20
Improper Integrals I

Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Embed Size (px)

Citation preview

Page 1: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I

Improper Integrals I

Page 2: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

• An integral is improper if either:

• the interval of integration is infinitely long or

• if the function has singularities in the interval of integration (or both).

DefinitionDefinition

f x( )dx

a

b

Page 3: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

• Improper integrals cannot be

defined as limits of Riemann sums. Neither

can one approximate them numerically

using methods based on evaluating

Riemann sums.

f x( )dx

a

b

Page 4: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

The integral is improper because

the interval of integration is infinitely long.

e−x dx0

∫1

IMPROPER INTEGRALS

ExamplesExamples

Page 5: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

is improper because the integrand has a singularity.

dx

x20

1

ExamplesExamples

2

IMPROPER INTEGRALS

Page 6: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

is improper because the integrand has a singularity and the interval of integration is infinitely long.

ExamplesExamples

3

e−x

xdx

0

IMPROPER INTEGRALS

Page 7: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

Assume that the function f takes finite values on the interval [a, ∞).

If the limit exists and is finite, the improper integral converges, and

limb→ ∞

f x( )dxa

b

f x( )dx

a

Page 8: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

e−x dx0

∫ =limb→ ∞

e−x dx0

b

=lim

b→ ∞−e−x⎡

⎣⎤⎦0

b

=lim

b→ ∞−e−b − −e0

( )( ) =1.

Hence the integral converges.

e−x dx0

Page 9: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

Assume that the function f takes finite values on the interval [a, ∞).

If the limit does not exists or is not finite, the improper integral diverges

limb→ ∞

f x( )dxa

b

f x( )dx

a

Page 10: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

ex dx0

∫ =limb→ ∞

ex dx0

b

=lim

b→ ∞ex⎡

⎣⎤⎦0

b

=lim

b→ ∞eb −e0

( ) =∞.

Hence the integral diverges.

ex dx0

Page 11: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

Assume that the function f has a singularity at x = a. If the limit exists and is finite, the improper integral converges, and

limα→ a+

f x( )dxα

b

f x( )dx

a

b

Page 12: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

dx

x0

1

∫ = limα→ 0 +

dx

1

= limα→ 0 +

x

2

⎣⎢⎢

⎦⎥⎥α

1

= limα→ 0 +

12

−α2

⎝⎜

⎠⎟

=

12

.

Hence the integral converges.

dx

x0

1

Page 13: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

Assume that the function f has a singularity at x = a.

If the limit does not exist or is not finite, the improper integral diverges.

limα→ a+

f x( )dxα

b

f x( )dx

a

b

Page 14: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

dx

x0

1

∫ = limα→ 0 +

dx

1

= lim

α→ 0 +ln x⎡

⎣⎤⎦α

1

= lim

α→ 0 +ln1 −lnα( ) =∞.

Hence the integral diverges.

dx

x0

1

Page 15: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

If the function f has a singularity at a point c,

a < c < b, then the improper integral

converges if and only if both improper

integrals and converge.

f x( )dx

a

b

f x( )dx

a

c

f x( )dxc

b

In this case

f x( )dxa

b

∫ = f x( )dxa

c

∫ + f x( )dxc

b

∫ .

Page 16: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

dx

x3−1

1

∫ =dx

x3−1

0

∫ +dx

x30

1

= lim

β→ 0 −

dx

x3−1

β

∫ + limα→ 0 +

dx

x3α

1

= limβ→ 0 −

32

x23

⎣⎢⎢

⎦⎥⎥−1

β

+ limα→ 0 +

32

x23

⎣⎢⎢

⎦⎥⎥α

1

= lim

β→ 0 −

32

β23 −

32

⎝⎜⎞

⎠⎟⎛

⎝⎜

⎠⎟ + lim

α→ 0 +

32

−32

α23

⎝⎜

⎠⎟

=−

32

+32

=0 .

Hence the integral converges.

dx

x3−1

1

Page 17: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

If the function f has a singularity at a point c,

a < c < b, then the improper integral

diverges if either or diverges.

f x( )dx

a

b

f x( )dx

a

c

f x( )dxc

b

Page 18: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

= lim

β→ 0 −

dx

x3−1

β

∫ + limα→ 0 +

dx

x3α

1

∫ = lim

β→ 0 −

1−2

x−2⎡

⎣⎢

⎦⎥−1

β

+ limα→ 0 +

1−2

x−2⎡

⎣⎢

⎦⎥α

1

= lim

β→ 0 −−

12

β−2 − −12

⎝⎜⎞

⎠⎟⎛

⎝⎜

⎠⎟ + lim

α→ 0 +−

12

− −12

α−2⎛

⎝⎜⎞

⎠⎟⎛

⎝⎜

⎠⎟.

Neither limits exists. The integral diverges.

dx

x3−1

1

Page 19: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Improper Integrals

WarningWarning The integral diverges.

dx

x3−1

1

Trying to compute that integral by the Fundamental Theorem of Calculus, one gets

dx

x3−1

1

∫ =1−2

x−2

−1

1

=−

12

− −12

⎝⎜⎞

⎠⎟=0.

This is an incorrect computation.

Page 20: Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is improper if either: the interval of integration is infinitely

Improper Integrals I by Mika Seppälä

Summary

• An integral is improper if either: the interval of integration is infinitely long or if the function has singularities in the interval of integration (or both). Such integrals cannot be defined as limits of Riemann sums. They must be defined as limits of integrals over finite intervals where the function takes only finite values.