a t i o n 11ReG R e y n o l d s n u m b e r o f g a s ev o l u t io n , Eq u a t i o n 1 3Sc S c h m i d t n u m b e r , Eq u a t i o n s 5 a n d 6Sh S h e rw o o d n u m b e r , Eq u a t i o n s 4 , 1 0 a n d 1 2SubscriptsB d i s s o lv e d h y d ro g e nC c o p p e r i o nc cri t icalG gase e l iqu id bu lk

    I t i s t h e o b j e c t o f t h e p r e s e n t p a p e r t o s h o w h o w ,a n d t o w h a t e x t e n t, t h e m a s s t r a n s f e r o f c o p p e r i o n sto the ca thode i s a f fec ted by var ious mechan ismsa n d h o w t h e c o m p e t i n g h y d ro g e n e v o l u t i o n a f f e c t sthe mass t rans fer . The p resen t paper wi l l d i scuss th i sef fec t qua l i t a t ive ly and quan t i t a t ive ly . Resu l t s a recom pare d wi th those o f a p rev ious res t r i c ted inves t i-ga t ion [1 ] . The p resen t theo re t i ca l resu l t s a re f ina l lyc o m p a re d w i t h e x p e ri m e n t a l l i te r a t u re d a t a .2 . T h e r a n g e s o f m a s s t r a n s f e rTh e p o t e n t i a l o f a c a t h o d e , w h e re c o p p e r i s d e p o s i t e df rom a su l fu r ic e lec t ro ly te so lu t ion , i s show n as l ine 1

    76 4 0021-891x/93 1993Chapman & Hall

  • 7/30/2019 Improved Current Efficiency Equation for the Electrodeposition of Copper

    2/6

    IMPROVED CURRENT EFFICIENCY EQUATION FOR THE ELECTRODEPOSITION OF COPPER 765

    , 0 ,E 1 0 a ) I:. ~ 0 . 613

    0 . 4U

    0 . 2

    0, C i I , I , I f I ,0.0 0.2 0.4 0.6 0.8D i m e n s i o n l e s s p a r a m e t e r , K 3

    ,0

    Fig. 3. Current efficiency as a function of the parameter/3, Equa-tion 25.

    mass transfer coefficient used for evaluation ofEquation 23 are k v =2 2 x 10-6ms -1 for one ofthe sets of Janssen's experimental data with anominal velocity of v = 0.33ms -~, and kv =37 x 10-6ms -1 for a second set o f v = 0.84ms -1.The mass transfer coefficient for liquid-phase naturalco n v ec t i o n , kn, was calculated from Equation 4. Thevalues turned out to be small enough compared withthose of forced flow, kv, to be of virtually no effectin the current density range applied. The masstransfer related to bubble evolution was calculatedfrom Equat ion 12 with Equations 7 and 8.

    The calculated partial current densities of bothcompeting reactions are shown in Fig. 4. Reactionkinetic data for the hydrogen formation reactionwere taken from Nieber [20]. The partial currentdensity for copper deposition was calculated for thetwo flow velocities and the conditions of Janssen'sexperiments [16] from Equation 3 with Equations 14and 16 for given values of the partial current densityJ2. The cathode potential shown in Fig. 4 is of noeffect on the interrelation of the partial currentdensities.The calculated current efficiencies for the same twoflow velocities are shown in Fig. 5, lines (b) and (c).They are compared with the experimental datapoints of Janssen [16].6 . Dis cus s ion

    The restricted current efficiency Equation 24 based onthe assumption that the mass transfer is controlledsolely by bubble-induced microconvection, representsthe lower bound of the current efficiency. This isshown in Fig. 5 as line (a).The experimental values of the current efficiencyobta ined by Janssen [16] for two flow velocities arelarger than line (a) thus confirming the beneficialeffect of superimposed forced convection. The

    ~ 'E 1 0 4 , ~ ~ ( l b )< \ ~ _ _ ( l a )

    + - 10 3-oEo. ~ 10 2

    10 1- 0 . 8 - 0 . 6 - 0 . 4 -0 '. 2 0 . 0H y d r o g e n o v e r p o t e n t i a l / V

    Fig. 4. Increase in partial current density of the c opper deposition(1) as the gas evolution (2) attains large values, l(a): calculatedfor the conditions o f Janssen's experiments [16} for a nom inal velo-city V = 0.3 3ms-1; l(b): v = 0.8 4ms 1.

  • 7/30/2019 Improved Current Efficiency Equation for the Electrodeposition of Copper

    6/6

    IMPROVED CURRENT EFFICIENCY EQUATION FOR THE ELECTRODEPOSITION OF COPPER 769

    1 ~ 0 . 9~ 0 , 7 -(3

    0 . 6 ,

    A

    1 0 2 1 0 3 1 0 4Current de nsity j / A m 2

    F i g . 5 . T h e c u r r e n t e f f ic i e n c y a s a f u n c t i o n o f t h e t o t a l c u r r e n td e n s i t y , c a l c u l a t e d f r o m E q u a t i o n s 2 5 a n d 2 6 . ( a ) : v = 0 ; ( b ):1 1v = 0 . 3 3 m s - . ( c ) v = 0 . 8 4 m s - . E x p e r i m e n t a l d a t a p o i n t s f r o mJ a n s s e n [ 1 6] , ( C ) ) : v = 0 . 3 3 m s - 1 ; ( 0 ) : v = 0 . 8 4 m s - 1 .

    experimental data are slightly lower than thetheoretical lines (b) and (c) for both experimentalsets of varying flow velocity. It is difficult to becertain whether the reason for this discrepancy is theunusual geometry used in the experiment orinaccuracy in the properties data used in thecalculation, particularly in Equations 7 and 8.

    Figure 5 expresses the well-known fact that thecurrent efficiency generally decreases as the currentdens ity increases. But the effect is negligible a t largevalues of flow velocity and moderate values ofcurren t density. As the current density increases, themass transfer mechanism of bubble-inducedmicroconvection becomes dominant. This is visiblefrom the asymptotic approach of the forced flowlines (b) and (c) to line (a).

    Equation 23 has been derived for the currentefficiency of copper deposition. However, the

    equation is a general one and may be used for theprediction of current efficiency of other reactionsaccompanied by competing gas evolution.7. SummaryThe current efficiency Equation 23 or 25, derivedtheoretically, contains mass transfer coefficientsassociated with forced flow and natural flow inaddition to that of bubble-induced microconvection.Thus, it takes account of all the three mass transfermechanisms acting in copper deposition and is ageneralization of the prior Equation 24 [1]considering microconvection alone.

    Comparison with experimental results forelectrodeposition of copper under forced flowconditions confirms the suitability of the improvedcurrent efficiency equation.References

    [ 1 ] H . V o g t , Surf Technol . 1 7 ( 1 9 8 2 ) 3 0 1 .[ 2] C . W a g n e r , Adv. Elee trochem. Engng. 2 ( 1 9 6 2 ) 1 .[3 ] P . M . R o b e r t s o n a n d O . D o s s e n b a c h , Oberfli~che-Surfaee 2 2( 1 9 8 1 ) 2 8 2 .[ 4] E . B a a r s a n d C . K a y s e r , Z. E l e k t ro c h e m . 3 6 ( 1 9 3 0 ) 4 2 8 .[ 5 ] H . V o g t , Electrochim. Acta 38 ( 1 9 9 3 ) 1 4 2 1 .[6 ] Idem., Elec trochim. Aeta 3 8 ( 1 9 9 3 ) 1 4 2 7 .[7 ] Idem., Ber. Bunsenges. Phys. Chem. 9 6 ( 1 9 9 2 ) 1 5 8 .[8 ] Idem., Elee trochim. Aeta 2 9 ( 1 9 8 4 ) 1 6 7 .[9 ] Idem., J . Elee troehem. Soe . 1 3 7 ( 1 9 9 0 ) 1 1 7 9 .[ 10 ] H . H a u s e n , Al l g . W~ rm e t e e h n i k 9 ( 1 9 5 9 ) 7 5 .[ 11 ] K . S t e p h a n a n d H . V o g t , Eleetrochim. Acta 2 4 ( 1 9 7 9 ) 1 1 .[ 1 2] H . V o g t , ibid. 2 3 ( 1 9 7 8 ) 2 0 3 .[ 13 ] G . B e n d r i c h , W . S e i l e r a n d H . V o g t , In t . o . H e a t Ma s sTransfer 2 9 ( 1 9 8 6 ) 1 7 4 1 .[ 1 4] H . V o g t , Eleetroehim. Aeta 3 2 ( 1 9 8 7 ) 6 3 3 .[ 15 ] G . H . S e d a h m e d , Y . A . E l - T a w e d a n d O . A . H a s s a n , S u r fTeehnol. 1 4 ( 1 9 8 1 ) 1 0 9 .[ 16 ] L . J . J . J a n s s e n , J . Appl . Elee trochem. 1 8 ( 1 9 8 8 ) 3 3 9 .[17] Idem., p r i v a t e c o m m u n i c a t i o n ( 1 9 8 8 ) [ 18 ] J . U l s a m e r , Forseh . Ing .-Wes. 3 ( 1 9 3 2 ) 9 4 .[ 1 9] V . G n i e l i n s k i , ibid. 44 ( 1 9 7 5 ) 1 4 5 .[ 20 ] F . N i e b e r , D i s s . T e c h n . H o e h s c h u l e K 6 t h e n ( 1 9 9 3 ).