25
IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp- microelectronics.com © 2005 - All rights reserved Creation of SiGe Radhard Library AMICSA 2006 H.-V. Heyer 1 , U. Jagdhold 2 Kayser-Threde GmbH 1 Wolfratshauser Str. 48 81379 München Germany

IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany © 2005

Embed Size (px)

Citation preview

Page 1: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP2

Im Technologiepark 2515236 Frankfurt (Oder)

Germany

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2005 - All rights reserved

Creation of SiGe Radhard LibraryAMICSA 2006

H.-V. Heyer1, U. Jagdhold2

Kayser-Threde GmbH1

Wolfratshauser Str. 4881379 München Germany

Page 2: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Outline

• Introduction

• Goal

• Characterization of the Existing Technology

• New Layout Rules at Transistor Level

• New Design Rules at Design Level

• Outlook

• Example Local Oscillator (The SiMs and 30/20 Projects)

• Conclusion

Page 3: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Introduction I

• “High Frequency SiGe MMICs for Converter and Local Oscillators” (SiMs) survey demonstrates that the best candidate for optimal integration of microwave elements with high performance is the SiGe Technology (ESA TRP study)

• Microwave components (especially the Local Oscillator) for functional elements of communication equipments in space fit well with the performance to be achieved

• SiMs Study has identified IHP as best foundry for the SiGe components in up and down converters in space

• SiGe BiCMOS Technology is already a Radiation hard Technology according to Cressler ( Silicon-Germanium Heterojunction Bipolar Transistors, chapter 3 “SiGe HBT BiCMOS Technology”)

• Basic tests of the SGB25VD Technology shall demonstrate the Cressler statement (ESA ARTES 5 Programme)

Page 4: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Introduction II

• IHP is interested in the dedicated market for space and nuclear components market

• The RF experience needed is already existing from a lot of research projects

• Missing is radiation experience for IHP technology

• IHP has started a Radiation hardened Library Project to overcome this lack of experience

• This presentation will demonstrate the current und future activities of this project at IHP

Page 5: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Goal

• Radiation hardened components for the use in space projects as products in Multi-project-wavers MPW

• Radiation hardened components for the nuclear industry & research

• Radiation hardened library for SGB25VD Technology

• Radiation Hardness in the Level of 200 krad total dose

• Radiation Hardness by Design of the Transistors Layouts

• Radiation Hardness by Design Methods (e. g. Voter)

• No change in the existing Technology SGB25VD

Page 6: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Characterization of the Existing Technology I

• Characterization of the existing Technology is done in the following steps

Characterization for very high dose rates and high dose levels (Mrad/s and 100Mrad total dose)

Customers are the nuclear research facilities and their

industries

Test of basic structures, facility is CNM in Spain (Barcelona)

Technology is already under tests

Characterization for medium and low dose rates ( 2rad/s and

002rad/s up to 200Krad total dose)

Customer is the space industry

Test of basic structures within the 30/20 project

(TID,SEE,NIEL tests), facility GfS Munich Germany, and

RADEF Jyväskylä Finland

Page 7: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Characterization of the Existing Technology II

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Gamma Dose [Mrad(Si)]

No

rma

lize

d G

ain

SG25H1

SG25H3

SGB25VD

Fig.1: Current Gain Degradation of Bipolar Transistors Radiation and Measurement done at CNM Barcelona

Page 8: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Characterization of the Existing Technology III

Radiation test of the 30/20 Project

Fig.2: Radiation Test Circuit

Circuit Contains: Bipolar Transistors N-Mos Transistors P-Mos Transistors Bipolar Oscillator MOS Oscillator MOS Shiftregister

Following Tests will be performed:

Total Dose Test using Co60 up to 200krad Displacement Damage Test using proton beam up to 1012 protons/cm2

Single Event Upset and Latchup Test using heavy ion beam 1011 ions/cm2

Page 9: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Characterization of the Existing Technology IV

Fig.3: Test Board with Bonded

Chips and Wiring

Fig.4: Test Equipment with

Wiring

Page 10: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Characterization of the Existing Technology V

Fig. 5: Schematic of the Local Oscillator

Project 30/20, Radiation Hardness will be tested

Frac. NController

M

1

R

1

Referencedivider

f

Phase/FrequencyDetector

F(s)

Loopfilter VCO

1

P

PrescalerDual Modulus

Divider

1

N

Main Divider

DC - 300MHz

R = 0, 1 .. 128

Fc=FR/(R+1)

DC.. 100 MHz

P: 4,2N: 3 ...1022

P: 4 4.5… 4.625 GHz (P: 2 4,25 GHz ...5,85 GHz)

18.0 GHz to 18.5 GHz(8.5 GHz to 11.7 GHz)

M: 4 1.125… 1,15625 GHz(M: 4 1,0625 ... 1,4625 GHz)

(M: 4/5)

100 MHz Ref. 350 KHz

Page 11: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Characterization of the Existing Technology VI

• New Test Chip will be made to characterize

MIM`s , Interconnection, Resistors, and Diodes

Page 12: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

New Layout Rules at Transistor Level I

• New DRC Rules on Transistor Level

Disabling of Latchup Rules is Forbidden

Gate Poly extension of MOS gate is limited to max. 1.41 microns

PWell and Nwell contact rings must have dimensions less than 12 microns

All Devices must be located within contacted NWell/PWell Ring

Gate Poly have not to cross any well border

Gate Poly must be within NWell or Pwell

Active Shapes on different nets must be shielded with well contact

Page 13: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

New Layout Rules at Transistor Level II

Fig. 6: Radiation Hard Design Rule

incorporation to DFII from

Cadence

Page 14: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

New Layout Rules at Transistor Level III

Fig.7: Inverter Design after new Radiation Hardness Rules after G. Anelli, Ref.[1]

Pwell + Contacts

No Poly extensions over wells

Page 15: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

New Layout Rules at Transistor Level IV

Fig. 8: Bipolar Transistor with PWell Ring and Contact

Base Emitter Collector

Pwell Ring with

Ground Contact

Page 16: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

New Design Rules at Design Level I

• Cell Level: New Voter Cell

Solution for Latch-up and Single Event Upset

Drawback: Additional Area

Input

D Q

>

D Q

>

D Q

>

D Q

>

D Q

>

D Q

>

votervoter Output

CLK

Fig. 9: Voter Cell for Triple Module Redundancy after S. Habinc, Ref.[3]

Page 17: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

New Design Rules at Design Level II

• System Level: Cache memory with parity protection

Fig. 10: Cache with parity, Ref. [3]

Solution for Latch-up, Single Event Upset

Drawback: Additional Hardware

paritygeneration

paritygeneration

FT memory (cache)FT memory (cache)

exception

(cache miss)paritycheck

paritycheck

memory controllermemory controller

Page 18: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

New Design Rules at Design Level III

• Cell Level: IO corner cell with Latch-up detection

• System Level: Power down

Latch_up detection

Fig. 11: Latch up detector

Solution for Latch-up

Drawback: New Start of the Chip

Page 19: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Outlook I

• Example Local Oscillator (The SiMs and 30/20 Projects)

• Basic Structure radiation test schedule of 30/20

Page 20: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Outlook II

• Local Oscillator radiation test schedule of 30/20

Page 21: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Outlook III

• Start of New Project Radiation Hardness March 2006

• Development of additional Test structures Oct. 2006

• Creation of a new CMOS Rad Hard Library Dec. 2006

• Design of a Rad Hard Test Device, e.g. Leon3ft Jan. 2007

• Preparation of the Test Device April 2007

• Radiation Tests of the Test Device (in Cooperation)

Page 22: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Conclusion

• By using our inhouse BiCMOS Technology, it should be possible

by applying new Design Rules and new Libraries to make circuits

resistant against any kind of Radiation.

• Short Term: early access to Rad Hard Silicon

• Long Term: enclose a new market segment for IHP

Page 23: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Literature

• References

[1] Giovanni Anelli, “Radiation-hard circuits in deep submicron CMOS technologies”, CERN, Microelectronics Group, Switzerland

[2] Ulrich Trunk “Strahlenschäden in Integrierten Schaltungen” ASIC Labor Heidelberg, Physikalisches Institut der

Universität Heidelberg, He Seminar, 2.Juli 2002,

[3] Sandi Habinc, “Functional triple modular redundancy (FTMR) VHDL design methodology for redundancy in combinatorial and

sequential logic” – Design and assessment report, Gaisler

Research, Inc.

Page 24: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Physics

• Radiation: Leptonen, Bosonen, Baryonen, Mesonen Electrons, X-Ray,

• Protons, Neutrons, Alpha Particles, Heavy Ions…

• Energy: 10-4 – 106 MeV

• Impact on Transistors: CMOS: Leakage of Transistors 1pA->1nA

Drain Current change

Bipolar: current gain degradation

• Impact on Circuitry: IC-Level Leakage, Latch-up, Single Event Upset

• Advantages: CMOS: for 0.25 micron Processes Vt-Change no concern

Bipolar: has already a guard ring, and there is always a

current running through the device, Latch-up no concern

Page 25: IHP 2 Im Technologiepark 25 15236 Frankfurt (Oder) Germany IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany  © 2005

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany www.ihp-microelectronics.com © 2006 - All rights reserved

Solution = Hardening by Design I

• Transistor Level:

Guard Rings,

Metal connection

between Transistors

many bulk contacts

• Solution for Latch-up, IC-Level Leakage

• Drawback: Area will be increased

After G. Anelli, Ref.[1]

Folie von G. Schoof