58
Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Improper Integrals In this section, we will extend the concept of the definite integral R b a f (x )dx to functions with an infinite discontinuity and to infinite intervals. Annette Pilkington Improper Integrals

Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

  • Upload
    lamthuy

  • View
    229

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Improper Integrals

In this section, we will extend the concept of the definite integralR b

af (x)dx to

functions with an infinite discontinuity and to infinite intervals.

I That is integrals of the type

A)

Z ∞1

1

x3dx B)

Z 1

0

1

x3dx C)

Z ∞−∞

1

4 + x2

I Note that the function f (x) = 1x3 has a discontinuity at x = 0 and the

F.T.C. does not apply to B.

I Note that the limits of integration for integrals A and C describe intervalsthat are infinite in length and the F.T.C. does not apply.

Annette Pilkington Improper Integrals

Page 2: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Improper Integrals

In this section, we will extend the concept of the definite integralR b

af (x)dx to

functions with an infinite discontinuity and to infinite intervals.

I That is integrals of the type

A)

Z ∞1

1

x3dx B)

Z 1

0

1

x3dx C)

Z ∞−∞

1

4 + x2

I Note that the function f (x) = 1x3 has a discontinuity at x = 0 and the

F.T.C. does not apply to B.

I Note that the limits of integration for integrals A and C describe intervalsthat are infinite in length and the F.T.C. does not apply.

Annette Pilkington Improper Integrals

Page 3: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Improper Integrals

In this section, we will extend the concept of the definite integralR b

af (x)dx to

functions with an infinite discontinuity and to infinite intervals.

I That is integrals of the type

A)

Z ∞1

1

x3dx B)

Z 1

0

1

x3dx C)

Z ∞−∞

1

4 + x2

I Note that the function f (x) = 1x3 has a discontinuity at x = 0 and the

F.T.C. does not apply to B.

I Note that the limits of integration for integrals A and C describe intervalsthat are infinite in length and the F.T.C. does not apply.

Annette Pilkington Improper Integrals

Page 4: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Improper Integrals

In this section, we will extend the concept of the definite integralR b

af (x)dx to

functions with an infinite discontinuity and to infinite intervals.

I That is integrals of the type

A)

Z ∞1

1

x3dx B)

Z 1

0

1

x3dx C)

Z ∞−∞

1

4 + x2

I Note that the function f (x) = 1x3 has a discontinuity at x = 0 and the

F.T.C. does not apply to B.

I Note that the limits of integration for integrals A and C describe intervalsthat are infinite in length and the F.T.C. does not apply.

Annette Pilkington Improper Integrals

Page 5: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

An Improper Integral of Type 1

(a) IfR t

af (x)dx exists for every number t ≥ a, thenZ ∞

a

f (x)dx = limt→∞

Z t

a

f (x)dx

provided that limit exists and is finite.

(c) IfR b

tf (x)dx exists for every number t ≤ b, thenZ b

−∞f (x)dx = lim

t→−∞

Z b

t

f (x)dx

provided that limit exists and is finite.

The improper integralsR∞

af (x)dx and

R b

−∞ f (x)dx are called Convergent ifthe corresponding limit exists and is finite and divergent if the limit does notexists.

(c) If (for any value of a) bothR∞

af (x)dx and

R a

−∞ f (x)dx are convergent,then we define Z ∞

−∞f (x)dx =

Z a

−∞f (x)dx +

Z ∞a

f (x)dx

If f (x) ≥ 0, we can give the definite integral above an area interpretation.Annette Pilkington Improper Integrals

Page 6: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

If f (x) ≥ 0, we can give the definite integral above an area interpretation;namely that if the improper integral converges, the area under the curve on theinfinite interval is finite.

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11xdx = limt→∞

R t

11/x dx

I = limt→∞ ln x˛̨̨t1

= limt→∞(ln t − ln 1)

I = limt→∞ ln t =∞I The integral

R∞1

1xdx diverges.

Annette Pilkington Improper Integrals

Page 7: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

If f (x) ≥ 0, we can give the definite integral above an area interpretation;namely that if the improper integral converges, the area under the curve on theinfinite interval is finite.

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11xdx = limt→∞

R t

11/x dx

I = limt→∞ ln x˛̨̨t1

= limt→∞(ln t − ln 1)

I = limt→∞ ln t =∞I The integral

R∞1

1xdx diverges.

Annette Pilkington Improper Integrals

Page 8: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

If f (x) ≥ 0, we can give the definite integral above an area interpretation;namely that if the improper integral converges, the area under the curve on theinfinite interval is finite.

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11xdx = limt→∞

R t

11/x dx

I = limt→∞ ln x˛̨̨t1

= limt→∞(ln t − ln 1)

I = limt→∞ ln t =∞I The integral

R∞1

1xdx diverges.

Annette Pilkington Improper Integrals

Page 9: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

If f (x) ≥ 0, we can give the definite integral above an area interpretation;namely that if the improper integral converges, the area under the curve on theinfinite interval is finite.

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11xdx = limt→∞

R t

11/x dx

I = limt→∞ ln x˛̨̨t1

= limt→∞(ln t − ln 1)

I = limt→∞ ln t =∞

I The integralR∞

11xdx diverges.

Annette Pilkington Improper Integrals

Page 10: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

If f (x) ≥ 0, we can give the definite integral above an area interpretation;namely that if the improper integral converges, the area under the curve on theinfinite interval is finite.

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11xdx = limt→∞

R t

11/x dx

I = limt→∞ ln x˛̨̨t1

= limt→∞(ln t − ln 1)

I = limt→∞ ln t =∞I The integral

R∞1

1xdx diverges.

Annette Pilkington Improper Integrals

Page 11: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11x3 dx = limt→∞

R t

11x3 dx

I = limt→∞x−2

−2

˛̨̨t1

I = limt→∞

“−12t2

+ 12

”I = 0 + 1

2= 1

2.

I The integralR∞

11x3 dx converges to 1

2.

Annette Pilkington Improper Integrals

Page 12: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11x3 dx = limt→∞

R t

11x3 dx

I = limt→∞x−2

−2

˛̨̨t1

I = limt→∞

“−12t2

+ 12

”I = 0 + 1

2= 1

2.

I The integralR∞

11x3 dx converges to 1

2.

Annette Pilkington Improper Integrals

Page 13: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11x3 dx = limt→∞

R t

11x3 dx

I = limt→∞x−2

−2

˛̨̨t1

I = limt→∞

“−12t2

+ 12

”I = 0 + 1

2= 1

2.

I The integralR∞

11x3 dx converges to 1

2.

Annette Pilkington Improper Integrals

Page 14: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11x3 dx = limt→∞

R t

11x3 dx

I = limt→∞x−2

−2

˛̨̨t1

I = limt→∞

“−12t2

+ 12

I = 0 + 12

= 12.

I The integralR∞

11x3 dx converges to 1

2.

Annette Pilkington Improper Integrals

Page 15: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11x3 dx = limt→∞

R t

11x3 dx

I = limt→∞x−2

−2

˛̨̨t1

I = limt→∞

“−12t2

+ 12

”I = 0 + 1

2= 1

2.

I The integralR∞

11x3 dx converges to 1

2.

Annette Pilkington Improper Integrals

Page 16: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integrals converge or diverge:Z ∞1

1

xdx ,

Z ∞1

1

x3dx ,

I By definitionR∞

11x3 dx = limt→∞

R t

11x3 dx

I = limt→∞x−2

−2

˛̨̨t1

I = limt→∞

“−12t2

+ 12

”I = 0 + 1

2= 1

2.

I The integralR∞

11x3 dx converges to 1

2.

Annette Pilkington Improper Integrals

Page 17: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Area Interpretation

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

0.2

0.4

0.6

0.8

SinceR∞

11xdx diverges, the area under the curve y = 1/x on the interval

[1,∞) (shown on the left above) is not finite.

SinceR∞

11x3 dx converges, the area under the curve y = 1/x3 on the interval

[1,∞) (shown on the right above) is finite.

Annette Pilkington Improper Integrals

Page 18: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integral converges or diverges:R 0

−∞ exdx

I By definitionR 0

−∞ exdx = limt→−∞R 0

texdx

I = limt→−∞ ex˛̨̨0t

I = limt→−∞(e0 − et)

I = 1− 0 = 1.

I The integralR 0

−∞ exdx converges to 1.

Annette Pilkington Improper Integrals

Page 19: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integral converges or diverges:R 0

−∞ exdx

I By definitionR 0

−∞ exdx = limt→−∞R 0

texdx

I = limt→−∞ ex˛̨̨0t

I = limt→−∞(e0 − et)

I = 1− 0 = 1.

I The integralR 0

−∞ exdx converges to 1.

Annette Pilkington Improper Integrals

Page 20: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integral converges or diverges:R 0

−∞ exdx

I By definitionR 0

−∞ exdx = limt→−∞R 0

texdx

I = limt→−∞ ex˛̨̨0t

I = limt→−∞(e0 − et)

I = 1− 0 = 1.

I The integralR 0

−∞ exdx converges to 1.

Annette Pilkington Improper Integrals

Page 21: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integral converges or diverges:R 0

−∞ exdx

I By definitionR 0

−∞ exdx = limt→−∞R 0

texdx

I = limt→−∞ ex˛̨̨0t

I = limt→−∞(e0 − et)

I = 1− 0 = 1.

I The integralR 0

−∞ exdx converges to 1.

Annette Pilkington Improper Integrals

Page 22: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integral converges or diverges:R 0

−∞ exdx

I By definitionR 0

−∞ exdx = limt→−∞R 0

texdx

I = limt→−∞ ex˛̨̨0t

I = limt→−∞(e0 − et)

I = 1− 0 = 1.

I The integralR 0

−∞ exdx converges to 1.

Annette Pilkington Improper Integrals

Page 23: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Z ∞a

f (x)dx = limt→∞

Z t

af (x)dx

Z b

−∞f (x)dx = lim

t→−∞

Z b

tf (x)dx

Example Determine whether the following integral converges or diverges:R 0

−∞ exdx

I By definitionR 0

−∞ exdx = limt→−∞R 0

texdx

I = limt→−∞ ex˛̨̨0t

I = limt→−∞(e0 − et)

I = 1− 0 = 1.

I The integralR 0

−∞ exdx converges to 1.

Annette Pilkington Improper Integrals

Page 24: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite IntervalsIf (for any value of a) both

R∞a

f (x)dx andR a

−∞ f (x)dx are convergent, thenwe define Z ∞

−∞f (x)dx =

Z a

−∞f (x)dx +

Z ∞a

f (x)dx

Example Determine whether the following integral converges or diverges:Z ∞−∞

1

4 + x2dx

I Since this is a continuous function, we can calculateR∞

01

4+x2 dx andR 0

−∞1

4+x2 dx

IR∞

01

4+x2 dx = limt→∞R t

01

4+x2 dx = limt→∞12

tan−1 x2

˛̨̨t0

I = limt→∞12(tan−1 t

2− tan−1 0) = 1

2( π

2− 0) = π

4.

IR 0

−∞1

4+x2 dx = limt→−∞R 0

t1

4+x2 dx = limt→−∞12(tan−1 x

2)˛̨̨0t

I = limt→−∞12(tan−1 0− tan−1 t

2) = 1

2(0− (−π)

2) = π

4.

I The integralR∞−∞

14+x2 dx converges and is equal to

Z 0

−∞

1

4 + x2dx +

Z ∞0

1

4 + x2dx =

π

4+π

4=π

2.

Annette Pilkington Improper Integrals

Page 25: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite IntervalsIf (for any value of a) both

R∞a

f (x)dx andR a

−∞ f (x)dx are convergent, thenwe define Z ∞

−∞f (x)dx =

Z a

−∞f (x)dx +

Z ∞a

f (x)dx

Example Determine whether the following integral converges or diverges:Z ∞−∞

1

4 + x2dx

I Since this is a continuous function, we can calculateR∞

01

4+x2 dx andR 0

−∞1

4+x2 dx

IR∞

01

4+x2 dx = limt→∞R t

01

4+x2 dx = limt→∞12

tan−1 x2

˛̨̨t0

I = limt→∞12(tan−1 t

2− tan−1 0) = 1

2( π

2− 0) = π

4.

IR 0

−∞1

4+x2 dx = limt→−∞R 0

t1

4+x2 dx = limt→−∞12(tan−1 x

2)˛̨̨0t

I = limt→−∞12(tan−1 0− tan−1 t

2) = 1

2(0− (−π)

2) = π

4.

I The integralR∞−∞

14+x2 dx converges and is equal to

Z 0

−∞

1

4 + x2dx +

Z ∞0

1

4 + x2dx =

π

4+π

4=π

2.

Annette Pilkington Improper Integrals

Page 26: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite IntervalsIf (for any value of a) both

R∞a

f (x)dx andR a

−∞ f (x)dx are convergent, thenwe define Z ∞

−∞f (x)dx =

Z a

−∞f (x)dx +

Z ∞a

f (x)dx

Example Determine whether the following integral converges or diverges:Z ∞−∞

1

4 + x2dx

I Since this is a continuous function, we can calculateR∞

01

4+x2 dx andR 0

−∞1

4+x2 dx

IR∞

01

4+x2 dx = limt→∞R t

01

4+x2 dx = limt→∞12

tan−1 x2

˛̨̨t0

I = limt→∞12(tan−1 t

2− tan−1 0) = 1

2( π

2− 0) = π

4.

IR 0

−∞1

4+x2 dx = limt→−∞R 0

t1

4+x2 dx = limt→−∞12(tan−1 x

2)˛̨̨0t

I = limt→−∞12(tan−1 0− tan−1 t

2) = 1

2(0− (−π)

2) = π

4.

I The integralR∞−∞

14+x2 dx converges and is equal to

Z 0

−∞

1

4 + x2dx +

Z ∞0

1

4 + x2dx =

π

4+π

4=π

2.

Annette Pilkington Improper Integrals

Page 27: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite IntervalsIf (for any value of a) both

R∞a

f (x)dx andR a

−∞ f (x)dx are convergent, thenwe define Z ∞

−∞f (x)dx =

Z a

−∞f (x)dx +

Z ∞a

f (x)dx

Example Determine whether the following integral converges or diverges:Z ∞−∞

1

4 + x2dx

I Since this is a continuous function, we can calculateR∞

01

4+x2 dx andR 0

−∞1

4+x2 dx

IR∞

01

4+x2 dx = limt→∞R t

01

4+x2 dx = limt→∞12

tan−1 x2

˛̨̨t0

I = limt→∞12(tan−1 t

2− tan−1 0) = 1

2( π

2− 0) = π

4.

IR 0

−∞1

4+x2 dx = limt→−∞R 0

t1

4+x2 dx = limt→−∞12(tan−1 x

2)˛̨̨0t

I = limt→−∞12(tan−1 0− tan−1 t

2) = 1

2(0− (−π)

2) = π

4.

I The integralR∞−∞

14+x2 dx converges and is equal to

Z 0

−∞

1

4 + x2dx +

Z ∞0

1

4 + x2dx =

π

4+π

4=π

2.

Annette Pilkington Improper Integrals

Page 28: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite IntervalsIf (for any value of a) both

R∞a

f (x)dx andR a

−∞ f (x)dx are convergent, thenwe define Z ∞

−∞f (x)dx =

Z a

−∞f (x)dx +

Z ∞a

f (x)dx

Example Determine whether the following integral converges or diverges:Z ∞−∞

1

4 + x2dx

I Since this is a continuous function, we can calculateR∞

01

4+x2 dx andR 0

−∞1

4+x2 dx

IR∞

01

4+x2 dx = limt→∞R t

01

4+x2 dx = limt→∞12

tan−1 x2

˛̨̨t0

I = limt→∞12(tan−1 t

2− tan−1 0) = 1

2( π

2− 0) = π

4.

IR 0

−∞1

4+x2 dx = limt→−∞R 0

t1

4+x2 dx = limt→−∞12(tan−1 x

2)˛̨̨0t

I = limt→−∞12(tan−1 0− tan−1 t

2) = 1

2(0− (−π)

2) = π

4.

I The integralR∞−∞

14+x2 dx converges and is equal to

Z 0

−∞

1

4 + x2dx +

Z ∞0

1

4 + x2dx =

π

4+π

4=π

2.

Annette Pilkington Improper Integrals

Page 29: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite IntervalsIf (for any value of a) both

R∞a

f (x)dx andR a

−∞ f (x)dx are convergent, thenwe define Z ∞

−∞f (x)dx =

Z a

−∞f (x)dx +

Z ∞a

f (x)dx

Example Determine whether the following integral converges or diverges:Z ∞−∞

1

4 + x2dx

I Since this is a continuous function, we can calculateR∞

01

4+x2 dx andR 0

−∞1

4+x2 dx

IR∞

01

4+x2 dx = limt→∞R t

01

4+x2 dx = limt→∞12

tan−1 x2

˛̨̨t0

I = limt→∞12(tan−1 t

2− tan−1 0) = 1

2( π

2− 0) = π

4.

IR 0

−∞1

4+x2 dx = limt→−∞R 0

t1

4+x2 dx = limt→−∞12(tan−1 x

2)˛̨̨0t

I = limt→−∞12(tan−1 0− tan−1 t

2) = 1

2(0− (−π)

2) = π

4.

I The integralR∞−∞

14+x2 dx converges and is equal to

Z 0

−∞

1

4 + x2dx +

Z ∞0

1

4 + x2dx =

π

4+π

4=π

2.

Annette Pilkington Improper Integrals

Page 30: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite IntervalsIf (for any value of a) both

R∞a

f (x)dx andR a

−∞ f (x)dx are convergent, thenwe define Z ∞

−∞f (x)dx =

Z a

−∞f (x)dx +

Z ∞a

f (x)dx

Example Determine whether the following integral converges or diverges:Z ∞−∞

1

4 + x2dx

I Since this is a continuous function, we can calculateR∞

01

4+x2 dx andR 0

−∞1

4+x2 dx

IR∞

01

4+x2 dx = limt→∞R t

01

4+x2 dx = limt→∞12

tan−1 x2

˛̨̨t0

I = limt→∞12(tan−1 t

2− tan−1 0) = 1

2( π

2− 0) = π

4.

IR 0

−∞1

4+x2 dx = limt→−∞R 0

t1

4+x2 dx = limt→−∞12(tan−1 x

2)˛̨̨0t

I = limt→−∞12(tan−1 0− tan−1 t

2) = 1

2(0− (−π)

2) = π

4.

I The integralR∞−∞

14+x2 dx converges and is equal to

Z 0

−∞

1

4 + x2dx +

Z ∞0

1

4 + x2dx =

π

4+π

4=π

2.

Annette Pilkington Improper Integrals

Page 31: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Theorem Z ∞1

1

xpdx is convergent if p > 1 and divergent if p ≤ 1

Proof

I We’ve verified this for p = 1 above. If p 6= 1

IR∞

11xp dx = limt→∞

R t

11xp dx = limt→∞

x1−p

1−p

˛̨̨t1

= limt→∞

“t1−p

1−p− 1

1−p

”I If p > 1, limt→∞

“t1−p

1−p− 1

1−p

”= − 1

1−pand the integral converges.

I If p < 1, limt→∞

“t1−p

1−p− 1

1−p

”does not exist since t1−p

1−p→∞ as t →∞

and the integral diverges.

Annette Pilkington Improper Integrals

Page 32: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Theorem Z ∞1

1

xpdx is convergent if p > 1 and divergent if p ≤ 1

Proof

I We’ve verified this for p = 1 above. If p 6= 1

IR∞

11xp dx = limt→∞

R t

11xp dx = limt→∞

x1−p

1−p

˛̨̨t1

= limt→∞

“t1−p

1−p− 1

1−p

”I If p > 1, limt→∞

“t1−p

1−p− 1

1−p

”= − 1

1−pand the integral converges.

I If p < 1, limt→∞

“t1−p

1−p− 1

1−p

”does not exist since t1−p

1−p→∞ as t →∞

and the integral diverges.

Annette Pilkington Improper Integrals

Page 33: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Theorem Z ∞1

1

xpdx is convergent if p > 1 and divergent if p ≤ 1

Proof

I We’ve verified this for p = 1 above. If p 6= 1

IR∞

11xp dx = limt→∞

R t

11xp dx = limt→∞

x1−p

1−p

˛̨̨t1

= limt→∞

“t1−p

1−p− 1

1−p

I If p > 1, limt→∞

“t1−p

1−p− 1

1−p

”= − 1

1−pand the integral converges.

I If p < 1, limt→∞

“t1−p

1−p− 1

1−p

”does not exist since t1−p

1−p→∞ as t →∞

and the integral diverges.

Annette Pilkington Improper Integrals

Page 34: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Theorem Z ∞1

1

xpdx is convergent if p > 1 and divergent if p ≤ 1

Proof

I We’ve verified this for p = 1 above. If p 6= 1

IR∞

11xp dx = limt→∞

R t

11xp dx = limt→∞

x1−p

1−p

˛̨̨t1

= limt→∞

“t1−p

1−p− 1

1−p

”I If p > 1, limt→∞

“t1−p

1−p− 1

1−p

”= − 1

1−pand the integral converges.

I If p < 1, limt→∞

“t1−p

1−p− 1

1−p

”does not exist since t1−p

1−p→∞ as t →∞

and the integral diverges.

Annette Pilkington Improper Integrals

Page 35: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Infinite Intervals

Theorem Z ∞1

1

xpdx is convergent if p > 1 and divergent if p ≤ 1

Proof

I We’ve verified this for p = 1 above. If p 6= 1

IR∞

11xp dx = limt→∞

R t

11xp dx = limt→∞

x1−p

1−p

˛̨̨t1

= limt→∞

“t1−p

1−p− 1

1−p

”I If p > 1, limt→∞

“t1−p

1−p− 1

1−p

”= − 1

1−pand the integral converges.

I If p < 1, limt→∞

“t1−p

1−p− 1

1−p

”does not exist since t1−p

1−p→∞ as t →∞

and the integral diverges.

Annette Pilkington Improper Integrals

Page 36: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

Improper integrals of Type 2(a) If f is continuous on [a, b) and is discontinuous at b, then

Z b

af (x)dx = lim

t→b−

Z t

af (x)dx

if that limit exists and is finite.(b) If f is continuous on (a, b] and is discontinuous at a, then

Z b

af (x)dx = lim

t→a+

Z b

tf (x)dx

if that limit exists and is finite.

The improper integralR b

af (x)dx is called convergent if the corresponding

limit exists and Divergent if the limit does not exist.(c) If f has a discontinuity at c, where a < c < b, and both

R c

af (x)dx andR b

cf (x)dx are convergent, then we define

Z b

af (x)dx =

Z c

af (x)dx +

Z b

cf (x)dx

Annette Pilkington Improper Integrals

Page 37: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on [a, b) and is discontinuous at b, then

Z b

af (x)dx = lim

t→b−

Z t

af (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or divergesZ 2

0

1

x − 2dx

I The function f (x) = 1x−2

is continuous on [0, 2) and is discontinuous at 2.Therefore, we can calculate the integral.

IR 2

01

x−2dx = limt→2−

R t

01

x−2dx = limt→2− ln |x − 2|

˛̨̨t0

I = limt→2−(ln |t − 2| − ln | − 2|) which does not exist sinceln |t − 2| → −∞ as t → 2−.

I Therefore the improper integralR 2

01

x−2dx diverges.

Annette Pilkington Improper Integrals

Page 38: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on [a, b) and is discontinuous at b, then

Z b

af (x)dx = lim

t→b−

Z t

af (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or divergesZ 2

0

1

x − 2dx

I The function f (x) = 1x−2

is continuous on [0, 2) and is discontinuous at 2.Therefore, we can calculate the integral.

IR 2

01

x−2dx = limt→2−

R t

01

x−2dx = limt→2− ln |x − 2|

˛̨̨t0

I = limt→2−(ln |t − 2| − ln | − 2|) which does not exist sinceln |t − 2| → −∞ as t → 2−.

I Therefore the improper integralR 2

01

x−2dx diverges.

Annette Pilkington Improper Integrals

Page 39: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on [a, b) and is discontinuous at b, then

Z b

af (x)dx = lim

t→b−

Z t

af (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or divergesZ 2

0

1

x − 2dx

I The function f (x) = 1x−2

is continuous on [0, 2) and is discontinuous at 2.Therefore, we can calculate the integral.

IR 2

01

x−2dx = limt→2−

R t

01

x−2dx = limt→2− ln |x − 2|

˛̨̨t0

I = limt→2−(ln |t − 2| − ln | − 2|) which does not exist sinceln |t − 2| → −∞ as t → 2−.

I Therefore the improper integralR 2

01

x−2dx diverges.

Annette Pilkington Improper Integrals

Page 40: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on [a, b) and is discontinuous at b, then

Z b

af (x)dx = lim

t→b−

Z t

af (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or divergesZ 2

0

1

x − 2dx

I The function f (x) = 1x−2

is continuous on [0, 2) and is discontinuous at 2.Therefore, we can calculate the integral.

IR 2

01

x−2dx = limt→2−

R t

01

x−2dx = limt→2− ln |x − 2|

˛̨̨t0

I = limt→2−(ln |t − 2| − ln | − 2|) which does not exist sinceln |t − 2| → −∞ as t → 2−.

I Therefore the improper integralR 2

01

x−2dx diverges.

Annette Pilkington Improper Integrals

Page 41: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on [a, b) and is discontinuous at b, then

Z b

af (x)dx = lim

t→b−

Z t

af (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or divergesZ 2

0

1

x − 2dx

I The function f (x) = 1x−2

is continuous on [0, 2) and is discontinuous at 2.Therefore, we can calculate the integral.

IR 2

01

x−2dx = limt→2−

R t

01

x−2dx = limt→2− ln |x − 2|

˛̨̨t0

I = limt→2−(ln |t − 2| − ln | − 2|) which does not exist sinceln |t − 2| → −∞ as t → 2−.

I Therefore the improper integralR 2

01

x−2dx diverges.

Annette Pilkington Improper Integrals

Page 42: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on (a, b] and is discontinuous at a, then

Z b

af (x)dx = lim

t→a+

Z b

tf (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or diverges

Z 1

0

1

x2dx

I The function f (x) = 1x2 is continuous on (0, 1] and is discontinuous at 0.

Therefore, we can calculate the integral.

IR 1

01x2 dx = limt→0+

R 1

t1x2 dx = limt→0+

−1x

˛̨̨1t

I = limt→0+ (−1− (−1)t

) == limt→0+ ( (1)t− 1) which does not exist since

1t→∞ as t → 0+.

I Therefore the improper integralR 1

01x2 dx diverges.

Annette Pilkington Improper Integrals

Page 43: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on (a, b] and is discontinuous at a, then

Z b

af (x)dx = lim

t→a+

Z b

tf (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or diverges

Z 1

0

1

x2dx

I The function f (x) = 1x2 is continuous on (0, 1] and is discontinuous at 0.

Therefore, we can calculate the integral.

IR 1

01x2 dx = limt→0+

R 1

t1x2 dx = limt→0+

−1x

˛̨̨1t

I = limt→0+ (−1− (−1)t

) == limt→0+ ( (1)t− 1) which does not exist since

1t→∞ as t → 0+.

I Therefore the improper integralR 1

01x2 dx diverges.

Annette Pilkington Improper Integrals

Page 44: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on (a, b] and is discontinuous at a, then

Z b

af (x)dx = lim

t→a+

Z b

tf (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or diverges

Z 1

0

1

x2dx

I The function f (x) = 1x2 is continuous on (0, 1] and is discontinuous at 0.

Therefore, we can calculate the integral.

IR 1

01x2 dx = limt→0+

R 1

t1x2 dx = limt→0+

−1x

˛̨̨1t

I = limt→0+ (−1− (−1)t

) == limt→0+ ( (1)t− 1) which does not exist since

1t→∞ as t → 0+.

I Therefore the improper integralR 1

01x2 dx diverges.

Annette Pilkington Improper Integrals

Page 45: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on (a, b] and is discontinuous at a, then

Z b

af (x)dx = lim

t→a+

Z b

tf (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or diverges

Z 1

0

1

x2dx

I The function f (x) = 1x2 is continuous on (0, 1] and is discontinuous at 0.

Therefore, we can calculate the integral.

IR 1

01x2 dx = limt→0+

R 1

t1x2 dx = limt→0+

−1x

˛̨̨1t

I = limt→0+ (−1− (−1)t

) == limt→0+ ( (1)t− 1) which does not exist since

1t→∞ as t → 0+.

I Therefore the improper integralR 1

01x2 dx diverges.

Annette Pilkington Improper Integrals

Page 46: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

If f is continuous on (a, b] and is discontinuous at a, then

Z b

af (x)dx = lim

t→a+

Z b

tf (x)dx

if that limit exists and is finite.

Example Determine whether the following integral converges or diverges

Z 1

0

1

x2dx

I The function f (x) = 1x2 is continuous on (0, 1] and is discontinuous at 0.

Therefore, we can calculate the integral.

IR 1

01x2 dx = limt→0+

R 1

t1x2 dx = limt→0+

−1x

˛̨̨1t

I = limt→0+ (−1− (−1)t

) == limt→0+ ( (1)t− 1) which does not exist since

1t→∞ as t → 0+.

I Therefore the improper integralR 1

01x2 dx diverges.

Annette Pilkington Improper Integrals

Page 47: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuities

Theorem It is not difficult to show thatZ 1

0

1

xpdx is divergent if p ≥ 1 and convergent if p < 1

Annette Pilkington Improper Integrals

Page 48: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuitiesIf f has a discontinuity at c, where a < c < b, and both

R c

af (x)dx andR b

cf (x)dx are convergent, then we define

Z b

af (x)dx =

Z c

af (x)dx +

Z b

cf (x)dx

Example determine if the following integral converges or diverges and if itconverges find its value. Z 4

0

1

(x − 2)2dx

I The function 1(x−2)2

has a discontinuity at x = 2. Therefore we must

check if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge or

diverge.

IR 2

01

(x−2)2dx = limt→2−

R t

01

(x−2)2dx = limt→2−

(−1)x−2

˛̨̨t0

I = limt→2−( (−1)t−2− 1

2), which does not exist.

I Therefore we can conclude thatR 4

01

(x−2)2dx =

R 2

01

(x−2)2dx +

R 4

21

(x−2)2dx

diverges, since this integral converges only if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge.

Annette Pilkington Improper Integrals

Page 49: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuitiesIf f has a discontinuity at c, where a < c < b, and both

R c

af (x)dx andR b

cf (x)dx are convergent, then we define

Z b

af (x)dx =

Z c

af (x)dx +

Z b

cf (x)dx

Example determine if the following integral converges or diverges and if itconverges find its value. Z 4

0

1

(x − 2)2dx

I The function 1(x−2)2

has a discontinuity at x = 2. Therefore we must

check if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge or

diverge.

IR 2

01

(x−2)2dx = limt→2−

R t

01

(x−2)2dx = limt→2−

(−1)x−2

˛̨̨t0

I = limt→2−( (−1)t−2− 1

2), which does not exist.

I Therefore we can conclude thatR 4

01

(x−2)2dx =

R 2

01

(x−2)2dx +

R 4

21

(x−2)2dx

diverges, since this integral converges only if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge.

Annette Pilkington Improper Integrals

Page 50: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuitiesIf f has a discontinuity at c, where a < c < b, and both

R c

af (x)dx andR b

cf (x)dx are convergent, then we define

Z b

af (x)dx =

Z c

af (x)dx +

Z b

cf (x)dx

Example determine if the following integral converges or diverges and if itconverges find its value. Z 4

0

1

(x − 2)2dx

I The function 1(x−2)2

has a discontinuity at x = 2. Therefore we must

check if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge or

diverge.

IR 2

01

(x−2)2dx = limt→2−

R t

01

(x−2)2dx = limt→2−

(−1)x−2

˛̨̨t0

I = limt→2−( (−1)t−2− 1

2), which does not exist.

I Therefore we can conclude thatR 4

01

(x−2)2dx =

R 2

01

(x−2)2dx +

R 4

21

(x−2)2dx

diverges, since this integral converges only if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge.

Annette Pilkington Improper Integrals

Page 51: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuitiesIf f has a discontinuity at c, where a < c < b, and both

R c

af (x)dx andR b

cf (x)dx are convergent, then we define

Z b

af (x)dx =

Z c

af (x)dx +

Z b

cf (x)dx

Example determine if the following integral converges or diverges and if itconverges find its value. Z 4

0

1

(x − 2)2dx

I The function 1(x−2)2

has a discontinuity at x = 2. Therefore we must

check if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge or

diverge.

IR 2

01

(x−2)2dx = limt→2−

R t

01

(x−2)2dx = limt→2−

(−1)x−2

˛̨̨t0

I = limt→2−( (−1)t−2− 1

2), which does not exist.

I Therefore we can conclude thatR 4

01

(x−2)2dx =

R 2

01

(x−2)2dx +

R 4

21

(x−2)2dx

diverges, since this integral converges only if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge.

Annette Pilkington Improper Integrals

Page 52: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Functions with infinite discontinuitiesIf f has a discontinuity at c, where a < c < b, and both

R c

af (x)dx andR b

cf (x)dx are convergent, then we define

Z b

af (x)dx =

Z c

af (x)dx +

Z b

cf (x)dx

Example determine if the following integral converges or diverges and if itconverges find its value. Z 4

0

1

(x − 2)2dx

I The function 1(x−2)2

has a discontinuity at x = 2. Therefore we must

check if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge or

diverge.

IR 2

01

(x−2)2dx = limt→2−

R t

01

(x−2)2dx = limt→2−

(−1)x−2

˛̨̨t0

I = limt→2−( (−1)t−2− 1

2), which does not exist.

I Therefore we can conclude thatR 4

01

(x−2)2dx =

R 2

01

(x−2)2dx +

R 4

21

(x−2)2dx

diverges, since this integral converges only if both improper integralsR 2

01

(x−2)2dx and

R 4

21

(x−2)2dx converge.

Annette Pilkington Improper Integrals

Page 53: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Comparison Test for Integrals

Comparison Test for Integrals

Theorem If f and g are continuous functions with f (x) ≥ g(x) ≥ 0 for x ≥ a,then

(a) IfR∞

af (x)dx is convergent, then

R∞a

g(x)dx is convergent.

(b) IfR∞

ag(x)dx is divergent, then

R∞a

f (x)dx is divergent.

Example Use the comparison test to determine if the following integral isconvergent or divergent (using your knowledge of integrals previouslycalculated). Z ∞

1

1

x2 + x + 1dx

I We have1

x2 + x + 1≤

1

x2if x > 1.

I Therefore using f (x) = 1x2 and g(x) = 1

x2+x+1in the comparison test

above, we can conclude thatZ ∞1

1

x2 + x + 1dx converges

since Z ∞1

1

x2dx converges

Annette Pilkington Improper Integrals

Page 54: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Comparison Test for Integrals

Comparison Test for Integrals

Theorem If f and g are continuous functions with f (x) ≥ g(x) ≥ 0 for x ≥ a,then

(a) IfR∞

af (x)dx is convergent, then

R∞a

g(x)dx is convergent.

(b) IfR∞

ag(x)dx is divergent, then

R∞a

f (x)dx is divergent.

Example Use the comparison test to determine if the following integral isconvergent or divergent (using your knowledge of integrals previouslycalculated). Z ∞

1

1

x2 + x + 1dx

I We have1

x2 + x + 1≤

1

x2if x > 1.

I Therefore using f (x) = 1x2 and g(x) = 1

x2+x+1in the comparison test

above, we can conclude thatZ ∞1

1

x2 + x + 1dx converges

since Z ∞1

1

x2dx converges

Annette Pilkington Improper Integrals

Page 55: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Comparison Test for Integrals

Comparison Test for Integrals

Theorem If f and g are continuous functions with f (x) ≥ g(x) ≥ 0 for x ≥ a,then

(a) IfR∞

af (x)dx is convergent, then

R∞a

g(x)dx is convergent.

(b) IfR∞

ag(x)dx is divergent, then

R∞a

f (x)dx is divergent.

Example Use the comparison test to determine if the following integral isconvergent or divergent (using your knowledge of integrals previouslycalculated). Z ∞

1

1

x2 + x + 1dx

I We have1

x2 + x + 1≤

1

x2if x > 1.

I Therefore using f (x) = 1x2 and g(x) = 1

x2+x+1in the comparison test

above, we can conclude thatZ ∞1

1

x2 + x + 1dx converges

since Z ∞1

1

x2dx converges

Annette Pilkington Improper Integrals

Page 56: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Comparison Test for Integrals

Comparison Test for Integrals

Theorem If f and g are continuous functions with f (x) ≥ g(x) ≥ 0 for x ≥ a,then

(a) IfR∞

af (x)dx is convergent, then

R∞a

g(x)dx is convergent.

(b) IfR∞

ag(x)dx is divergent, then

R∞a

f (x)dx is divergent.

Example Use the comparison test to determine if the following integral isconvergent or divergent (using your knowledge of integrals previouslycalculated). Z ∞

1

1

x − 12

dx

I We have1

x − 12

≥1

xif x > 1

I therfore using f (x) = 1

x− 12

and g(x) = 1x

in the comparison test, we have

Z ∞1

1

x − 12

dx diverges

since Z ∞1

1

xdx diverges.

Annette Pilkington Improper Integrals

Page 57: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Comparison Test for Integrals

Comparison Test for Integrals

Theorem If f and g are continuous functions with f (x) ≥ g(x) ≥ 0 for x ≥ a,then

(a) IfR∞

af (x)dx is convergent, then

R∞a

g(x)dx is convergent.

(b) IfR∞

ag(x)dx is divergent, then

R∞a

f (x)dx is divergent.

Example Use the comparison test to determine if the following integral isconvergent or divergent (using your knowledge of integrals previouslycalculated). Z ∞

1

1

x − 12

dx

I We have1

x − 12

≥1

xif x > 1

I therfore using f (x) = 1

x− 12

and g(x) = 1x

in the comparison test, we have

Z ∞1

1

x − 12

dx diverges

since Z ∞1

1

xdx diverges.

Annette Pilkington Improper Integrals

Page 58: Improper Integrals - University of Notre Dameapilking/Math10560/Lectures/Lecture 15.pdf · Improper IntegralsIn nite IntervalsArea InterpretationTheorem 1Functions with in nite discontinuitiesComparison

Improper Integrals Infinite Intervals Area Interpretation Theorem 1 Functions with infinite discontinuities Comparison Test Comparison Test

Comparison Test for Integrals

Comparison Test for Integrals

Theorem If f and g are continuous functions with f (x) ≥ g(x) ≥ 0 for x ≥ a,then

(a) IfR∞

af (x)dx is convergent, then

R∞a

g(x)dx is convergent.

(b) IfR∞

ag(x)dx is divergent, then

R∞a

f (x)dx is divergent.

Example Use the comparison test to determine if the following integral isconvergent or divergent (using your knowledge of integrals previouslycalculated). Z ∞

1

1

x − 12

dx

I We have1

x − 12

≥1

xif x > 1

I therfore using f (x) = 1

x− 12

and g(x) = 1x

in the comparison test, we have

Z ∞1

1

x − 12

dx diverges

since Z ∞1

1

xdx diverges.

Annette Pilkington Improper Integrals