17
Impact of ion diamagnetic drift effect on MHD stability at edge pedestal of rotating tokamaks N. Aiba, M. Honda, K. Kamiya Japan Atomic Energy Agency 21 st NEXT Workshop 2016/Mar./10-11, Kyoto Terrsa, Kyoto

Impact of ion diamagnetic drift effect on MHD stability at

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Impact of ion diamagnetic drift effect on MHD stability

at edge pedestal of rotating tokamaks

N. Aiba, M. Honda, K. Kamiya

Japan Atomic Energy Agency

21st NEXT Workshop 2016/Mar./10-11, Kyoto Terrsa, Kyoto

Introduction Peeling-ballooning mode (PBM) is the strongest candidate of

the trigger of the type-I edge localized mode (ELM). [Snyder PoP2002 etc.]

Usually, the toroidal mode number (๐‘›๐‘›) of the mode is intermediate (~30), but the results in JT-60U and JET-ILW imply higher-๐‘›๐‘› modes sometimes trigger type-I ELM. [Aiba NF2011, Giroud PPCF2015]

What causes the discrepancy between theory and experiment?

Rotation is a candidate of the key parameter.

โ€ข Theoretically, such high-๐‘›๐‘› modes are stabilized by an ion diamagnetic drift (๐œ”๐œ”โˆ—๐‘–๐‘–) effect.[Tang NF1980 etc.]

PBM stability diagram in JET-ILW (๐‘›๐‘› is up to 50), [Giroud PPCF2015]

2/17

Drift MHD model To analyze the PBM stability with ๐œ”๐œ”โˆ—๐‘–๐‘– effect in rotating plasmas, we use the drift MHD model derived by Hazeltine and Meiss. [Hazeltine and Meiss, Plasma Confinement]

๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท

+ ๐ท๐ท๐›ป๐›ป โ‹… ๐‘ฝ๐‘ฝ = 0, ๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€

+ ฮ“๐ท๐ท๐›ป๐›ป โ‹… ๐‘ฝ๐‘ฝ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = 0,

๐‘ฌ๐‘ฌ + ๐‘ฝ๐‘ฝ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ร— ๐‘ฉ๐‘ฉ +1๐‘’๐‘’๐ท๐ท

๐›ป๐›ป๐ท๐ท = 0, ๐‘š๐‘š๐‘–๐‘–๐ท๐ท๐ท๐ท๐‘ฝ๐‘ฝ๐ธ๐ธ๐ท๐ท๐ท๐ท

+๐ท๐ท๐ท๐ท๐ท๐ท๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€

(๐‘‰๐‘‰โˆฅ๐’ƒ๐’ƒ) = ๐‘ฑ๐‘ฑ ร— ๐‘ฉ๐‘ฉ โˆ’ ๐›ป๐›ป๐ท๐ท.

๐‘ฝ๐‘ฝ = ๐‘ฝ๐‘ฝ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ + ๐‘ฝ๐‘ฝ๐‘๐‘๐‘–๐‘– = ๐‘ฝ๐‘ฝ๐ธ๐ธ + ๐‘‰๐‘‰โˆฅ๐’ƒ๐’ƒ, ๐‘ฝ๐‘ฝ๐‘๐‘๐‘–๐‘– = ๐‘ฉ๐‘ฉร—๐›ป๐›ป๐‘๐‘๐‘–๐‘–๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐ต๐ต2

, ๐‘ฝ๐‘ฝ๐ธ๐ธ = ๐‘ฌ๐‘ฌร—๐‘ฉ๐‘ฉ๐ต๐ต2

,

๐‘€๐‘€๐‘€๐‘€๐ท๐ท

= ๐œ•๐œ•๐œ•๐œ•๐ท๐ท

+ ๐‘ฝ๐‘ฝ โ‹… ๐›ป๐›ป , ๐‘€๐‘€๐‘€๐‘€๐ท๐ท๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€

= ๐œ•๐œ•๐œ•๐œ•๐ท๐ท

+ ๐‘ฝ๐‘ฝ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ โ‹… ๐›ป๐›ป

๐ท๐ท: number density, ๐‘ฝ๐‘ฝ: velocity, ๐ท๐ท: pressure, ฮ“: heat capacity ratio,

๐‘ฌ๐‘ฌ: electric field, ๐‘ฉ๐‘ฉ: magnetic field, ๐‘ฑ๐‘ฑ: plasma current, ๐’ƒ๐’ƒ โ‰ก ๐‘ฉ๐‘ฉ/๐ต๐ต, ๐‘’๐‘’: elementary charge, ๐‘š๐‘š๐‘–๐‘–: ion mass, ๐‘๐‘: effective charge, ๐‘๐‘๐‘–๐‘–: ion pressure

3/17

Approximations used for simplifying the drift MHD model

We simplify the model with Frieman-Rotenberg formalism. Approximations: 1. In Faradayโ€™s law, non-ideal term is neglected.

๐œ•๐œ•๐‘ฉ๐‘ฉ๐œ•๐œ•๐ท๐ท

= ๐›ป๐›ป ร— ๐‘ฌ๐‘ฌ = โˆ’๐›ป๐›ป ร— ๐‘ฝ๐‘ฝ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ร— ๐‘ฉ๐‘ฉ +1๐‘’๐‘’๐ท๐ท

๐›ป๐›ป๐ท๐ท

This approximation can be justified when a. Rotation is enough slow compared to ion thermal velocity. b. Density ๐ท๐ท or temperature ๐‘‡๐‘‡ is constant in a plasma c. Functional form of ๐ท๐ท is proportional to that of ๐‘‡๐‘‡. (Details are in Appendix)

2. Magnetic field varies slowly ๐›ป๐›ป ร— (๐’ƒ๐’ƒ/๐ต๐ต) โ‰ช 1. This helps to change the continuity equation as follows.

๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท

๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€

+ ๐ท๐ท๐›ป๐›ป โ‹… ๐‘ฝ๐‘ฝ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = 0

4/17

Simplified drift MHD equation Also, by assuming the incompressibility ๐›ป๐›ป โ‹… ๐ƒ๐ƒ = 0, the flute approximation ๐‘ฉ๐‘ฉ โ‹… ๐›ป๐›ป ๐ƒ๐ƒ โ‰ช 1 and ๐‘‡๐‘‡๐‘–๐‘– = ๐‘‡๐‘‡๐‘’๐‘’, we can derive the following equation [Aiba submitted to PPCF]. (๐‘‡๐‘‡๐‘–๐‘–(๐‘‡๐‘‡๐‘’๐‘’): ion (electron) temperature).

๐œŒ๐œŒ0๐œ•๐œ•2๐ƒ๐ƒ๐œ•๐œ•๐ท๐ท2

+ 2๐œŒ๐œŒ0 ๐‘ฝ๐‘ฝ0,๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ โ‹… ๐›ป๐›ป๐œ•๐œ•๐ƒ๐ƒ๐œ•๐œ•๐ท๐ท

+ ๐œŒ๐œŒ0 ๐‘ฝ๐‘ฝ0,๐‘๐‘๐‘–๐‘– โ‹… ๐›ป๐›ป๐œ•๐œ•๐ƒ๐ƒโŠฅ๐œ•๐œ•๐ท๐ท

= ๐‘ญ๐‘ญ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ + ๐‘ญ๐‘ญ๐‘‘๐‘‘๐‘–๐‘–, ๐‘ญ๐‘ญ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = ๐‘ฑ๐‘ฑ0 ร— ๐‘ฉ๐‘ฉ1 + (๐›ป๐›ป ร— ๐‘ฉ๐‘ฉ1) ร— ๐‘ฉ๐‘ฉ0 โˆ’ ๐›ป๐›ป๐ท๐ท1 +๐›ป๐›ป โŠ— ๐œŒ๐œŒ0๐ƒ๐ƒโŠ— ๐‘ฝ๐‘ฝ0 โ‹… ๐›ป๐›ป ๐‘ฝ๐‘ฝ0,๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ โˆ’ ๐œŒ๐œŒ0๐‘ฝ๐‘ฝ0 โŠ— ๐‘ฝ๐‘ฝ0,๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ โ‹… ๐›ป๐›ป ๐ƒ๐ƒ ,

๐‘ญ๐‘ญ๐‘‘๐‘‘๐‘–๐‘– = ๐œŒ๐œŒ0๐›ป๐›ป โ‹… ๐ƒ๐ƒ ร— ๐›ป๐›ป๐ท๐ท02๐‘’๐‘’๐‘›๐‘›0๐ต๐ต02

๐‘ฉ๐‘ฉ0 โ‹… ๐›ป๐›ป ๐‘ฝ๐‘ฝ0,๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€,โŠฅ,

๐›ป๐›ป โ‹… ๐ƒ๐ƒ = 0, ๐‘ฝ๐‘ฝ0 = ๐‘ฝ๐‘ฝ0,๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ + ๐‘ฝ๐‘ฝ0,๐‘๐‘๐‘–๐‘– , ๐‘ฝ๐‘ฝ0,๐‘๐‘๐‘–๐‘– =1

2๐‘’๐‘’๐‘๐‘๐‘›๐‘›0๐ต๐ต02๐‘ฉ๐‘ฉ0 ร— ๐›ป๐›ป๐ท๐ท0

MINERVA code[Aiba CPC2009] is updated to solve this equation.

MINERVA-DI code 5/17

Benchmark test of MINERVA-DI In a static plasma, the growth rate ๐›พ๐›พ and the mode frequency ๐œ”๐œ” can be estimated by the dispersion relation with ๐œ”๐œ”โˆ—๐‘–๐‘–(= ๐’Œ๐’Œ โ‹… ๐‘ฝ๐‘ฝ0,๐‘๐‘๐‘–๐‘–) effect as follows.[Tang NF1980 etc.]

๐›พ๐›พ + ๐šค๐šค๐œ”๐œ” = ๐šค๐šค ๐œ”๐œ”โˆ—๐‘–๐‘–2

ยฑ ๐›พ๐›พ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€2 โˆ’ ๐œ”๐œ”โˆ—๐‘–๐‘–2

4, ๐›พ๐›พ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€:๐›พ๐›พ of ideal MHD mode

MINERVA-DI shows good agreements with this when internal kink and high-๐‘›๐‘› ballooning stability is analyzed.

Internal kink mode (๐‘›๐‘› = 1) High-๐‘›๐‘› ballooning mode

๐ด๐ด = 5.0

๐ด๐ด = 3.0

6/17

Ballooning mode stability with ๐Ž๐Žโˆ—๐’Š๐’Š is analyzed in rotating tokamaks

Equlibrium has circular cross-section, and ๐ด๐ด = 3.0. Ideal ballooning mode is unstable for ๐‘›๐‘› โ‰ฅ 12, but the mode is

suppressed by ๐œ”๐œ”โˆ—๐‘–๐‘– effect. Plasma (hydrogen) density is ๐ท๐ท = 2.0 ร— 1019[1/๐‘š๐‘š3]. Rotation profile is determined as follow.

ฮฉ๐œ™๐œ™ = ๐ถ๐ถโˆ—๐œ”๐œ”โˆ—๐‘–๐‘–,๐‘๐‘๐‘’๐‘’๐‘๐‘๐‘๐‘ 0 โ‰ค ๐œ“๐œ“ โ‰ค ๐œ“๐œ“๐‘๐‘๐‘’๐‘’๐‘๐‘๐‘๐‘ = ๐ถ๐ถโˆ—๐œ”๐œ”โˆ—๐‘–๐‘– ๐œ“๐œ“,๐‘…๐‘…0 ๐œ“๐œ“๐‘๐‘๐‘’๐‘’๐‘๐‘๐‘๐‘ โ‰ค ๐œ“๐œ“ โ‰ค 1

Here ๐œ”๐œ”โˆ—๐‘–๐‘–,๐‘๐‘๐‘’๐‘’๐‘๐‘๐‘๐‘ = 9.51 ร— 10โˆ’3๐œ”๐œ”๐ด๐ด0 at ๐œ“๐œ“ = ๐œ“๐œ“๐‘๐‘๐‘’๐‘’๐‘๐‘๐‘๐‘, ๐œ”๐œ”๐ด๐ด0 is the toroidal Alfven frequency on axis.

๐‘๐‘ and ๐œ”๐œ”โˆ—๐‘–๐‘– โŸจ๐’‹๐’‹ โ‹… ๐‘ฉ๐‘ฉโŸฉ and ๐‘ž๐‘ž Growth rate Eigen function (ideal mode)

7/17

Plasma rotation can cancel ๐Ž๐Žโˆ—๐’Š๐’Š stabilizing effect on ballooning mode

Plasma rotation changes ballooning mode stability as follows. โ€ข Intermediate-๐‘›๐‘› modes become unstable, though high-๐‘›๐‘›

modes are stabilized. โ€ข Ballooning mode becomes unstable even when ๐œ”๐œ”โˆ—๐‘–๐‘– effect

is taken into account. โ€ข Maximum ๐›พ๐›พ of ballooning mode with ๐œ”๐œ”โˆ—๐‘–๐‘– effect is

converged to that of ideal ballooning mode.

Dependence of ๐›พ๐›พ on ๐‘›๐‘› (left: ๐ถ๐ถโˆ— = 3.0, right: ๐ถ๐ถโˆ— = 5.0) Dependence of ๐›พ๐›พ on ๐ถ๐ถโˆ—

8/17

PBM stability with ๐Ž๐Žโˆ—๐’Š๐’Š is analyzed in a rotating shaped tokamak

๐‘๐‘ and ๐‘‡๐‘‡๐‘–๐‘– โŸจ๐’‹๐’‹ โ‹… ๐‘ฉ๐‘ฉโŸฉ and ๐‘ž๐‘ž ฮฉ๐œ™๐œ™ and ๐œ”๐œ”โˆ—๐‘–๐‘– Contours of ๐œ“๐œ“

PBM stability is analyzed in D-shaped (double-null) plasma. Density is assumed as ๐ท๐ท = 1.0 ร— 1020[1/๐‘š๐‘š3]. Rotation profile is determined as follow.

ฮฉ๐œ™๐œ™[krad/s]= 49.5 1 โˆ’ ๐œ“๐œ“48 4 + 0.5. By changing bulk ion species from hydrogen ๐ป๐ป to deuterium ๐ท๐ท, ฮฉ๐œ™๐œ™/๐œ”๐œ”๐ด๐ด0 and ๐œ”๐œ”โˆ—๐‘–๐‘–/๐œ”๐œ”๐ด๐ด0 is increased by factor of โˆš2.

PBM stability is analyzed in both ๐ป๐ป and ๐ท๐ท plasmas. 9/17

Rotation of โ€œheavyโ€ plasma has large impact on PBM stability

Results in ๐ป๐ป plasma

Results in ๐ท๐ท plasma

Large ฮฉ๐œ™๐œ™/๐œ”๐œ”๐ด๐ด0 has impact on PBM stability, but impact of ๐œ”๐œ”โˆ—๐‘–๐‘– on PBM is not affected by ion species so much,

Plasma effective mass potentially changes (ideal) PBM stability. 10/17

Large ๐’๐’๐’†๐’†๐’†๐’†๐’†๐’† reduces impact of ๐Ž๐Žโˆ—๐’Š๐’Š on PBM stability

Results in ๐ท๐ท plasma (๐‘๐‘๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ = 1.0)

Results in ๐ท๐ท plasma (๐‘๐‘๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ = 2.0)

Plasma effective charge changes ๐œ”๐œ”โˆ—๐‘–๐‘– effect on PBM stability.

Impact of ๐œ”๐œ”โˆ—๐‘–๐‘– on PBM stability depends on ๐‘๐‘๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ due to ๐œ”๐œ”โˆ—๐‘–๐‘– โˆ ๐‘๐‘๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’โˆ’1 , but ideal MHD stability is independent from ๐‘๐‘๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’.

11/17

The equilibira analyzed numerically are E49228 and E49229; these are type-I ELMy H-mode plasmas [A. Kojima et al., NF, (2009)].

Rotation effect on type-I ELM in JT-60U

E49228 (CO.) fELM~37Hz E49229 (CTR.) fELM~45Hz

We compare the results of the numerical stability analysis of these equilibria just before ELM.

0

Profiles of p, j.B, ฮฉ

12/17

Stability boundary is shifted by ๐Ž๐Žโˆ—๐’Š๐’Š effect in static plasmas ๐’‹๐’‹๐‘๐‘๐‘’๐‘’๐‘‘๐‘‘ โˆ’ ๐›ผ๐›ผ94 diagram (๐‘๐‘eff = 2.0) (left:CO., right CTR.)

โ€ข When the plasma is assumed as static, PBM stability boundary is shifted to larger-๐›ผ๐›ผ side by ๐œ”๐œ”โˆ—๐‘–๐‘– effect as expected.

โ€ข Difference between operation point and boundary increases from ~10% to >20% of ๐›ผ๐›ผ94 on operation point in E49228, and from ~20% to ~40% in E49229.

๐‘›๐‘› = 10 (no ๐œ”๐œ”โˆ—๐‘–๐‘–)

๐‘›๐‘› = 10 (with ๐œ”๐œ”โˆ—๐‘–๐‘–)

๐‘›๐‘› = 14 (no ๐œ”๐œ”โˆ—๐‘–๐‘–)

๐‘›๐‘› = 7,12 (with ๐œ”๐œ”โˆ—๐‘–๐‘–)

13/17

Plasma rotation can counteract ๐Ž๐Žโˆ—๐’Š๐’Š effect on PBM stability boundary ฮฉ๐œ™๐œ™ of ๐ถ๐ถ and ๐ท๐ท

โ€ข Rotation profile of deuterium (๐ท๐ท) is estimated with TOPICS integrated simulation code. [M. Honda NF2013]

โ€ข Rotation has little impact on pedestal stability in E49228. โ€ข Rotation cancels ๐œ”๐œ”โˆ—๐‘–๐‘– effect on pedestal stability in E49229,

but the stability boundary is still far from operation point.

๐’‹๐’‹๐‘๐‘๐‘’๐‘’๐‘‘๐‘‘ โˆ’ ๐›ผ๐›ผ94 diagram (๐‘๐‘eff = 2.0) (left:CO., right CTR.)

๐‘›๐‘› = 12 (no ๐œ”๐œ”โˆ—๐‘–๐‘–) ๐‘›๐‘› = 10

(with ๐œ”๐œ”โˆ—๐‘–๐‘–)

๐‘›๐‘› = 16 (no ๐œ”๐œ”โˆ—๐‘–๐‘–) ๐‘›๐‘› = 14

(with ๐œ”๐œ”โˆ—๐‘–๐‘–)

14/17

Poloidal rotation can affect edge MHD stability Difference of the mode frequency nฯ‰ from the Doppler-shifted frequency k.v is essential for destabilizing edge MHD modes.[Aiba NF2011].

: toroidal rotation freq., : poloidal rotation freq.: toroidal mode number, : poloidal mode numbern m

ฯ† ฮธฮฉฮฉ

For the Fourier harmonics which satisfy m-nq=0, mฮฉฮธ ~ nฮฉฯ† even when vฮธ=(nr/mR)vฯ† ~0.1vฯ† if q=3 and R/r ~3.3.

: freq. parallel to magnetic field,: freq. in toroidal directiont

ฮฉ

ฮฉ

Near rational surfaces, k.B~0. โ†’ ฮฉt will be important.

= ๐šค๐šคฮฉโˆฅ ๐’Œ๐’Œ โ‹… ๐‘ฉ๐‘ฉ ๐ต๐ตโ„ โˆ’ ๐šค๐šค๐‘›๐‘›ฮฉ๐ท๐ท

๐’Œ๐’Œ โ‹… ๐’—๐’— = โˆ’๐šค๐šค๐‘›๐‘›ฮฉ๐œ™๐œ™ + ๐šค๐šค๐‘š๐‘šฮฉ๐œƒ๐œƒ

MINERVA(-DI) can identify the poloidal rotation effect on MHD stability (at present, poloidal rotation effect on equilibrium is neglected.)

Re-evaluate stability diagram with not only ฮฉ๐œ™๐œ™ but also ฮฉ๐œƒ๐œƒ. 15/17

ใƒ—ใƒฌใ‚ผใƒณใ‚ฟใƒผ
ใƒ—ใƒฌใ‚ผใƒณใƒ†ใƒผใ‚ทใƒงใƒณใฎใƒŽใƒผใƒˆ
As introduced previously, a toroidal rotation with shear can destabilized edge MHD modes due to the difference between a mode frequency and a plasma rotation frequency. The plasma rotation profile is an equilibrium one, and is treated as an initial condition for linear stability analysis. On the other hand, the mode frequency is determined as the result of stability analysis. So it is useful to understand how is the mode frequency determined? As discussed in this paper, if the unstable mode is an eigenmode, the mode frequency is determined as follows. If the centrifugal force and the Colioris force are negligible, the convective term (u\dot \nabla) is identical to this inner product between the wave number vector and the rotation velocity vector. In other words, this k \cdot v is an important quantity for determining the mode frequency. As is well-known, when a plasma rotates in not only a toroidal but also a poloidal directions, this k \cdot v is written as follows. Since the edge MHD mode has a ballooning-mode like structure that consists of Fourier harmonics localized near each rational surface, and a safety factor is 3,4,5 near the surface, the poloidal mode number m is larger than the toroidal mode number n. Moreover, a finite poloidal rotation is predicted and observed near edge pedestal. These indicate that a poloidal rotation can change an edge MHD stability property.

PBM stability boundary can be predicted by counting ๐›€๐›€๐“๐“ and ๐›€๐›€๐œฝ๐œฝ

โ€ข In E49228, poloidal (+toroidal) rotation moves the ideal MHD boundary near operation point, but ๐œ”๐œ”โˆ—๐‘–๐‘– effect shifts the boundary far from the point.

โ€ข In E49229, ๐œ”๐œ”โˆ—๐‘–๐‘– effect is negligible as the toroidally rotating case, and the boundary becomes closer operation point.

ฮฉ๐œ™๐œ™ and ฮฉ๐œƒ๐œƒ of ๐ท๐ท ๐’‹๐’‹๐‘๐‘๐‘’๐‘’๐‘‘๐‘‘ โˆ’ ๐›ผ๐›ผ94 diagram (๐‘๐‘eff = 2.0) (left:CO., right CTR.)

๐‘›๐‘› = 18 (no ๐œ”๐œ”โˆ—๐‘–๐‘–) ๐‘›๐‘› = 18,22 (with ๐œ”๐œ”โˆ—๐‘–๐‘–)

๐‘›๐‘› = 12 (no ๐œ”๐œ”โˆ—๐‘–๐‘–) ๐‘›๐‘› = 10

(with ๐œ”๐œ”โˆ—๐‘–๐‘–)

16/17

Summary Linearized drift MHD equation was derived with Frieman-

Rotenberg formalism. MINERVA-DI code was developed to solve the drift

MHD equation. It is found that ion diamagnetic drift (๐œ”๐œ”โˆ—๐‘–๐‘–) effect on

ballooning/peeling-ballooning(PBM) stability can be canceled by plasma rotation.

Effective mass/charge have potential to change PBM stability when rotation and ๐œ”๐œ”โˆ—๐‘–๐‘– are counted.

Cancellation of ๐œ”๐œ”โˆ—๐‘–๐‘– effect by rotation plays an important role on PBM stability boundary in JT-60U.

PBM stability analysis in JET ITER-like metallic wall is on going, and the result will be reported in near future.

17/17