IMPLEMENTATION, VERIFICATION AND APPLICATION OF THREE DIMENSIONAL HISS MODEL IN ABAQUS.pdf

Embed Size (px)

Citation preview

  • 8/11/2019 IMPLEMENTATION, VERIFICATION AND APPLICATION OF THREE DIMENSIONAL HISS MODEL IN ABAQUS.pdf

    1/7

    31 ! 1 " Vol.31 No.1 # $ % &

    2014 ' 1 ( Jan. 2014 ENGINEERING MECHANICS 160

    )*+", 2012-09-13 -./+", 2013-02-250123,45678&0123 (50908123) -9:;&6?23 (2010THZ0)@ABC,D E (1974 F )GHGIJKLMGN=OPGQRGSTUV#$=O (E-mail: [email protected]).BCWX,YZ[ (1986 F )GHG\]^_MG`RaGSTbcde#B=O (E-mail: [email protected]).

    !"#$% 1000-4750(2014)01-0160-06

    &'( )*+,-./01234YZ[ 1GD E 1,2

    (1. 9:;&fg#$hGij 100084 - 2. 9:;&fg#$klmnopqrstuvwGij 100084)

    5 6% xyz{|} (HISS) ~ {|} ! z "#$ %& G '()*+,- ~ ./ & & 0123456

    7 X 8) HISS ~ 9:;?@ABCDEF 1d ~ GH < IJ&K {|} LM G NO MATLAB K

    "PQRS xt TUVWX vG YZ)/VW[ $ 9\ % ]^G {|} _F -0 ` ABAQUS abc $ def

    ghijkl Gmhno) f p HISS ~ qrOstu, $ d5NO ABAQUS vw67ij Os, $ d

    ~ x) Leighton Buzzard y f 4 zq{X v |} (~ L X v !" q{ # X v q{ # X v $ q{ %& X

    v )G '( > | )* \ % -\_; h $ pS_F muv YZ +, K - G~> | +, muv +,./01 Gv

    2 ) HISS ~ O`y f D 345 6 OD G '( ~ O` x 7 x 8 ] 0 k 9 W : X v 5 HISS ~ qr, $ d

    u ;< ABAQUS x 7 qr f p => D34ef)"z ? @A ; h 5

    789% xyz{|}~- ABAQUS - qrOstu, $ d - q{X v-x 8 ] 0

    ):;?@% A doi: 10.6052/j.issn.1000-4750.2012.09.0666

    IMPLEMENTATION, VERIFICATION AND APPLICATION OF THREEDIMENSIONAL HISS MODEL IN ABAQUS

    WANG Ming-qiang 1 , YANG Jun 1,2

    (1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;

    2. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Beijing 100084, China)

    Abstract: The yield surface of a hierarchical single surface (HISS) model is a single smooth function, whichovercomes the singularity of the so-called cap model. The HISS 1d model with non-associated flow rule and

    isotropic hardening was introduced, and the influence of main parameters on the yield surface was alsoinvestigated. Tests on one Gauss Point were produced by MATLAB, and the stress path and yield surface weremeasured during a loading process. Based on the further development platform provided by ABAQUS, the HISSmodel was programmed into a three dimensional user-material subroutine (UMAT). Four kinds of triaxial tests(HC, CTC, TC and TE) of Leighton Buzzard sand were simulated by ABAQUS with the developed model. Thestress-strain relationship and volumetric change obtained by ABAQUS were compared with experiments results.The numerical predictions showed a good agreement with the observed behaviours in experiments, which provedthe applicability of a HISS model to sands. The model was used to simulate the plate loading test of a layered road

    bed. The three dimensional implementation of an HISS model in ABAQUS provides the commercial FEM codewith a new optional constitutive law for the elasto-plastic problems in soil mechanics.Key words: HISS model; ABAQUS; three dimensional UMAT; triaxial tests; layered road bed

    f%& 9 BC {|~ a Mohr-Coulomb $

    Drucker-Prager ~G D 7 EF z ~ GHIJKK f p [ L LM G MNO =>?@ PQ G EF

    z ~ " R j a > D\_ STU a 0 ; > DpS VW G /X v 9 'X aYZ *E z YZ j [ 0P\] p W;^ G _`a< !i _ b }G ~ L

  • 8/11/2019 IMPLEMENTATION, VERIFICATION AND APPLICATION OF THREE DIMENSIONAL HISS MODEL IN ABAQUS.pdf

    2/7

    # $ % & 161

    VW cd 0 T {| 5 Drucker [1]e eGHfgIJ fpD 3 {|} \6!/ Mohr-Coulomb hijk

    i _ l V"P*+,-5 NOE P*+,- m?j [e ) no ~G } pqr ~ $ Sandler ~

    5 Es *+,- ~ tGHIJ f p/ uK vw V xy \ % z{ pS VW;^|GIJ /QK vw V xy \ % z{ pS #};^ G M !*+,- ~{|} ~ !a F P C o P } !"

    G / Es } # kl ? k $ B0 % " G 0 G %" & > > D=> $ B GS _ 0 G % " ' e > D\_j [ $ B G /& &> | ( 0 H 12 G ) I *+l , 5 Desai [2

    F 3]e e )"z xyz{|} (HISS) ~G tGIJxW - GIJx# G _` {|} ! z"#$ G{|} ( A t ? k $ B ~ ! % " Gn1 '()*+,- ~ ./ & & 012345

    ABAQUS [4]!" ./ G [; 0 `abc $ ?#$~ x 0 w G 1 P 2 '( S 3 K Wz k D x

    7* 4567 D : k D ~ x 8 Az345 19 ef) ; : Os, $ dw _B < ghijkl5H9Os 6e ; tu, $ d UMAT S !ef < Ose ; 6 = tu > D ghijw _ 5 UMAT D\_j [ G @ 7 YSTV O:;?@ ABCDEF 1 ~ 5 Desai [7

    F 8]e e

    HISS ~ {| %& < , 2

    0.52 1 12

    a aa

    (1 )n

    r J I I

    F S P P P

    a g b - = - - + -

    (1)

    Z 9 , 2 / 2ij ji J s s= - 1 ii I s = - S r < \ % - G r S = 1.5

    3 23 3 / 2 J J - G 3 / 3ij jk ki J s s s= - a 101kPa P = < [

    W ; \ - ! " < 4 bJ& - n < 3 _J& - # D\_1/2(d d ) p pij ijx e e = - ^_ x : 1/2(d d ) p p D ij ije ex = -

    pS x : 1/2(d d / 3) p pkk iix e e = 5 ST :;

  • 8/11/2019 IMPLEMENTATION, VERIFICATION AND APPLICATION OF THREE DIMENSIONAL HISS MODEL IN ABAQUS.pdf

    3/7

    162 # $ % &

    4 bJ& ! < ILM 4 b {|} xy G 3 _J& n < ILM xW m x# z{ t |} G F C |~G LM {|} ; } G ks 3 wu 5

    0 50 100 150 200 250 3000

    10

    20

    30

    40

    50

    60

    70

    80

    q

    / k P a

    p / kPa

    2.5, 0.102n g = = 3.0, 0.102n g = =4.0, 0.102n g = = 2.5, 0.08n g = =

    2.5, 0.05n g = =

    s 3 / p-q k } q ! $ n K {|} LM

    Fig.3 Influences of parameter ! and n on F in p-q space

    2 MNOPQ7R

    ~ \_ C: D\_ C: $ ,

    d d de pij ij ije e e = + (4)= D\ % C: m \_ C: ; h ! H e "

    ' e, d de eij ijkl kl s e = C (5)

    g # =>?@ ,

    d pijij

    Qe ls =

    (6)

    " # D vw ,

    d d d d 0ij Dij D

    F F F F s x x

    s x x

    = + + =

    (7)

    ( Z (4)~ Z (7)< $ K ' P) ,

    deijkl ijkl ij

    e pqrs Q QD

    pq rs D

    F

    F Q F F

    e s

    lg g

    s s x x

    = - -

    C

    C (8)

    Z 9 , 1/21/2

    ;Q QDij ijij ij D D

    Q QQ Qg g

    s s s s

    = =

    )*=> D @A ; h, d depij ijkl kl s e = C (9)

    Z 9 , e eijmn uvkl

    ep e mn uvijkl ijkl

    e pqrs Q QD

    pq rs D

    Q F

    F Q F F

    s s

    g g s s x x

    = -

    - -

    C C

    C C

    C

    3 HISS &'+,ST-.

    HISS ~ / ABAQUS 9 u ; = $ ks 45 1) > | = D IJ eC - 2) NO ABAQUS AB \_ C: d ie $= D

    IJ > |X|\ % d dei is e = C - NO Z (2)> |EFJ& #-

    3) NO? \ % EF %& V ' WG ( F ) 0G@

  • 8/11/2019 IMPLEMENTATION, VERIFICATION AND APPLICATION OF THREE DIMENSIONAL HISS MODEL IN ABAQUS.pdf

    4/7

    # $ % & 163

    1 11 1T

    ( , )

    {d }

    n ni i

    n

    i

    F

    F

    s ad

    s s

    - -- -= -

    (10)

    7 0 1 1i is s - -= G p,1 6

    1 1( , ) 10n ni i F s a

    - -- - ) G @ 8 < 5

    6 ) 9 G :;56 G K )@ + 9 2 = D rx v \_ ,

    1d d ( )[ ] dei i n in

    e e d s - = - C (11)x < ( ) 9= \ % 1

    nis - $ d ie > }" ? Z VW

    ab \ % EF 1is - $ \_ C: d ie G */ 7)-

    7) \ % C: 1 1dep

    i i i is s e - -= +C G> |a ] > D\_ C: 1 di ix x x-= + G ( 1) d Di D i Dx x x-= + G Vix =

    ( 1) dV i V x x- + G> | ia G%&6( , ) 10 ?i i F s a

    -) p,

    ! G> | epiC G */ 9)- @ @ */ 8)- 8) A \ %. g [10] G ' e is $

    epi

    C G */ 9)-

    9) NO EF _ :i .\ % \_ EFJ&GH h > | ) I : G @ h C: + + B 5

    4 UVWXYS)CDE*Z[

    NO MATLAB no"P C$ $ d G K"PQRS xtx < TU D b #$ q{ # X v~ x G /VW[ $ 9Y E \ % ]^ j [$ {|}

    _F5 VW 0 < QRS xt > }ab K G D b #

    $ q{ # ab K x < < 89.6kPa $ 200kPa GYZVW[ $ \ % ]^ $ {|} _F FG k s 5~s 65

    s 6~s 7 9 A B F t ! x < K\ G P 2H * A t 0 \ % EF X a p * ab {|}G \ %\_; h l ; DVW-. Ge; ) => D\ % -\_; hGv 2 )/VW[ $ 9 b IJK " # D vw 5

    0 200 400 600 8000

    50

    100

    150

    200

    250 \ % ]^VW + B= {|}VW[ $ 9 {|}ab {|}

    q / k P a

    p/kPa

    s 5 D b # [ $ 9\ % ]^ $ {|} Fig.5 Stress path and yield surface during confined

    compression

    0 200 400 600 800 10000

    50

    100

    150

    200

    250

    q /

    k a

    p / kPa

    VW + B= {|} VW[ $ 9 {|} ab {|}\ % ]^

    A

    B

    s 6 q{ # [ $ 9\ % ]^ $ {|} Fig.6 Stress path and yield surface during triaxial

    compression

    0.000 0.001 0.002 0.003 0.004 0.0050

    20

    40

    60

    80

    100

    120

    140

    A

    q /

    k P a

    B

    1e {B\_ s 7 q{ # \ % \_ k

    Fig.7 Stress-strain relationship of triaxial compression

    5 +\]0*ST01

    5.1 ^_+\]0*3`ab q{X v P 2 1 L IJ X MN % _ vr *

    hi l [ $G tP B[ L X vG |P B \ % -\_; h X vG 1 P 2 ~ x0C # G G TU" s 0C\% ]^ X vG O z ! O q{X v \ % ]^ ks 8G j P ~ L X v (HC) !" q{ # X v

    (CTC) q{ # X v (TC) $ q{ %& X v (TE) 5

    s 8 O zq{X v \ % ]^ [11] Fig.8 Stress path of several triaxial tests

    5.2 IJKLc]0defg NO ABAQUS vwOs, $ dK 4 zq{X

    v TU fz c ~ x G abc ~ V O C3D8 z c5'( > | +, m Hashmi w A X v +, TUK - 5

    q

    TCTE

    CTC

    HC

    3

    1

    O p

  • 8/11/2019 IMPLEMENTATION, VERIFICATION AND APPLICATION OF THREE DIMENSIONAL HISS MODEL IN ABAQUS.pdf

    5/7

    164

    Hashmi [12] Leighton Buzzard

    1

    9 10

    - ABAQUS

    Hashmi

    11 12 ABAQUS

    -

    13

    14 ABAQUS

    -

    0

    10

    20

    30

    40

    50

    60

    7080

    90

    100

    0 0.001 0.002 0.003 0.004 0.005

    p / k P a

    HashmiAbaqus

    1 9 -

    Fig.9 Comparison of stress-strain relationship of HC test

    v

    1

    10

    Fig.10 Comparison of volumetric response of HC test

    0( 34.5kPa)

    0( 34.5kPa)

    0( 89.6kPa)

    1

    o c t

    / k P a

    0( 89.6kPa)

    11 - Fig.11 Comparison of stress-strain relationship of CTC test

    v

    1

    0( 34.5kPa)

    0( 34.5kPa)

    0( 89.6kPa)

    0( 89.6kPa)

    12

    Fig.12 Comparison of volumetric response of CTC test

    0( 89.6kPa)

    0( 89.6kPa)

    0( 137.8kPa)

    0( 137.8kPa)

    o c t

    / k P a

    1

    13 -

    Fig.13 Comparison of stress-strain relationship of TC test

    1

    o c t

    / k P a

    0( 137.8kPa)

    0( 137.8kPa)

    0( 89.6kPa)

    0( 89.6kPa)

    14 -

    Fig.14 Comparison of stress-strain relationship of TE test

    HISS

    6

    Praveen Aggarwal [13] Yamuna

    700mm

    700mm600mm 100mm 15

  • 8/11/2019 IMPLEMENTATION, VERIFICATION AND APPLICATION OF THREE DIMENSIONAL HISS MODEL IN ABAQUS.pdf

    6/7

    # $ % & 165

    Yamuna y

    L + U M

    700

    5 0 0

    1 0 0

    s 15 x 8 ] 0 W : X v~ s

    Fig.15 Model of the plate loading test of layered road bed

    Praveen Aggarwal @ [ fz c uv [ e ) F ztu ! & c G kl 25

    F 2 Yamuna G2ndop*IJKL

    Table 2 Material constants for Yamuna sand and WBMtu ! & Yamuna y L + U M

    K c 133.3 197.7

    % 0.25 0.32= D ! & N ( 0.986 0.922

    ! 0.06 0.09074 bJ&

    " 0.739 0.7403 _J& n 2.9 2.9

    a 1 0.03 0.02

    $1 550.0 500.0

    a 2 0.004 0.001EFJ&

    $2 1.08 0.67

    :;< a , ' 0.236 0.15

    @ h ~ x ST ) f p = D ~ : \] K CV _ _ ; ;^ G V O Janbu [14] e e = D ~ : mK ^ / $ ? G _ ab = D ~ : ! ab K %& ,

    3a

    ac E K P P

    s

    =

    (12)

    Z 9 , E | +, muv +,./01 G a + [ u ) $d/ u i 349 P OD G C g |P H * / j a oztu > D 349 G Q O HISS "z ~ SP 2

    45o ztu > D G P 2 klQ j o z ~ R 45 0Ctu > D m R J& jc $ & c > | ]n D5

    - 0.06

    - 0.05

    - 0.04

    - 0.03

    - 0.02

    - 0.01

    00 100 200 300 400 500

    o B | c / m

    : W / kPa

    Praveen Aggarwal uv c@ 7 > | c

    s 16 VW 9 9 h l : W | c k

    Fig.16 Load displacement curve of the center of the load plate

    7 dq 67 X 8) xyz{|}~ GH < IJ&

    KH {|} LM G ' P O ABAQUS ef Ostu, $ dghijkl G n n ) HISS ~ABAQUS qr, $ d G' K I z0C\ % ]^ q{X v TU& c ~ x G@ [ > | +, m X vu Z +, K -PQ 1 ~ Ky f D 345 6 OD5 @ 79 ( , $ dO` ~ x x 8 ] 0 k 9 W: X vG a+ [ u ), $ d/ u i 349 P OD $ H 45o ztu > D34 Wp D5

    67ij qr, $ d/O ABAQUS ~ xq{ #$%& X v g K Gn1 U | ) tu [ L c GM 9 0 G > |\_j [)n ; FG G qr Da seQ5

    rs!=%

    [1] Drucker D C. On uniqueness in the theory of plasticity [J].Quarterly of Applied Mathematics, 1956, 14: 35 F 42.

    [2] Desai C S, Somasundaram S, Frantziskonis A.

    Hierarchical approach for constitutive modeling ofgeologic materials [J]. International Journal for

    Numerical and Analytical Methods in Geomechanics,1986, 10: 225 F 257.

    [3] Desai C S, Wathugala G W. Factors affecting reliability ofcomputer solutions with hierarchical single surfaceconstitutive models [J]. Computer Methods in AppliedMechanics and Engineering, 1990, 82: 115 F 137.

    [4] tu , } J , v q w , 8 . 0 ` ABAQUS abcx 7$ \O [M]. ij : 9:;& e xy , 2009.Zhuang Zhuo, You Xiaochuan, Liao Jianhui, et al. FEManalysis and application based on ABAQUS [M]. Beijing:Tsinghua University Press, 2009. (in Chinese)

    (J S 7 z [5]F [14] * 172 { )

  • 8/11/2019 IMPLEMENTATION, VERIFICATION AND APPLICATION OF THREE DIMENSIONAL HISS MODEL IN ABAQUS.pdf

    7/7

    172 # $ % &

    to modern convex modeling [J]. Computers andStructures, 1995, 56(6): 871 K 895.

    [10] CD , EF l . 0 ) "$%1 YZ L ^ R4 G : J l

    [J]. %&& % , 2006, 38(6): 807 K 815.Kang Zhan, Luo Yangjun. On structural optimization for

    non-probabilistic reliability base on convex models [J].Chinese Journal of Theoretical and Applied Mechanics,2006, 38(6): 807 K 815. (in Chinese)

    [11] Qiu Z, Wang J. The interval estimation of reliability for probabilistic and non-probabilistic hybrid structuralsystem [J]. Engineering Failure Analysis, 2010, 17(5):1142 K 1154.

    [12] HI . YZ 4 G +vw J Z[ w$ , [M]. e K : 8&

    C LM , 2009.

    Zhang Ming. Structural reliability analysis method and procedure [M]. Beijing: Science Press, 2009. (inChinese)

    [13] NOP , QR * . Logistic rA $% J Z[ w b ! [M].

    e K : < 6 S S C LM , 2001.Wang Jichuan, Guo Zhigang. Logistic regressionmodels-methods and applications [M]. Beijing: HigherEducation Press Science Press, 2001. (in Chinese)

    [14] TUI . Matlab ( j d E (6.X) [M]. e K : 8& C L M , 2003.

    Chen Guiming. Mathematical statistics of matlab (6.X)[M]. Beijing: Science Press, 2003. (in Chinese)

    (y V 165 W )

    [5] X 5l , YZ[ , \ ] , 6 . v 5 ; 23 * $%JABAQUS : 1 ~ x ] ^ [J]. _ u%& , 2009, 30(12):532 K 535.Pan Jiajun, Rao Xibao, Xu Han, et al. Implementationand verification of HISS model in ABAQUS [J]. Rockand Soil Mechanics, 2009, 30(12): 532 K 535. (inChinese)

    [6] `ab , Nc , N=d . YZ ( \ ef9: I1 >Z $% ?_ [J]. #$%& , 2012, 29(9): 92 K 98, 105.Shi Yongjiu, Wang Meng, Wang Yuanqing. Study onconstitutive model of structural steel under cyclicloading[J]. Engineering Mechanics, 2012, 29(9): 92 K 98,105. (in Chinese)

    [7] Desai C S, Sharma K G. Implementation of hierarchicalsingle surface ! 0 and ! 1 models in finite element

    procedure [J]. International Journal for Numerical andAnalytical Methods in Geomechanics, 1991, 15: 649 K

    680.[8] Desai C S, Hashmi Q S, Analysis E. Evaluation, and

    implementation of a nonassociative model for geologicmaterials [J]. International Journal of Plasticity, 1989, 5:397 K 420.

    [9] Liu X, Cheng X H. Numerical modeling of nonlinearresponse of soil. part 1: constitutive model [J].

    International Journal of Solids and Structures, 2005, 42:1849 K 1881.

    [10] Potts D M, Gens A A. Critical assessment of methods ofcorrecting for drift from the yield surface in elasto-plasticfinite element analysis [J]. International Journal for

    Numerical and Analytical Methods in Geomechanics,1985, 9: 149 K 159.

    [11] g u n . < 6 u%& [M]. e K : d r t& C LM ,2004.Li Guangxin. Advanced soil mechanics [M]. Beijing:Tsinghua University Press, 2004. (in Chinese)

    [12] Hashmi Q S E. Nonassociative plasticity model forcohesionless materials and its implementation insoil-structure interaction [D]. Tucso, Arizona: Universityof Arizona, 1987.

    [13] Praveen Aggarwal, Gupta K K. Constitutive modeling ofunpaved flexible pavement under static loading [J].Electronic Journal of Geotechnical Engineering, 2006, 11:659K 676.

    [14] Janbu N. Soil compressibility as determined by odometerand triaxial tests [J]. European Conference on SoilMechanics and Foundation Engineering, Wiesbaden,1963, 1: 19 K 25.