62
Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for Ternary BHJ OPVs Alan Sellinger Colorado School of Mines, Chemistry Department Center for Energy Efficient Materials Seminar University of California, Santa Barbara October 9, 2013 Eight19 Limited N N N N N N N N Si O O Si Si N O O N S N N O O

IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

  • Upload
    ucsbiee

  • View
    189

  • Download
    0

Embed Size (px)

DESCRIPTION

Alan SellingerAssociate Professor, Department of Chemistry and Geochemistry, Colorado School of MinesOctober 9, 2013 | 4:00pm | ESB 2001Faculty host: Michael Chabinyc AbstractOrganic photovoltaic devices (OPVs), that utilize organic small molecules and/or polymers to directly convert sunlight to electricity, are an attractive technology for sustainable, low cost, clean energy production. For example, solution-processed bulk heterojunction (BHJ) OPVs have attracted much attention because of their potential for flexible, light-weight, large area and low-cost device fabrication. In particular, fullerene compounds have been the dominating electron acceptor/transport material in BHJ OPVs. However, fullerene compounds have some disadvantages, such as low absorption in the visible spectrum, low extinction coefficient, high-cost synthesis and purification, and a low lying LUMO that generally results in low open circuit voltages (Voc). In an attempt to solve these problems, presented here is a family of new electron acceptor materials from simple, minimal step, high yield, and inexpensive synthetic processes for application in OPVs. The new electron accepting molecules are designed with extended π-conjugated systems that help contribute to significant absorption of the visible spectrum, and tunable chemistry to allow for varying of HOMO/LUMO levels and solubility. The synthesis, characterization, and initial solution processed OPV results using these new materials with selected electron donor materials will be shown. To date, our efficiencies of 3.7% and Voc’s of 1.1V are one of the highest to our knowledge for non-fullerene based solution processed OPVs. Lastly, the seminar will introduce the concept of a ternary BHJ system where a low band gap dye can be introduced to the system resulting in a 15-20% enhancement in efficiencies by absorbing photons between 750-830 nm. BiographyAlan Sellinger received his BS in Chemistry from Eastern Michigan University in 1989 then worked as a Research Associate at Gelman Sciences (now Pall) from 1989-1991. He received his PhD in Macromolecular Science and Engineering from the University of Michigan in 1997. He then spent two years as a post-doctoral fellow at Sandia National Laboratories. Alan then moved back to industry as a Research Scientist in OLEDs with Canon R&D Center and Opsys from 1998-2003. He next moved overseas as a Senior Scientist at the Institute of Materials Research and Engineering (IMRE) Republic of Singapore from 2003-2008, then back to USA as a Consulting Assoc. Prof. MSE/Executive Director of the Center for Advanced Molecular Photovoltaics (CAMP) at Stanford University from Aug 2008-2012. Since Aug. 2012 Alan is an Associate Professor in Chemistry at the Colorado School of Mines with a joint appointment at NREL. Alan has published over 20 patents and 70 papers that have been cited nearly 4400 times. His primary interest is in the design, synthesis and characterization of organic/hybrid semi-conductors for application in displays, lighting, solar cells and transistors.

Citation preview

Page 1: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Materials for Organic Photovoltaics:Non-Fullerene Acceptors and Low-Band Gap Dyes

for Ternary BHJ OPVs"

Alan Sellinger!Colorado School of Mines, Chemistry Department!

!

Center for Energy Efficient Materials Seminar!University of California, Santa Barbara!

October 9, 2013!

Eight19 Limited

NNN

NN N NNSi

O

O

Si

Si

NO

O

NS

N

N

O

O

Page 2: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Founded in 1874 (http://www.mines.edu/)

Golden, CO (20 mi south of Boulder/15 mi west of Denver)

5600 students (1500 graduate students)

Ranked #40 public university (US News & World Report 2013)

13,000 applications for 950 spots in freshman class

Ranked #6 for highest average salary for grads (payscale.com)

$60M in external research grants (2012)

Page 3: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

•  Established in 1974 (www.nrel.gov) A DOE laboratory

•  Golden, CO (3 miles from CSM)

•  1,700 fulltime employees, 800 visiting researchers, interns, and contractors

•  327 acre campus in Golden (300+ acre wind campus in Boulder)

•  World leader in renewable energy R&D –  Solar, Wind, Biomass, Hydrogen Technology, Geothermal, Water

•  National Center for Photovoltaics, National Wind Technology Center

•  Average annual budget past 5 years $430M

Page 4: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Organic Solar has Potential to be a Low Cost Source of Clean Energy"

Low-­‐Cost  Materials      

Low-­‐Cost  Installa1on  Low-­‐Cost  Manufacturing  

Copper Phthalocyanine

(CuPc) NN

N

NN

NN

N

Cu

Page 5: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Organic solar cells are rapidly improving"

2000 2002 2004 2006 2008 2010 20122

3

4

5

6

7

8

9

10

11

H elia tek

K ona rka

H elia tek

 O rg anic  T andem  O rganic

Efficien

cy  (%)

U nivers ity  L inz

G roningen

S iemens

NR E L /K ona rka /Univ .  L inz

P lex tronic s

K ona rka

S ola rmer

Univ .  D res den

H elia tekS umitomoUC L A

Source: NREL

UCLA

12

2013

Heliatek

Polyera

Page 6: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Estimated lifetimes of OPVs

Burn-in loss Burn-in time

Lifetime in linear regime*

P3HT:PCBM 16% 55 days 3.5 years

PCDTBT:PC70BM 27% 38 days 6.7 years

*Lifetime assumes 5.5 hrs/day of one-sun intensity1

1. Peters, C. H.; Sachs-Quintana, I. T.; Kastrop, J. P.; Beaupre, S.; Leclerc, M.; McGehee, M. D.: Adv Ener Mater 2011, 1, 491-494.

•  Heliatek (BASF and Bosch) has achieved 30 year lifetimes with tandem OPVs2

2. www.heliatek.com

Page 7: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

A Fair Comparison of Efficiency"

•  Cells are rated at 1 sun (calibrated light source), normal incidence and 25°C.

•  Not really solar cell operating conditions

•  OPV holds it performance better than Si at low light, low angles and high temperature.

•  At “real” operating conditions, averaged over the year an OPV system may get 30% more power than a Si system with the same rating.

•  10% rated OPV cell may behave more like a 13% rated Si cell

Page 8: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

OPV Precursor - Organic LEDs for Displays

Page 9: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Organic LEDs for Lighting

Page 10: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

New Applications for Organic Solar Cells

Page 11: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

SS

C6H13

SS

C6H13

C6H13

C6H13

n/4

Materials for Organic LED & PV:Combination of 3 Nobel Prizes!"

S

O O

nPEDOT

C60 C70

•  2000 Nobel Prize in Chemistry - Alan Heeger, Alan G. MacDiarmid, Hideki Shirakawa for their discovery and development of conductive polymers

•  2010 Nobel Prize in Chemistry - Richard F. Heck, Ei-ichi Negishi, Akira Suzuki for palladium-catalyzed cross couplings in organic synthesis

•  C-C bond formation

•  1996 Nobel Prize in Chemistry - Robert F. Curl Jr., Sir Harold Kroto, Richard E. Smalley for their discovery of fullerenes (C60)

N

O

O

NS

N

N

O

O

Page 12: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Types of Materials for Organic Solar Cells

•  p-type (electron donating materials)!–  Aromatic amines, thiophenes!–  ≈90% of journal publications related to p-type materials!

•  n-type materials (electron accepting materials)!–  Primarily fullerene derivatives!–  Cyano aromatics, perylene diimides, benzothiadiazole!–  Area relatively unexplored due to not-so-straightforward

chemistry!

Page 13: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Drawbacks for fullerenes"

Reduced solar spectrum absorption

300 400 500 600 700 8000

0.5

1

1.5

2

2.5 x 105

Wavelength (nm)

Abs

orpt

ion

Coe

ffici

ent (

M-1 c

m-1

)

New AcceptorPC60BMPC70BM

Lower VOC

-3.1 eV

-5.1 eV

P3HT

PCBM

-4.3 eV

-3.7 eV

-6.1 eV

-5.6 eV

-3.1 eV

-5.1 eV

P3HT -3.9 eV

-6.1 eV

New Acceptor

-3.4 eV

-5.9 eV

Difficult synthesis and purification = Higher cost PC60BM: $50/g

Fullerene acceptor – up to 10% of total PV system cost

Roes et al., Prog. Photovoltaics. 2009 (17) 372-393

Page 14: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Effect of Production Steps on Cost"

•  Significant increases (2X) for higher purification!•  PC71BM approximately 3.4X more expensive than PC61BM!

Anctil et al., Environ. Sci. Technol. 45, (2011) 2353-9

O

OO

O

PC60BM PC70BM

Page 15: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Fullerenes are large portion of module cost"

•  Assumptions!–  Module efficiency: 10%!–  Thickness of active layer: 200 nm!–  Volume fraction of acceptor material in active layer: 50%!–  Fraction of PCBM wasted due to processing: 5%!–  PCBM manufacturing cost (scaled-up estimate): $35-70/g!

•  PC61BM cost per area - $5.40-$11.00 m-2!

•  PC61BM cost per watt - $0.06-$0.12 W-1!

•  Cost associated with separation, purification and functionalization of fullerenes is significant"

Page 16: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

High-efficiency BHJ solar cells"

•  Record OPV cells ALL use fullerene derivatives (PC70BM, ICBA)"•  Recent development based on donor materials discovery"

p-DTS(FBTTh2)2:PC70 BM

7.8% PCE

He et al., Nature Phot. 2012, (6) 591-595 (Inverted Cell) Yong Cao Group South China University of Technology

PTB7:PC70BM 9.2% PCE

ICBA 10.6% PCE

(tandem cell)

You et al., Nature Comm. 2013, 4, 1446, doi:10.1038/ncomms2411 Yang Group, UCLA

Kyaw et al., Adv. Mater., 2013, 25, 2397–2402 All small molecule solution processed Bazan/Heeger Group, UCSB

Page 17: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

New Acceptors based on Vinazene •  Original applications as high nitrogen containing materials for

reduced flammability. Without vinyl groups has been used in the agriculture sector (fertilizers)

•  Their highly electron deficient properties make them candidates as acceptor materials in organic electronic applications

Vinazene 2-vinyl-4,5-dicyanoimidazole 4,5-dicyanoimidazole

HN N

NC CN

HN N

NC CN

R

HN N

NC CN

R

Commercially available

Page 18: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Alkylation of 2-Vinyl-4,5-dicyanoimidazole "

NHN

NC CNVinazene

Acetone, K2CO3

Acetone, K2CO3

INN

NC CN1-Butylvinazene (90%)

NN

NC CN1-Hexylvinazene (90%)

NN

NC CN1-Ethylhexylvinazene (56%)

DMF, K2CO3, 70oC

Reflux

Reflux

I

Br

Page 19: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Tunable Synthesis: Heck Chemistry

Shin R.Y.C., Sonar, P., Siew, P.S., Chen, Z.C., Sellinger, A., J. Org. Chem., 2009, 74 (9), 3293–3298.

Page 20: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Optical properties of selected vinazene derivatives

300 350 400 450 500 550 600 6500.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ised

Inte

nsity

(a.u

.)

Wavelength (nm)

1 4 5 10 13

350 400 450 500 550 600 650 700 7500.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ised

Inte

nsity

(a.u

.)

Wavelength (nm)

1 4 5 10 13

UV spectra of the molecules in toluene

PL spectra of the molecules in toluene

Significant absorption in visible spectrum

(1)

NS

N

(4)

NS

N

S

S

(5)(10) (13)

Shin R.Y.C., Sonar, P., Siew, P.S., Chen, Z.C., Sellinger, A., J. Org. Chem., 2009, 74 (9), 3293–3298.

Page 21: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Vinazenes used for OPVs

HV-BT

EV-BT Better solubility

N

N

CN

CN

N

N

NC

NC

NS

N

Solubilizing groups for solution processing

Electron accepting sites

Conjugated chemical links

• Can be thermally sublimed as well

Page 22: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Preparation of OPV Devices"

New Electron Acceptor

Donor polymer

•  Solution processed active layer

Page 23: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

POPT with HV-BT

•  Kietzke, T., Shin R.Y.C., Egbe, D.A.M., Chen, Z.K., and Sellinger, A., Macromolecules, 2007, 40, 4424-4428. •  Shin R.Y.C., Kietzke, T., Sudhakar, S., Dodabalapur A., Chen, Z.K., and Sellinger, A., Chem. Mater., 2007, 19(8),

1892-1894. •  Woo, C.W., Holcombe, T.W., Tam, T.L., Sellinger, A., Frechet, J.M.J., Chem. Mater. 2010, 22 (5), 1673–1679

Voc = 0.62 V, FF = 0.40, PCE = 1.41%

POPT

Page 24: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Can we make better acceptors?

N

N

CN

CN

N

N

NC

NC

NS

N

Solubilizing groups for solution processing

Electron accepting sites

Conjugated chemical links

• Corresponding electron donor has charge mobility (cm2/V sec) in 10-4 range. Is charge transport mis-match a problem?

Page 25: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Improving Organic Acceptor Materials"

Page 26: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Improved Acceptor Materials?"

NS

N

N

O

O

N

O

O

Page 27: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Acceptor Materials: Computational Studies"

Ground-state geometries

LUMO

HOMO

NS

N

NN

O

O

O

O

Computational studies done by Bredas group at Georgia Tech

Page 28: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Molecular Simulation – Ground State Geometry"

•  Twisting of NI-BT molecule due to steric interactions may prevent crystallization in films?!

HPI-BT NI-BT

2.06

2.06 27.3°

Page 29: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Initial Synthetic Scheme for PI-BT/NI-BT"PI-BT

PI-BT

NI-BT

NI-BT

Page 30: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Improved Synthetic Scheme for PI-BT"

N

O

O

Br BF3K+PdCl2, PPh3, Cs2CO3

THF-H2O, 85° CN

O

O(94%)

NS

N

NN

O

O

O

ONS

N

BrBr

Pd[P(tBu)3]2, Cy2NMe

Toluene, 100° C

(81%)

N

O

O +

Page 31: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

New Acceptor Properties"

•  Larger ELUMO,Acc – EHOMO,Don than for P3HT:PC60BM!

200 300 400 500 600 700 800 9000

0.2

0.4

0.6

0.8

1

Wavelength (nm)

Nor

mal

ized

Abs

orpt

ion

(arb

. uni

ts.) PI-BT

NI-BT

Thin Film

-3.69 eV

-6.05 eV

-3.1 eV

-5.1 eV

-3.84 eV

-5.99 eV

-3.1 eV

-5.1 eV

P3HT

PI-BT NI-BT

P3HT

ΔELUMO ~ 0.6 eV ΔEHOMO ~ 0.9 eV

ΔELUMO ~ 0.7 eV ΔEHOMO ~ 0.9 eV

•  Peak acceptor absorption is in visible spectrum!

•  Tunable LUMO – expected higher Voc than fullerenes!

Page 32: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

HPI-BT

Electron Mobility in HPI-BT"

•  FET mobility measurements for PI-BT yield µe ~ 1–1.4 × 10-3 cm2/V-s!–  PCBM µe,FET ~ 5–10 × 10-3 cm2/V-s!

•  Could not measure a FET mobility for NI-BT!

Glass substrate

Al

LiF (1nm)

Al

LiF (1nm)

Cytop (Spin-on dielectric)

Al (Gate)

FET Configuration -20 0 20 40 60 80 100

10-10

10-9

10-8

10-7

I SD (A

)

-20 0 20 40 60 80 100

0.5

1

1.5

2

2.5

3

3.5x 10-8

Gate Voltage (V)

I SD (A

)

Courtesy of Scott Himmelberger from Prof. Alberto Salleo’s group in Stanford MSE

Page 33: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Initial Devices"

P3HT:HPI-BT

P3HT:NI-BT

Solvent Chlorobenzene Chloroform

Thickness (nm) ~ 90 ~ 120

Cathode LiF(1nm)/Al Ca(7nm)/Al

Anneal Pre/Post

Post Pre

Ann. Temp/Time

110°C/3min 110°C/10min

Jsc (mA/cm2) 4.7 1.2

Voc (V) 0.96 0.51

FF 0.56 0.35

PCE (%) 2.54 0.22

-1 -0.5 0 0.5 1 1.5-8

-6

-4

-2

0

2

4

6

8

Voltage (V)

Cur

rent

Den

sity

(mA

cm-2

)

PI-BTNI-BT

•  High voltage as expected with higher-lying LUMO (0.96 V)!!•  Why is the efficiency for NI-BT 10X lower?!

Bloking et al., Chem. Mater., 2011, V.23(24), p. 5484-90, DOI: 10.1021/cm203111k

Page 34: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

High Efficiencies with Other Donor Polymers"

•  Alternative polythiophene (PDHTT) with lower HOMO level boosts VOC up to 1.1 V and still has 3.4% efficiency and 64% FF!

•  Non-planar NI-BT molecule – 0.2% PCE!•  One of the highest Non-fullerene OPV to date"

BASF P3HT

PDHTT Rieke P3HT

Jsc (mA/cm2)

6.3 4.8 5.8

Voc (V) 0.95 1.11 0.97

FF 0.62 0.64 0.54

PCE (%) 3.72 3.41 3.03

-1 -0.5 0 0.5 1 1.5-10

-8

-6

-4

-2

0

2

4

6

8

10

Voltage (V)

Cur

rent

Den

sity

(mA/

cm2 )

PDHTTRieke P3HTBASF P3HT

Bloking et al., Chem. Mater., 2011, V.23(24), p. 5484-90, DOI: 10.1021/cm203111k Bloking et al., Adv. Energy Mater., submitted, 2013 Ko, S. W. Bao, Z. et al J Am Chem Soc. 2011, 133, 16722-16725. DOI: 10.1021/ja207429s

S

C6H13

n S

C6H13

SS

C6H13

n

Z. Bao, Stanford!

Page 35: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

EQE Spectra of P3HT:HPI-BT Device"

•  Significant photocurrent generation from acceptor absorption!

300 400 500 600 700 800 9000

0.1

0.2

0.3

0.4

0.5

Wavelength (nm)

EQE

(%) o

r Abs

orpt

ion

(arb

. uni

ts) P3HT:PI-BT EQEP3HT AbsorptionPI-BT Absorption

Page 36: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

GIXS - Acceptor Only XRD"

HPI-BT spun from chlorobenzene NI-BT spun from chloroform

HPI-BT NI-BT

2.06

2.06 27.3°

NS

N

N

O

O

N

O

O

Page 37: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

GIXS – Acceptor Crystallization"

•  HPI-BT appears to be much more crystalline than NI-BT!

P3HT:HPI-BT (CB) P3HT:NI-BT (CF)

P3HT Only - CB P3HT Only - CF

Page 38: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Why are fullerene based OPVs better than HPI-BT?"

•  Mixing between fullerenes and polymers is significant!

Miller et al., Adv. Mat. 2012 DOI: 10.1002/adma.201202293

Bartelt et al., Adv. Ener. Mat. 2012 DOI: 10.1002/aenm.201200637

Page 39: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Three-phase vs. two-phase morphology"

39

Two-Phase System Three-Phase System

Donor Acceptor

•  How can mixing between donor and acceptor increase quantum efficiency?!

Page 40: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Three-phase morphology and charge separation"

•  Disorder in mixed phase increases band gap!•  Energetic driving force to transfer charge from mixed

phase to more ordered donor and acceptor phases!

40

Mixed HPI-BT

Mixed P3HT

HPI-BT

P3HT

Page 41: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Poor mixing of HPI-BT in P3HT?"

•  Miscibility limit of HPI-BT in P3HT is less than 5 wt%!

15% HPI-BT 5% HPI-BT

0% HPI-BT 100% HPI-BT

Page 42: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Poor mixing of HPI-BT in PDHTT?"

•  Miscibility limit of HPI-BT in PDHTT is less than 5 wt%!

10% HPI-BT 5% HPI-BT

0% HPI-BT 100% HPI-BT

Page 43: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Poor mixing of HPI-BT in RRa-P3HT?"

•  Low mixing even in amorphous polymers!

15% HPI-BT 10% HPI-BT

0% HPI-BT 5% HPI-BT

Page 44: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Computational Modeling to Help with Synthesis"

Computational modeling courtesy of Drs. Ross Larsen and Travis Kemper, NREL!

NS

N

S SNC

O

O

CN

O

O

Gap (eV)! B3LYP/6-31g*! 2.374!

HOMO (eV)! B3LYP/6-31g*! -5.882!

LUMO (eV)!B3LYP/6-31g*! -3.508!

cyanoester

Page 45: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Gap (eV)! B3LYP/6-31g*! 2.212!

HOMO (eV)! B3LYP/6-31g*! -5.640!

LUMO (eV)! B3LYP/6-31g*! -3.428!

NS

N

S SS

N NS

O

S

O

S

Computational Modeling to Help with Synthesis"

Computational modeling courtesy of Drs. Ross Larsen and Travis Kemper, NREL!

rhodanine

Page 46: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Non-fullerene acceptors"

•  Lower efficiencies than fullerenes due to lower JSC and lower FF!

4.0% PCE

Zhang et al., Adv. Mater. 2013, ASAP DOI: 10.1002/adma.201300897

4.1% PCE

Mori et al., Adv. Energy Mater. 2013, ASAP DOI: 10.1002/aenm.201301006

Earmme, et al. J. Am. Chem. Soc. 2013 ASAP, dx.doi.org/10.1021/ja4085429

with P3HT 2.9% PCE

Zhou et al. Chem. Commun., 2013, 49, 5802.

all polymer PSEHTT: PNDIS 3.3% PCE

Page 47: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Ternary BHJ Cells"

Page 48: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Can we Improve Light Absorption in BHJ OPV?"•  What happens if we add a very high extinction

coefficient dye to P3HT/PCBM solar cell?!

Honda, S. et al, ACS App. Mater. & Inter. 2009, 1(4), 804–810. Honda et al, Adv. Energy Mater. 2011, 1, 588–598.

Thin line-Before

annealing

Dashed line - No dye

Page 49: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Nature Photonics Paper (2013) "

49

Extra photocurrent

squaraine dye

Page 50: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Naphthalocyanines better than Phthalocyanines"

NNN

NN N NNSi

O

O

Si

Si

•  Red shifted absorption •  2X higher extinction coefficient

Page 51: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Naphthalocyanines Syntheses"

NC CN

NH3, NaOCH3, dry MeOH

N

N NN N

N N

N

Si OHHOSiCl4, dry quinoline

NH

NHHN

NH4OH, pyridine

Br BrNBSAIBN

CCl4

NaI

DMF

Fumaronitrile91% 55%

N

N NN N

N N

N

Si OHHO

ClSi(hex)3, pyridine

NNN

NN N NNSi

O

O

Si

Si

70%

75%

40%

Prepared by Dr. Bogyu Lim

Page 52: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Absorption spectra – thin film"

200 400 600 8000

0.2

0.4

0.6

0.8

1

Wavelength (nm)

Nor

mal

ized

Abs

orba

nce

(a.u

.)

P3HT PC61BM SiNcb)

Page 53: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Increased Current in P3HT:PCBM"

•  Increase in JSC with addition of SiNc!–  Stable VOC but decrease in FF, especially higher than 8 wt%!

•  BASF P3HT:Nano-C PC60BM!–  Devices with Rieke P3HT have the same trend with slightly lower

efficiencies!

-1 -0.5 0 0.5 1-20

-10

0

10

20

Voltage (V)

Cur

rent

Den

sity

(mA

cm

-2)

0 wt%4 wt%8 wt%12 wt%20 wt%

Table&1.&P3HT:PC60BM&device&performance&with&increasing&tAbutyl&SiNc&dye&concentration.&

Dye$Conc.$(wt%)$

JSC$(mA$cm32)$ VOC$(V)$ FF$(%)$ PCE$(%)$

0$ 9.4$(10.1)$ 0.60$(0.62)$ 67$(71)$ 3.80$(4.12)$

2$ 10.1$(10.5)$ 0.62$(0.63)$ 65$(68)$ 4.11$(4.43)$

4$ 10.1$(10.7)$ 0.63$(0.64)$ 65$(68)$ 4.18$(4.42)$

6$ 10.7$(11.1)$ 0.62$(0.64)$ 64$(69)$ 4.27$(4.56)$

8$ 11.4$(12.1)$ 0.62$(0.64)$ 63$(68)$ 4.46$(4.92)$

10$ 11.6$(12.5)$ 0.61$(0.63)$ 62$(68)$ 4.46$(4.80)$

12$ 12.4$(13.7)$ 0.62$(0.62)$ 57$(61)$ 4.36$(4.91)$

15$ 11.2$(14.0)$ 0.61$(0.62)$ 59$(64)$ 3.97$(4.69)$

20$ 11.1$(14.2)$ 0.60$(0.62)$ 58$(64)$ 3.92$(4.93)$

aPerformance$values$are$averages$with$champion$cell$values$in$parentheses.$

Page 54: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

t-butyl-SiNc unannealed t-butyl-SiNc annealed

400 600 8000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength (nm)

Exte

rnal

Qua

ntum

Effi

cien

cy (E

QE)

0%2%4%6%8%10%12%15%20%

a)

300 400 500 600 700 800 9000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength (nm)

Exte

rnal

Qua

ntum

Effi

cien

cy (E

QE)

0%2%4%6%8%10%12%15%20%

b)

300 400 500 600 700 800 9000

0.2

0.4

0.6

0.8

Wavelength (nm)

Exte

rnal

Qua

ntum

Effi

cien

cy

0 wt%3 wt%6 wt%9 wt%12 wt%15 wt%20 wt%

b)

Page 55: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Energy Level Comparison (Schematic)"

•  SiNc energy levels must be just in the sweet spot!•  P3HT & PCBM allows for charge transport to proceed normally!•  Extra 830nm peak possibilities!

–  Coupling to PCBM!–  Dimer/aggregate formation!

P3H

T

SiN

c

PC

60B

M

Page 56: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

No dye

20% dye with peripheral t-butyl groups

20% dye without peripheral t-butyl groups

unannealed annealed

Page 57: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Conclusions"

•  Very interdisciplinary research projects!!–  Chemistry, device physics, computation, surfaces, etc!

•  Working together with CSM (physics, materials, Chem Eng), NREL, CU Boulder. UCSB!

•  Using relatively simple chemistry to attack technology bottlenecks!

Page 58: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Acknowledgements

•  Co-PIs – Michael McGehee, Mark Lusk, Sean Shaheen, Michael Chabinyc, Dana Olson, Ross Larsen

•  Synthesis – Dr. Xu Han (now at DuPont R&D Shanghai), Dr. Andrew Higgs (now at Washington & Lee University), Dr. Bogyu Lim (now at LG Korea), Dr. Unsal Koldemir, Dr. Tianlei Zhou, Ms. Yuting Shi

•  Device Fabrication/Characterization/Computation – Jason Bloking, Jack Kastrop, Andrew Pontec, Travis Kemper, Dave Ostrowski, Huashan Li

•  Funding Sources:

Page 59: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Acknowledgements"

Colorado School of Mines Stanford

Page 60: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Si147H96(Z2OCH3)4 Si147H96(Z2H2OCH3)4

1.7 nm

Si147H96(Z2OCH3)4 Si147H96(Z2H2OCH3)4

Si147H96(C4H7)4

1.7 nm

N

H3CO

H3CO

N

H3CO

H3CO

Other Projects in the Sellinger lab:

Silicon Quantum Dots with Prof. Mark Lusk at CSM

Page 61: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

•  Hole Transport Materials and Organic/Energy Relay Dyes for Dye Sensitized Solar Cells (DSSC)!

S

N

H3CO

H3CO

S CN

O

OH

NN N

H3CO

H3CO OCH3

OCH3

Other activities in the Sellinger group (http://chemistry.mines.edu/faculty/asellinger/asellinger.html)

•  Scintillating Materials for Application in the Detection of Alpha/Neutron Particles and Gamma Radiation!

•  Tailored Silanes, Phosphonic and Carboxylic Acids for Tuning the Workfunction of Transparent Electrodes and Buffer Layers!

Page 62: IEE/CEEM Seminar: Materials for Organic Photovoltaics: Non-Fullerene Acceptors and Low-Band Gap Dyes for BHJ OPVs

Thank you!!