IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

  • Upload
    ucsbiee

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    1/62

    2013 Thomas Wenisch

    Power Management

    from Smartphones to Data CentersThomas WenischMorris Wellman Faculty Dev. Asst. Prof. of CSE

    University of Michigan

    Acknowledgements:Luiz Barroso, Anuj Chandawalla,

    Laurel Emurian, Brian Gold, Yixin Luo,

    Milo Martin, David Meisner,

    Marios Papaefthymiou, Steven Pelley,

    Kevin Pipe, Arun Raghavan,

    Chris Sadler, Lei Shao, Wolf Weber

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    2/62

    2013 Thomas Wenisch

    A Paradigm Shift In Computing

    2

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    10000

    100000

    1000000

    1985 1990 1995 2000 2005 2010 2015 2020

    Transistors (100,000's)

    Power (W)

    Performance (GOPS)

    Efficiency (GOPS/W)

    Limits on heat extraction

    Limits on energy-efficiency of operations

    IEEE ComputerApril 2001

    T. Mudge

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    3/62

    2013 Thomas Wenisch

    A Paradigm Shift In Computing

    3

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    10000

    100000

    1000000

    1985 1990 1995 2000 2005 2010 2015 2020

    Transistors (100,000's)

    Power (W)

    Performance (GOPS)

    Efficiency (GOPS/W)

    Era of High Performance Computing Era of Energy-Efficient Computingc. 2000

    Limits on heat extraction

    Limits on energy-efficiency of operations

    Stagnates performance growth

    IEEE ComputerApril 2001

    T. Mudge

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    4/62

    2013 Thomas Wenisch

    Four decades of Dennard Scaling

    P = C V2 f

    Increase in device count

    Lower supply voltages

    Constant power/chip

    Dennard et. al., 1974 Robert H. Dennard, picture from

    Wikipedia

    4

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    5/62

    2013 Thomas Wenisch

    Leakage Killed Dennard Scaling

    Leakage:

    Exponential in inverse of Vth

    Exponential in temperature Linear in device count

    To switch well

    must keep Vdd/Vth > 3

    Vddcant go down

    5

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    6/62

    2013 Thomas Wenisch

    No more free lunch

    Need system-level approaches to turn increasing transistor counts into customer value

    without exceeding thermal limits

    Energy efficiency is the new performance

    Todays talk

    Computational Sprinting

    Improving responsiveness for mobile systemsby briefly exceeding thermal limits

    Power mgmt. for Online Data Intensive Services

    Case study of server power management

    for Googles Web Search 6

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    7/62 2013 Thomas Wenisch

    Computational Sprinting

    Arun Raghavan*, Yixin Luo+, Anuj Chandawalla+,

    Marios Papaefthymiou+, Kevin P. Pipe+#,

    Thomas F. Wenisch+

    , Milo M. K. Martin*

    University of Pennsylvania, Computer and Information Science*

    University of Michigan, Electrical Eng. and Computer Science+

    University of Michigan, Mechanical Engineering#

    7

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    8/62 2013 Thomas Wenisch

    Computational Sprinting and Dark Silicon

    A Problem: Dark Silicon a.k.a. The Utilization Wall

    Increasing power density; cant use all transistors all the time

    Cooling constraints limit mobile systems

    One approach: Use few transistors for long durations

    Specialized functional units [Accelerators, GreenDroid] Targeted towards sustained compute, e.g. media playback

    Our approach: Use many transistors for short durations

    Computational Sprinting by activating many dark cores

    Unsustainable power for short, intense bursts of compute

    Responsiveness for bursty/interactive applications

    8Is this feasible?

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    9/62 2013 Thomas Wenisch

    Sprinting Challenges and Opportunities

    Thermal challenges

    How to extend sprint duration and intensity?

    Latent heat fromphase change materialclose to the die

    Electrical challenges

    How to supply peak currents? Ultracapacitor/battery hybrid

    How to ensure power stability? Ramped activation (~100s)

    Architectural challenges

    How to control sprints? Thermal resource management How do applications benefit from sprinting?

    6.3x responsiveness for vision workloads

    on a real Core i7 testbed restricted to a 10W TDP

    9

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    10/62 2013 Thomas Wenisch

    Power Density Trends for Sustained Compute

    10

    How to meet thermal limit despite

    power density increase?

    0

    0

    power

    time

    time

    tem

    perature

    TmaxThermal limit

    > 10x

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    11/62 2013 Thomas Wenisch

    Option 1: Enhance Cooling?

    11

    Mobile devices limited to passive cooling

    0

    tempera

    ture

    time

    Tmax

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    12/62 2013 Thomas Wenisch

    Option 2: Decrease Chip Area?

    12

    Reducescost, but sacrifices

    benefits from Moores law

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    13/62 2013 Thomas Wenisch

    Option 3: Decrease Active Fraction?

    13

    How do we extract application performance

    from this dark silicon?

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    14/62 2013 Thomas Wenisch

    Design for Responsiveness Observation: today, design for sustained performance

    But, consider emerging interactive mobile apps*Clemons DAC11, Hartl ECV11, Girod IEEE Signal Processing11+

    Intense compute bursts in response to user input, then idle

    Humans demand sub-second response times*Doherty IBM TR 82, Yan DAC05, Shye MICRO09, Blake ISCA10+

    14

    Peak performance during bursts

    limits what applications can do

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    15/62 2013 Thomas Wenisch

    COMPUTATIONAL SPRINTING

    Designing for Responsiveness

    15

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    16/62 2013 Thomas Wenisch

    Parallel Computational Sprinting

    Tma

    x

    power

    temperature

    16

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    17/62 2013 Thomas Wenisch

    Tma

    x

    power

    temperature

    Effect ofthermal capacitance

    Parallel Computational Sprinting

    17

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    18/62 2013 Thomas Wenisch

    Tma

    x

    power

    temperature

    Effect ofthermal capacitance

    Parallel Computational Sprinting

    18

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    19/62 2013 Thomas Wenisch

    Tma

    x

    power

    temperature

    Effect ofthermal capacitance

    Parallel Computational Sprinting

    19

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    20/62 2013 Thomas Wenisch

    Tma

    x

    power

    temperature

    Effect ofthermal capacitanceState of the art:

    Turbo Boost 2.0

    exceedssustainable power

    with DVFS

    (~25% for 25s)

    Parallel Computational Sprinting

    20

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    21/62 2013 Thomas Wenisch

    Hardware Testbed

    21

    Quad-core Core i7 desktop

    Heat sink removed

    Fan tuned for 10W TDP

    Power profile Idle: 4.5 W

    Sustainable (1 core 1.6GHz): 9.5 W

    Efficient sprint (4 core 1.6GHz): ~20 W

    Max sprint (4 core 3.2GHz): ~50 W

    Temperature profile Idle: ~45C

    Max safe: 78C

    20g copper heat spreader on package

    Can absorb ~225J heat over 30C temperature rise

    Models a system capable of 5x max sprint intensity

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    22/62 2013 Thomas Wenisch

    Power & Temperature Response

    22

    0

    10

    20

    30

    40

    50

    60

    -5 0 5 10 15 20 25 30 35 40

    sustained

    sprint-3.2GHz

    sprint-1.6GHz

    40

    50

    60

    70

    0

    20

    40

    60

    Power(W

    )

    Tem

    p(C)

    Max sprint: 3s @ 3.2GHz, 19s @ 1.6GHz

    -5 0 5 10 15 20 25 30 35 40

    sustained

    sprint-3.2GHz

    sprint-1.6GHz

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    23/62 2013 Thomas Wenisch

    Responsiveness & Energy Impact

    23

    0

    2

    4

    6

    8

    3.2 1.6 3.2 1.6 3.2 1.6 3.2 1.6 3.2 1.6 3.2 1.6

    normalizedspeed

    up

    sobel disparity segment kmeans feature texture

    sobel disparity segment kmeans feature texture

    0

    0.5

    1

    1.5

    3.2 1.6 3.2 1.6 3.2 1.6 3.2 1.6 3.2 1.6 3.2 1.6

    norm

    alizedenergy

    Idle

    Sprint

    Idle

    Sprint

    Sprint for responsiveness (3.2GHz): 6.3x speedup

    Race-to-idle (1.6GHz): 7% energy savings (!!)

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    24/62

    2013 Thomas Wenisch

    Extending Sprint Intensity & Duration:

    Role of Thermal Capacitance

    Current systems designed forthermal conductivity

    Limited capacitance close to die

    To explicitly design for sprinting,

    add thermalcapacitance near die

    Exploit latent heat fromphase change material (PCM)

    Die

    Die

    PCM

    24

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    25/62

    2013 Thomas Wenisch

    PCM Heat Sink Prototype

    25

    Aluminum foam mesh filled with Paraffin wax

    Relatively form-stable; melting point near 55C

    Working on a fully-sealed prototype w/ thermocouples

    1

    2

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    26/62

    2013 Thomas Wenisch

    Demo of PCM melting

    26Nickel-plated Copper fins; paraffin wax

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    27/62

    2013 Thomas Wenisch

    Impact of PCM prototype

    27

    40

    50

    60

    70

    Temp

    (C)

    PCM extends max sprint duration by almost 3x

    80

    90 air

    empty

    water

    wax

    50 100 150 200 250 300 350 400

    Elapsed Time

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    28/62

    2013 Thomas Wenisch

    Power Management of

    Online Data-Intensive Services

    David Meisner, Christopher M. Sadler, Luiz A. Barroso,

    Wolf-Dietrich Weber, Thomas F. Wenisch

    The University of Michigan *Facebook Google, Inc.

    International Symposium on Computer Architecture 201128

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    29/62

    2013 Thomas Wenisch

    Power: A first-class data center constraint

    29

    Improving energy & capital efficiency is a critical challenge

    Source: US EPA 2007

    Source: Mankoff et al, IEEE Computer 2008

    Annual data center CO2:17 million households

    2.5% of US energy

    $7.4 billion/yr.Installed base

    grows 11%/yr.

    Facility

    Electricity

    Servers

    Source: Barroso 10

    Lifetime Cost of a Data Center

    Peak power determines

    data center capital costs

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    30/62

    2013 Thomas Wenisch

    Online Data-Intensive Services [ISCA 2011]

    Challenging workload class for power management Process TBs of data with O(ms) request latency

    Tail latencies critical (e.g., 95th, 99th-percentile latency)

    Provisioned by data set size and latency notthroughput

    Examples:web search, machine translation, online-ads

    Case Study: Google Web Search

    First study on power management for OLDI services

    Goal: Identify which power modes are useful

    30

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    31/62

    2013 Thomas Wenisch

    The need for energy-proportionality

    31

    ~75%

    ~50%

    ~20%

    How to achieve energy-proportionality at each QPS level?

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    32/62

    2013 Thomas Wenisch

    Two-part study of Web Search

    Part 1: Cluster-scale throughput study

    Web Search on O(1,000) node cluster

    Measured per-component activity at leaf level

    Use to derive upper-bounds on power savings

    Determine power modes of interest/non-interest

    Part 2: Single-node latency-constrained study

    Evaluate power-latency tradeoffs of power modes

    Can we achieve energy-proportionality with SLA slack

    32Need coordinated, full-system active low-power modes

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    33/62

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    34/62

    2013 Thomas Wenisch

    Doc 36

    Background: Web Search operation

    34

    Root

    Leaf

    Intermediary

    LevelQuery:Ice Cream

    Ice

    Index Docs Index Docs Index Docs Index Docs

    Cream

    Doc 24

    Doc

    11, 200Doc

    36,50

    Doc

    11,50, 36,200

    Doc

    50, 76, 200, 323

    Doc

    76, 323

    Doc

    76, 323

    What if we turn off

    a fraction of the cluster?Doc 50

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    35/62

    2013 Thomas Wenisch

    Web Search operation

    35

    Query:Vanilla Ice Cream

    Index Docs Index Docs Index Docs Index Docs

    Doc 76

    What if we turn off

    a fraction of the cluster?

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    36/62

    2013 Thomas Wenisch

    Web Search operation

    36

    Index Index Docs

    Doc 76What if we turn off

    a fraction of the cluster?

    50% of Max QPS

    20

    A I

    Cluster-level techniquescause data unavailability

    Disk

    CPU

    Mem

    A I

    Sy

    stem

    Cluster

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    37/62

    2013 Thomas Wenisch

    Study #1: Cluster-scale throughput

    Web Search experimental setup O(1,000) server system

    Operated at 20%, 50%, 75% of peak QPS

    Traces of CPU util., memory bandwidth, disk util.

    Characterization

    Goal: find periods to use low-power modes Understand intensityand time-scale of utilization

    Analyze using activity graphs

    37

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    38/62

    2013 Thomas Wenisch

    CPU utilization

    38

    50% of Max QPS

    20

    40

    80

    100

    Time Scale

    1ms 10ms100 s

    PercentofTim

    e

    60

    100ms 10s

    10%Idle

    30%

    50%

    1s

    How often canwe use the mode?What is the intensity of activity?

    We can use a mode with a 2xslowdown 45% of the time

    on time scales of 1ms or less

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    39/62

    2013 Thomas Wenisch

    CPU utilization

    39

    50% of Max QPS

    Very little Idleness > 10ms

    1 ms granularity sufficient

    20

    40

    80

    100

    Time Scale

    1ms 10ms100 s

    PercentofTim

    e

    60

    100ms 10s

    10%Idle

    30%

    50%

    1s

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    40/62

    2013 Thomas Wenisch

    CPU utilization

    40

    50% of Max QPS

    Very little Idleness > 10ms

    1 ms granularity sufficient

    20

    40

    80

    100

    Time Scale

    1ms 10ms100 s

    PercentofTim

    e

    60

    100ms 10s

    10%Idle

    30%

    50%

    1s

    50% of Max QPS

    20

    A I

    CPU active/idle mode opportunityfrom a bandwidth perspective

    Disk

    CPU

    Mem

    A I

    Sy

    stem

    Cluster

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    41/62

    2013 Thomas Wenisch

    Memory bandwidth utilization

    41

    50% of Max QPS

    20

    40

    80

    100

    Time Scale

    1s 10s100 ms

    PercentofTim

    e

    60

    100s 1000s

    10%Idle

    30%

    50%

    No SignificantIdleness

    Significant Periodsof Under-utilization

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    42/62

    2013 Thomas Wenisch

    Memory bandwidth utilization

    42

    50% of Max QPS

    20

    40

    80

    100

    Time Scale

    1s 10s100 ms

    PercentofTim

    e

    60

    100s 1000s

    10%Idle

    30%

    50%

    No SignificantIdleness

    Significant Periodsof Under-utilization

    50% of Max QPS

    20

    A I

    Insufficient idleness for memoryidle low-power mode

    CPU

    A I

    System

    Cluster

    Disk transition times too slowSee paper for details

    Disk

    Mem

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    43/62

    2013 Thomas Wenisch

    Study #2: Leaf node latency

    Goal: Understand latency effect of power modes

    Leaf node testbed

    Faithfully replicate production queries at leaf node

    Arrival time distribution critical for accurate modeling

    Up to 50% error from Nave loadtester

    Validated power-performance model Characterize power-latency tradeoff on real HW

    Evaluate power modes using Stochastic Queuing

    Simulation (SQS) *EXERT 10+

    43

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    44/62

    2013 Thomas Wenisch

    75% QPS

    Full-system coordinated idle modes

    Scarce full-system idleness in 16-core systems

    PowerNap *ASPLOS 09+ with batching *Elnozahy et al 03+

    44

    20% QPS

    25

    50

    75

    100

    95th-Percentile Latency Increase4x 6x8x 10x

    2x

    Power(Percentofpeak)

    1x Avg. Query Time

    0.1x Avg. Query Time

    25

    50

    75

    100

    95th-Percentile Latency4x 6x 8x 10x2x

    Power(Pe

    rcentofpeak)

    1x Avg. Query Time

    0.1x Avg. Query Time

    Transition Time

    Transition Time

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    45/62

    2013 Thomas Wenisch

    75% QPS

    Full-system coordinated idle modes

    Scarce full-system idleness for multicore

    PowerNap *ASPLOS 09+ with batching *Elnozahy et al 03+

    45

    20% QPS

    25

    50

    75

    100

    95th-Percentile Latency Increase4x 6x 8x 10x2x

    Power(Percentofpeak)

    1x Avg. Query Time

    0.1x Avg. Query Time

    25

    50

    75

    100

    95th-Percentile Latency4x 6x 8x 10x2x

    Power(Pe

    rcentofpeak)

    1x Avg. Query Time

    0.1x Avg. Query Time

    Transition Time

    Transition Time

    20

    A I

    Batching + full-system idlemodes ineffective

    CPU

    A I

    Cluster

    Disk

    Mem

    System

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    46/62

    2013 Thomas Wenisch

    Full-system coordinated active scaling

    We assume CPU and memory scaling with P~f2.4

    Optimal Mix requires coordination of CPU/memory modes

    46

    20% QPS

    1.6x 1.8x 2x

    Memory Only

    Full System

    25

    50

    75

    100

    95th-Percentile Latency Increase

    1.2x 1.4x1x

    Power(Percentofpeak)

    CPU Only25

    50

    75

    100

    95th-Percentile Latency Increase

    1.2x 1.4x 1.6x 1.8x1x

    Power(Pe

    rcentofpeak)

    2x

    75% QPS

    Memory Only

    Full System

    CPU Only

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    47/62

    2013 Thomas Wenisch

    Full-system coordinated active scaling

    We assume CPU and memory scaling with P~f2.4

    Optimal Mix requires coordination of CPU/memory modes

    47

    20% QPS

    1.6x 1.8x 2x

    Memory Only

    Full System

    25

    50

    75

    100

    95th-Percentile Latency Increase

    1.2x 1.4x1x

    Power(Percentofpeak)

    CPU Only25

    50

    75

    100

    95th-Percentile Latency Increase

    1.2x 1.4x 1.6x 1.8x1x

    Power(Pe

    rcentofpeak)

    2x

    75% QPS

    Memory Only

    Full System

    CPU Only

    A I

    Single-component active low-power modes insufficient

    I

    Cluster

    Disk

    A

    System

    CPU

    Mem

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    48/62

    2013 Thomas Wenisch

    Comparing power modes

    Allow SLA slack deviation from 95th-percentile latency

    48

    2040

    60

    80100

    1x SLA

    2x SLA5x SLA

    Averag

    eDiurnalPowe

    r

    (Percentofpeak)

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    49/62

    2013 Thomas Wenisch

    Comparing power modes

    Allow SLA slack deviation from 95th-percentile latency

    49

    2040

    60

    80100

    1x SLA

    2x SLA5x SLA

    Averag

    eDiurnalPowe

    r

    (Percentofpeak)

    A I

    Core-level power modesprovide negligible power savings

    I

    Clu

    ster

    Disk

    A

    System

    Mem

    CPU

    Only coordinated active modes achieve proportionality

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    50/62

    2013 Thomas Wenisch

    OLDI power management summary

    OLDI workloads challenging for power management

    Cluster-scale study

    Current CPU power modes sufficient

    Massive opportunity for active modes for memory Need faster idle and active modes for disk

    Latency-constrained study

    Individual idle/active power modes do not achieve proportionality

    PowerNap + batching provides poor latency-power tradeoffs

    50

    Need coordinated, full-system active low-power modes

    to achieve energy proportionality for OLDI workloads

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    51/62

    2013 Thomas Wenisch

    For more informationhttp://www.eecs.umich.edu/~twenisch

    51

    Sponsors

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    52/62

    2013 Thomas Wenisch

    Backup Slides

    52

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    53/62

    2013 Thomas Wenisch

    Typical data center utilization

    Low utilization (20%) is endemic Provisioning for peak load

    Performance isolation

    Redundancy

    53

    Source: Barroso & Hlzle, Google 2007

    0%

    20%

    40%

    60%

    80%

    100%

    10

    %

    20

    %

    30

    %

    40

    %

    50

    %

    60

    %

    70

    %

    80

    %

    90

    %

    100

    %Fractionoftime

    CPU utilization (%)

    ITWeb 2.0

    Customer traces supplied by HP Labs

    But, historically, vendors optimize & report peak power

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    54/62

    2013 Thomas Wenisch Most idle periods are < 1 Sec in length

    Idle periods are short

    54

    20%

    40%

    60%

    80%

    100%

    0%

    100ms 1s 10s 100s10ms

    Idle Period Length (L)

    %

    IdleTimeinPeriodsL

    [Meisner 09]

    DNS

    Shell

    Mail

    Web

    HPCBackup

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    55/62

    2013 Thomas Wenisch

    Background: PowerNap *ASPLOS09, TOCS11+Full System Idle Low-Power Mode

    Full-system nap during

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    56/62

    2013 Thomas Wenisch

    0%

    20%

    40%

    60%

    80%

    100%

    0% 20% 40% 60% 80% 100%

    Avg.Power

    (%

    maxpower)

    % utilization

    DVFS = 100%

    DVFS = 40%

    DVFS = 20%

    PowerNap = 100 msPowerNap = 10 ms

    PowerNap = 1 ms0%

    20%

    40%

    60%

    80%

    100%

    0% 20% 40% 60% 80% 100%

    Avg.Power

    (%

    maxpower)

    % utilization

    DVFS = 100%

    DVFS = 40%

    DVFS = 20%

    PowerNap = 100 msPowerNap = 10 ms

    PowerNap = 1 ms

    Average power

    56

    Pwrcpu

    Pwrcpu

    Pwrcpu

    TtTt

    Tt

    DVFS saves rapidly, but limited by Pwrcpu

    PowerNap becomes energy-proportional as Tt0

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    57/62

    2013 Thomas Wenisch

    Response time

    57

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    0% 20% 40% 60% 80% 100%

    Relativeresponsetime

    % utilization

    DVFS

    PowerNap = 100 ms

    PowerNap = 10 ms

    PowerNap = 1 ms

    Tt

    Tt

    Tt

    DVFS response time penalty capped by fmin

    PowerNap penalty negligible for Tt 1ms

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    58/62

    2013 Thomas Wenisch

    PowerNap Hardware

    58

    Transition Time (us)

    NapPower(W

    )

    Nap power is ~10W, but PSU uses additional 25W

    PSU also limiting factor for transition

    1 10 100 1000

    CPU

    DRAM

    PSU

    0

    10

    20

    30

    40

    CPU

    DRAM

    NIC

    SSD

    PSU

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    59/62

    2013 Thomas Wenisch

    PowerNap & multicore scaling

    Request-level parallelism &

    core scaling thwart PowerNap

    Full-system idleness vanishes

    even at low utilization

    Per-core idleness unaligned

    Parking (Package C6) saves little Automatic per-core C1E on HLT already very good

    59

    0%

    20%

    40%

    60%

    80%

    100%

    1 2 4 8 16 32PowerSavingsvs.C1E

    30%

    utilization

    Cores per Socket

    Core Parking

    Socket Parking

    PowerNap

    Need to create PowerNap opportunity via scheduling

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    60/62

    2013 Thomas Wenisch

    Background: MemScale *ASPLOS11+Active Low-Power Mode for Main Memory

    Goal: Dynamically scale memory frequency to conserve energy

    Hardware mechanism:

    Frequency scaling (DFS) of the channels, DIMMs, DRAM devices

    Voltage & frequency scaling (DVFS) ofthe memory controller

    Key challenge:

    Conserving significant energy while meeting performanceconstraints

    Approach:

    Online profiling to estimate performance and bandwidth demand

    Epoch-based modeling and control to meet performance constraints

    System energy savings of 18%

    with average performance loss of 4% 60

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    61/62

    2013 Thomas Wenisch 6161

    MemScale frequency and slack management

    Time

    Epoch 1 Epoch 2 Epoch 3 Epoch 4

    High Freq.

    Low Freq.

    MC, Bus + DRAM

    CPU Pos. Slack Neg. Slack Pos. Slack ProfilingTarget

    Actual

    Calculate slack vs. targetEstimate performance/energy via models

  • 7/29/2019 IEE/CEEM 2012-2013 Seminar: Thomas Wenisch, "Power Management from Smartphones to Data Centers."

    62/62

    In Brief: Computational Sprinting [HPCA 2012]

    Many interactive mobile apps are bursty

    Power density trend leading to dark silicon (esp. mobile)

    Today, we design for sustained performance

    Our goal: design for responsiveness

    Computational Sprinting

    Intensely, but briefly exceed Thermal Design Power (TDP)

    Buffer heat via thermal capacitance using phase change material

    temp MeltingPoint

    Re-solidification

    Tmax

    Die

    PCM